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1. Introduction

Over the last few years we have performed a study of quenched QCD withoverlap quarks. We
generated 100 configurations of size 183×64 atβ = 6 and 100 configurations of size 143×48 at
β = 5.85, with Wilson gauge action and separated from each other by 10,000 Metropolis steps. The
corresponding lattice spacings, from the Sommer scale, area−1 = 2.12GeV anda−1 = 1.61GeV.
These configurations were transformed to the Landau gauge, and overlap quark propagators were
calculated for a single point source and all 12 color-spin combinations withρ = 1.4, amq =

0.03,0.04,0.06,0.08,0.1,0.25,0.5,0.75 atβ = 6, andρ = 1.6,amq = 0.03,0.04,0.053,0.08,0.106,
0.132,0.33,0.66,0.99 atβ = 5.85. (We recall that the overlap Dirac operator for a quark of massm
is given by[1− (am)/(2ρ)]D+m, whereD = (ρ/a)(1+ γ5H(ρ)/

√

H(ρ)2) andH(ρ) stands for
the Hermitian Wilson-Dirac operator with mass−ρ/a.) A Zolotarev approximation to the inverse
square root was used for the first 55 configurations atβ = 6, then a Chebyshev approximation of
degree 100∼ 500, after Ritz projection of the 12 (183×64 lattice) or 40 (143×48 lattice) lowest
eigenvectors ofH2. The convergence criterion was|x−1/2−∑Tn(x)|< 10−8, |D†Dψ −χ|2 < 10−7.
The use of propagators with a point source, as opposed to extended orwall sources, was dictated
by our desire to calculate matrix elements and renormalization factors, and by the limitation of the
computational resources at our disposal. Results for light hadron spectroscopy were presented at
the Lattice 2005 Symposium [1] and in Ref. [2]. We refer the reader to [2]for details of our calcu-
lations and for references to other studies of lattice QCD with overlap quarks on large lattices. We
present here results we recently obtained on∆S= 2 matrix elements and on baryon wave-functions
and diquark correlations inside baryons.

2. ∆S= 2 matrix elements

We evaluated matrix elements of the operatorsO1 = [s̄aγµ(1− γ5)da][s̄bγµ(1− γ5)db],O2 =

[s̄a(1− γ5)da][s̄b(1− γ5)db],O3 = [s̄a(1− γ5)db][s̄b(1− γ5)da],O4 = [s̄a(1− γ5)da][s̄b(1+ γ5)db]

andO5 = [s̄a(1− γ5)db][s̄b(1+ γ5)da] which are needed to study neutral kaon mixing in the stan-
dard model (SM) and beyond (BSM). An extensive description of our work and results has been
presented in [3]. Here we we only outline the main features of our analysis.We would like to direct
the reader to [3] for a detailed bibliography of other relevant investigations.

We used the quark propagators to calculate

B
1
PP(x0,y0) =

∑~x,~y〈P(x)O1(0)P(y)〉
8
3 ∑~x,~y〈P(x)Ā0(0)〉〈Ā0(0)P(y)〉

a≪x0≪T/2≪y0≪T
−→ B1 (2.1)

B
i
PP(x0,y0) =

∑~x,~y〈P(x)Oi(0)P(y)〉

Ni ∑~x,~y〈P(x)P̄(0)〉〈P̄(0)P(y)〉
a≪x0≪T/2≪y0≪T

−→ Bi (2.2)

for i=2· · ·5 with Ni =
5
3,−1

3,−2,−2
3, and fit to a constant in the symmetric time intervals given by:

12≤ x0/a≤ 19 and 45≤ y0/a≤ 52 for i=1· · ·5, atβ = 6.0; 10≤ x0/a≤ 12 and 36≤ y0/a≤ 38
for i=1 and 10≤ x0/a≤ 14 and 34≤ y0/a≤ 38 for i=2· · ·5, atβ = 5.85.

The bare values obtained for the parametersBi must be renormalized to relate them to physical
observables. We used a non-perturbative renormalization technique based on the RI/MOM methods
of [4]. Our results for theB-parameters are shown in Figure 1, where the polynomial interpolations
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Figure 1: Mass-dependence, in terms of the variableM2/(4πF)2, of theB-parametersBi , i = 1, · · · ,5, in the
RI/MOM scheme at 2 GeV. The solid curves are the results of thefits described in the text, and are plotted
in the fit region. The fits are used to interpolate the results to the kaon pointM2/(4πF)2 = M2

K/(4πFK)2,
shown as a vertical dotted line. The dashed curves are an extension of the fit curves outside the fit range.
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Figure 2: Same as Figure 1, but for the BSM ratiosRBSM
i , i = 2, · · · ,5.

to the kaon point are displayed. From theseB-parameters, we also reconstruct the matrix elements
themselves. In Figure 2, we show the polynomial interpolations to the kaon point of the ratios:

RBSM
i (µ,M2) ≡

[

F2
K

M2
K

]

expt

[

M2

F2

〈P̄0|Oi(µ)|P0〉

〈P̄0|O1(µ)|P0〉

]

lat
, (2.3)

for i = 2, · · · ,5, whereM andF are the mass and “decay constant” of the lattice kaon which we
denote byP0 to indicate that the mass of the strange and down quarks that compose it can differ
from their physical values. The ratiosRBSM

i (µ,M2
K) measure directly the ratio of BSM to SM

matrix elements and, as such, can be used in expressions for∆MK andε beyond the SM, in which
the SM contribution is factored out.

Our main conclusion is that the non-SM,∆S= 2 matrix elements are significantly larger than
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found in the only other dedicated lattice study of these amplitudes [5]. In tracing the source of
this difference, we found that we already disagree on the much simpler matrixelement of the
pseudoscalar density between a kaon state and the vacuum, which is the building block for the
vacuum saturation values of the BSM∆S= 2 amplitudes. Through the axial Ward identity, the
matrix element of the pseudoscalar density is related to the sum of the strange and down quark
masses, which we find to be roughly 30% smaller than the value obtained in [6],with the same
tree-level improved Wilson fermion action and gauge configurations as used in [5]. Since our
result for this sum of masses is in agreement with the continuum limit, benchmark result of [7], we
are convinced that the stronger enhancement of non-SM∆S= 2 matrix elements that we observe
is correct. For details concerning this issue as well as our other results, we refer the reader to [3].

3. Baryon wave-functions and diquark correlations

We study the correlation of quarks inside baryons by evaluating baryon Green functions where
the quarks, which without loss of generality we take to beu,d ands, are found at different spatial
locations at the sink:

G(~r1,~r2,~r3, t) = 〈u(~r1, t)d(~r2, t)s(~r3, t) ū(0)d̄(0)s̄(0)〉 (3.1)

The color indices, which like the spin indices are left implicit, are combined in a color singlet. The
use of gauge fixing allows us to consider separated quarks without the need to introduce gauge
transport factors. For this investigation we also converted the gauge background field from the
Landau gauge to the Coulomb gauge, and we will report below results in bothgauges, which
however are rather similar. In order to project over states of zero momentum, we sum over a
translational degree of freedom, evaluating a reduced wave function

G̃(~r,~r ′, t) = ∑
~r3

〈u(~r3 +~r, t)d(~r3 +~r ′, t)s(~r3, t) ū(0)d̄(0)s̄(0)〉 (3.2)

(The sums in 3.2 involve a very large number of terms and the use of a fast Fourier transform and
the convolution theorem is crucial to carry them out in manageable computer time).

The spin indices are combined in an appropriate spin wave-function at the source and sink.
Of particular interest is comparing the spin configurations where, in the spin1/2+ octet, theu
andd quarks are combined,Λ-like , in a spin and isospin singlet state, the so-called good diquark
combination, versus those whereu andd are,Σ-like, in a spin and isospin triplet state. In Figure 3
we show the ratio of the mean separations betweenu,d andu,s quarks in the two spin states. The
results give support to the notion that quarks inside a baryon tend to correlate in a “good” diquark
state.

It is interesting to visualize the correlation among the quarks inside the baryon, i.e. the function
G̃(~r,~r ′, t) which we can loosely consider as the wave-function of the three quarks.The problem
is, of course, that, at fixedt, G̃ is a function of the two vectors~r,~r ′, i.e. of six variables. The
representation ofG̃ can be simplified somewhat by assuming rotational invariance, i.e. lack of
major spin orbit correlation. We have verified that this assumption is satisfied within the statistical
accuracy of our calculations. (Indeed the actual magnitude of spin-orbit correlations could be
evaluated by our technique, given sufficient statistical precision.) This leavesG̃ a function only of

4



P
o
S
(
L
A
T
2
0
0
6
)
0
9
1

Matrix elements and diquark correlations in quenched QCD with overlap fermions. Claudio Rebbi

0 0.04 0.08 0.12
am

q

0.9

0.95

1

1.05

1.1

R
ud us

Σ (Landau gauge)
Σ (Coulomb gauge)
Λ (Landau gauge)
Λ (Coulomb gauge)

Figure 3: Ratio of meanu−d separation to meanu− s separation as function of quark mass for the two
u,d diquark configurations. Data withβ = 6 andt = 10a.
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Figure 4: The geometry used for visualizing the wave-function of the quarks inside a baryon.

the shape of the triangle subtended by the two vectors~r,~r ′. This is still a function of three variables,
but, to provide a meaningful visualization, we can fix one of these and represent the wave-function
as a function of the other two. Thus, for a generic triangle formed by the locations of thes,u andd
quarks, we introduce coordinatesx,y,zas illustrated in Figure 4, and then representG̃ as a function
in the x,y plane at fixedz. Our results, withβ = 6, amq = 0.03 andt = 10a, are illustrated in
Figures 5 and 6. They show again that theu andd quarks tend to correlate in the good diquark
configuration.

A detailed, expanded version of the results presented in this section is in preparation and will
form the subject of a forthcoming paper. An earlier study of quark wave-functions with some
similarity to ours can be found in Ref. [8]. We are not aware of other investigations studying the
same type of correlation functions.
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Figure 5: The wave-function of theu andd quarks, in the Coulomb gauge, in a spin and isospin singlet
state (good diquark), given by the narrower bell-shaped surface (red with color), against the wave-function
of the two quarks in a spin and isospin triplet state, given bythe broader curve (green with color), for a
separationz= 1.8a between thesquark and the mid-point of theu,d pair.

4. Conclusions

Our results corroborate the fact that the overlap discretization, at leastinsofar as valence quarks
are concerned, can be used in large scale simulations, and, because ofits very good symmetry
properties, represents a choice method for QCD numerical calculations.

They also provide some novel matrix element values and evidence for strong diquark correla-
tion in a flavor3̄, spin-singlet state.
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Figure 6: Same as in Figure 5, but forz= 3.6a.
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