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1. Introduction

Both color confinement and chiral symmetry breaking are the importanpadorbative as-
pects ofQCD and are believed to have an strong connection with the gauge field topdlof@. [
For the mechanism of color confinement, abelian degrees of freedonm whtained after the
gauge fixing [[B], seems to play a crucial role through the dual Meisdfeat g4, B,[6,[7]. For ex-
ample in the maximal abelian gaugfd [8], the abelian dominance has been @@, [in which
the string tension can be almost reproduced by abelian field only. Althougtepineducibility
is not perfect [11], this feature is called as "abelian dominance" fofimement. Not only this
abelian dominance but also "monopole dominance" was notifefd [ T2, 13reTh a evidence
for the condensation of monopoles in the confinement phfse[ J[L4, 18hefumore the effective
action was successfully constructed by the monopole field in which the strisgtecan be repro-
duced by monopole contributions only J16]. In the case above the topalagfiject is "abelian
monopole”.

There is also another candidate that seems play crucial role for confihefes is the center
of the gauge group. FdUJ(2) case, the center i8(2). Just like as "abelian dominance", "cen-
ter dominance" is also observed. The string tension constructed fronZ¢2jwariables carries
almost part of3J (2) string tension [[47]. In this case, the topological object is "center vartex"
(L8]

If the topological objects mentioned above, abelian monopole and centekvplay signifi-
cant role for confinement, these two should be unified. There is an argaioag this direction,
but the final conclusion has not been performed ye} [19[ 20, 21].

For the chiral symmetry breaking, instanton is expected to play important rbieganton
is related to the axial (1) anomaly [2B,[24], and is also associated with a zero mode of the
Dirac operator [[1[25]. There is a lattice data which suggests the localations between the
topological charge and the chiral condensatd [26].

Finite temperature lattice gauge simulations suggest that the color becomesiret@and
chiral symmetry is restored at the same critical temperatfir [27]. This mighestithat these
two aspects oQQCD, confinement and chiral symmetry breaking, can be explained in a unifigd w

It is noted that the correlation between monopole and chiral symmetry bgpakis observed
in the maximal abelian gaug¢ ]28].

On the other hand for center degrees of freedom, it is proved by a rmahexperiment that
the center vortices are responsible for confinement and chiral symnrettiibg [29]3D]. When
the center vortices are removed fr&(2) configurations, confinement is lost and chiral symmetry
is restored. Recently the importance of center has been accumufajed [18].

Is is stressed that it is very hard to investigate the topology directly on genjeccted config-
urations because of the inherent discontinuitg () link variables [3p].

2. Z(2) gauge model as an effective model of U (2)

The success of center degrees of freedom, in which physical @idesvinSJ (2) such as
the string tension can be well reproducedz{) variables only, implies the possibility that there
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exists the effective actioB: ¢ (Z2) by which the confinement and chiral symmetry breaking can be
explained. It is highly expected the appearance of such effectivenaf2@.

Suppose®({Z,}) is the distribution function obtained after the center projection of the orig-
inal U (2) configurations. If we assume the shape of the effective actid@{2)t S (Z,), using
free parameters, we can ideally tune these paramet%‘#?h(lzz) such that the distribution gener-
ated byS1¥ (2,) satisfiesp©({Z,}) O exp(—S12 (22)).

If this can be successfully applied/? (Z,) is nothing butSs (Z).

It looks very important to tackle this problem, however, we do not go fuiththis letter.

Instead we will revisit theZ(2) gauge model which was extensively studied as the effective
theory of confinement[[31, BR,]3B.]34] 35].

The action of the 4 dimensiondl(2) gauge theory can be written as ( we adopt the simple
plaquette action )&z, = - 5 z,(N)z, (N+ )z, (n+v)z,(n).

wherez, (n) is Z(2) link variable ( 1 or—1) defined on the site having the directionu. The
sum is over all plaguettes. This system has a phase transitf@na0.44, the confinement phase
is atf3 < B. whereas the deconfinement phase i§ at ..

Let us suppose that tl#2) gauge model is the one obtained fr&(2) gauge configurations
after the center projectiong. St1(Z2) ~ S, If this is the case, there should be remnantSubf2)
gauge system i#(2) gauge configurations generated®y.

We know, strictly speaking, this is not the case, however, it is very impatariteck whether
there is a similarity betwee®:t(Z2) andSz, or not.

It is stressed that the center projected configurations have strongammwith the gauge
field topology [2P]. If there might be remnants 88 (2) gauge system in th&(2) gauge model,
we can see the topological remnants also inZ{® gauge model.

The main purpose of this paper is to investigate the existence of the topologimants in
Z(2) gauge model and it's correlation with the phaseZ ).

As noted in ref. [[30], in order to investigate the topology in the discZé® gauge configu-
rations, we need to smooth the discontinud() variables.

3. Smoothing the Z(2) by Metropolistype cooling

It is obvious that the discontinuity of center projec&@) variables originates from the center
projection,i.e. U (2) — Z(2).

Smoothing is expected to do the reverse of the projection above,

Z(2) - U (2),

such that it should not create any additional disorder keeping long tapglogical properties.

In other words, the center projection can be regarded as the remabe off-diagonal part.
In this sense, the smoothing is the creation or introduction of the off-didgteraents from the
diagonalZ(2) variables.

Itis well known that the cooling removes the short range disorder priegthe non-perturbative
part of the configuration, and is successfully applied to extract the tgjpalacharge on the lattice.
(B4, 37.[38[3p].

For this reason we adopt the cooling technique to smootH {Bevariables.
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In general, cooling is performed by the successive local minimization ofradti®J (2) case
local minimization is realized by replacing the lik, (n) by U;#(n),

Up(n) = ; Uy (MUg(n+v)UJ(n+ p) /K, (3.2)
VU

kis a normalization factor such thidff®'(n) € SU(2).

In this heatbath type cooling, action will maximally decrease locally. So it is tanfthe
smoothness we want.

Furthermore itis obvious that this procedure can not create any @fodé part from diagonal
matrix.

Instead we adopt Metropolis type cooling in which the new trial link is defirsed a

| +iF-&
V142

wherel is a unit matrix and’ is a random vector with small lengtli < ) such that thesU (2)
matrix R should distribute around unit matrix to ensure the smoothness of this preceie
accept new linkJ3*"(n) iff action decreases.

Smoothing is defined as follows:

Let {7} is thermalizedZ(2) configuration and, (n) denotes a link variable oreg].

(1) Smoothing starts settirJ (2) link variableU,(n), Uy (n) < z,(n) I, forall n and p,
and then,

(2) apply cooling to the&8J (2) configuration {U}.

It is noted that we do not apply cooling directlyZ92) gauge theory.

U (n) =RUy(n), R= (3.2)

4. Lattice calculation of the topological charge

We prepare well thermalized(2) lattice configurations of size f@t 3 = 0.2,0.3,0.4,0.43
( confinement phase ),4b,0.5,0.6 ( deconfinement phase ). At egBh400 configurations sep-
arated 500 updating sweeps are used. For each configuration, sngaoghiooling technique is
applied up to 500 smoothing sweeps measuring simultaneously the topologicgé Ghdefined
as,Q= 35,2 3 Evpotr [Puv(n)Poc(N)],

whereP,, (n) = Uy, (n)Uy (n+ u)UJ(nJr v)UJ(n).

The smoothing parameteris set toc = 0.03.

Fig.1 shows the typical smoothing history Qf For the early stage of smoothin@,is not
stable reflecting the discontinuity coming fraf(2). On the other hand as smoothing goesn
becomes stable.

For the almost configurations having non-vanishipgwe observed thaf) becomes stable
after several hundred smoothing sweeps. So we adopt the @ati&00 smoothing sweeps as the
value of the topological charge.

We have checked that the result is almost the same for snga{le 0.1), whereas the con-
vergence of) gets worse for larges (¢ > 0.1) indicating the onset of disorder in eq.6.

The technical details about the calculation will be published elsewhere.
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Fig.2 shows< Q? > at variousB. Clear discontinuity ok Q? > can be seen arour which
is the critical of Z(2) gauge theory< Q? > is finite for B < B. and< Q? > is consistent to be
0 for B > B.. This means that chiral symmetry is broken in the confinement phase sheiga
restored in the deconfinement phase.

This feature is very similar to that i8J (2) gauge theory at finite temperature. The result
shows that the existence of the topological remnai(R) gauge model as expected.

Compared witt8J (2), Z(2) seems easy to handle, so #(&) gauge model should be revisited
as for the testbed to investigate the connection between confinement aidygimmetry breaking.

5. Summary and Discussion

We found the existence of the topological remnant&(i2) gauge model. It is also observed
that the topological nature changes drastically at the critical poifi{ ®f gauge model< Q? > is
finite in the confinement phase and consistent to zero in the deconfinehaegt. p

Metropolis type cooling is introduced to smooth the discontinut(@ gauge variables and
successfully applied to extract the topology.

Present result suggests that #{&) gauge model with simple plaguette action might be the one
obtained by center projection fro8UJ (2) preserving the non-perturbative nature of confinement
and chiral symmetry breaking.
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Figure 1: Topological charge Q as a function of smoothing sweeps. @semstable for the early stage of
smoothing reflecting the discontinuity @f2) at the starting point.



Z(2) gauge model revisited

Shinji Hioki

It is very important to apply the appropriate smoothing, because the rdgalbhed may de-

pend on the way of smoothing. It is desirable to clarify the smoothing depead® smoothing
independence in near future.

Revisiting theZ(2) and analyzing the nature @f2) may reveal the non-perturbative nature of
non-abelian gauge theories.
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