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Adopting the cooling technique to smooth the discontinuousZ(2) lattice gauge field, we found

that onSU(2) gauge configurations obtained by this smoothing there exists clear discontinuity

of the topological property at almost the same point as the confinement-deconfinement phase

transition of the originalZ(2) gauge theory. This observation suggests the possibility that Z(2)

gauge model might be a testbed for analyzing the relation between the confinement and the chiral

phase transition in which the topological objects are believed to play crucial roles.
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1. Introduction

Both color confinement and chiral symmetry breaking are the important non-perturbative as-
pects ofQCD and are believed to have an strong connection with the gauge field topology [1, 2].
For the mechanism of color confinement, abelian degrees of freedom which obtained after the
gauge fixing [3], seems to play a crucial role through the dual Meissner effect [4, 5, 6, 7]. For ex-
ample in the maximal abelian gauge [8], the abelian dominance has been found [9, 10], in which
the string tension can be almost reproduced by abelian field only. Although thereproducibility
is not perfect [11], this feature is called as "abelian dominance" for confinement. Not only this
abelian dominance but also "monopole dominance" was noticed [12, 13]. There is a evidence
for the condensation of monopoles in the confinement phase [14, 15]. Furthermore the effective
action was successfully constructed by the monopole field in which the string tension can be repro-
duced by monopole contributions only [16]. In the case above the topological object is "abelian
monopole".

There is also another candidate that seems play crucial role for confinement. This is the center
of the gauge group. ForSU(2) case, the center isZ(2). Just like as "abelian dominance", "cen-
ter dominance" is also observed. The string tension constructed from onlyZ(2) variables carries
almost part ofSU(2) string tension [17]. In this case, the topological object is "center vortex".
[18]

If the topological objects mentioned above, abelian monopole and center vortex, play signifi-
cant role for confinement, these two should be unified. There is an argument along this direction,
but the final conclusion has not been performed yet [19, 20, 21].

For the chiral symmetry breaking, instanton is expected to play important roles.Instanton
is related to the axialU(1) anomaly [23, 24], and is also associated with a zero mode of the
Dirac operator [1, 25]. There is a lattice data which suggests the local correlations between the
topological charge and the chiral condensate [26].

Finite temperature lattice gauge simulations suggest that the color becomes deconfined and
chiral symmetry is restored at the same critical temperature [27]. This might suggest that these
two aspects ofQCD, confinement and chiral symmetry breaking, can be explained in a unified way.

It is noted that the correlation between monopole and chiral symmetry breaking was observed
in the maximal abelian gauge [28].

On the other hand for center degrees of freedom, it is proved by a numerical experiment that
the center vortices are responsible for confinement and chiral symmetry breaking [29, 30]. When
the center vortices are removed fromSU(2) configurations, confinement is lost and chiral symmetry
is restored. Recently the importance of center has been accumulated [18].

Is is stressed that it is very hard to investigate the topology directly on centerprojected config-
urations because of the inherent discontinuity ofZ(2) link variables [30].

2. Z(2) gauge model as an effective model of SU(2)

The success of center degrees of freedom, in which physical observables inSU(2) such as
the string tension can be well reproduced byZ(2) variables only, implies the possibility that there
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exists the effective actionSe f f (Z2) by which the confinement and chiral symmetry breaking can be
explained. It is highly expected the appearance of such effective action [29].

SupposeρC({Z2}) is the distribution function obtained after the center projection of the orig-
inal SU(2) configurations. If we assume the shape of the effective action ofZ(2): Strial

e f f (Z2), using
free parameters, we can ideally tune these parameters inStrial

e f f (Z2) such that the distribution gener-
ated byStrial

e f f (Z2) satisfies,ρC({Z2}) ∝ exp(−Strial
e f f (Z2)).

If this can be successfully applied,Strial
e f f (Z2) is nothing butSe f f (Z2).

It looks very important to tackle this problem, however, we do not go further in this letter.

Instead we will revisit theZ(2) gauge model which was extensively studied as the effective
theory of confinement [31, 32, 33, 34, 35].

The action of the 4 dimensionalZ(2) gauge theory can be written as ( we adopt the simple
plaquette action ),SZ2 =−β ∑zµ(n)zν(n+ µ)zµ(n+ν)zν(n).

wherezµ(n) is Z(2) link variable ( 1 or−1 ) defined on the siten having the directionµ. The
sum is over all plaquettes. This system has a phase transition atβc ≃ 0.44, the confinement phase
is atβ < βc whereas the deconfinement phase is atβ > βc.

Let us suppose that theZ(2) gauge model is the one obtained fromSU(2) gauge configurations
after the center projection,i.e. Se f f (Z2)≃ SZ2 If this is the case, there should be remnants ofSU(2)

gauge system inZ(2) gauge configurations generated bySZ2.

We know, strictly speaking, this is not the case, however, it is very importantto check whether
there is a similarity betweenSe f f (Z2) andSZ2 or not.

It is stressed that the center projected configurations have strong connection with the gauge
field topology [29]. If there might be remnants ofSU(2) gauge system in theZ(2) gauge model,
we can see the topological remnants also in theZ(2) gauge model.

The main purpose of this paper is to investigate the existence of the topologicalremnants in
Z(2) gauge model and it’s correlation with the phases ofZ(2).

As noted in ref. [30], in order to investigate the topology in the discreteZ(2) gauge configu-
rations, we need to smooth the discontinuousZ(2) variables.

3. Smoothing the Z(2) by Metropolis type cooling

It is obvious that the discontinuity of center projectedZ(2) variables originates from the center
projection,i.e. SU(2)→ Z(2).

Smoothing is expected to do the reverse of the projection above,

Z(2)→ SU(2),

such that it should not create any additional disorder keeping long range topological properties.

In other words, the center projection can be regarded as the removal ofthe off-diagonal part.
In this sense, the smoothing is the creation or introduction of the off-diagonal elements from the
diagonalZ(2) variables.

It is well known that the cooling removes the short range disorder preserving the non-perturbative
part of the configuration, and is successfully applied to extract the topological charge on the lattice.
[36, 37, 38, 39].

For this reason we adopt the cooling technique to smooth theZ(2) variables.
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In general, cooling is performed by the successive local minimization of action. In SU(2) case
local minimization is realized by replacing the linkUµ(n) by Unew

µ (n),

Unew
µ (n) = ∑

ν 6=µ
Uν(n)Uµ(n+ν)U†

ν (n+ µ)/k, (3.1)

k is a normalization factor such thatUnew
µ (n) ∈ SU(2).

In this heatbath type cooling, action will maximally decrease locally. So it is far from the
smoothness we want.

Furthermore it is obvious that this procedure can not create any off-diagonal part from diagonal
matrix.

Instead we adopt Metropolis type cooling in which the new trial link is defined as,

Unew
µ (n) = R Uµ(n), R≡

I + i~r ·~σ
√

1+ |~r|2
, (3.2)

whereI is a unit matrix and~r is a random vector with small length (|~r|2 ≤ ε) such that theSU(2)

matrix R should distribute around unit matrix to ensure the smoothness of this procedure. We
accept new linkUnew

µ (n) iff action decreases.
Smoothing is defined as follows:
Let {z} is thermalizedZ(2) configuration andzµ(n) denotes a link variable on {z}.
(1) Smoothing starts settingSU(2) link variableUµ(n), Uµ(n)← zµ(n) I, for all n and µ,

and then,
(2) apply cooling to theSU(2) configuration {U}.
It is noted that we do not apply cooling directly toZ(2) gauge theory.

4. Lattice calculation of the topological charge

We prepare well thermalizedZ(2) lattice configurations of size 164 at β = 0.2,0.3,0.4,0.43
( confinement phase ), 0.45,0.5,0.6 ( deconfinement phase ). At eachβ , 400 configurations sep-
arated 500 updating sweeps are used. For each configuration, smoothing by cooling technique is
applied up to 500 smoothing sweeps measuring simultaneously the topological chargeQ defined
as,Q = 1

32π2 ∑εµνρσ tr[Pµν(n)Pρσ (n)],

wherePµν(n) = Uµ(n)Uν(n+ µ)U†
µ(n+ν)U†

ν (n).

The smoothing parameterε is set toε = 0.03.
Fig.1 shows the typical smoothing history ofQ. For the early stage of smoothing,Q is not

stable reflecting the discontinuity coming fromZ(2). On the other hand as smoothing goes onQ
becomes stable.

For the almost configurations having non-vanishingQ, we observed thatQ becomes stable
after several hundred smoothing sweeps. So we adopt the valueQ at 500 smoothing sweeps as the
value of the topological charge.

We have checked that the result is almost the same for smallerε (ε ≤ 0.1), whereas the con-
vergence ofQ gets worse for largerε (ε ≥ 0.1) indicating the onset of disorder in eq.6.

The technical details about the calculation will be published elsewhere.
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Fig.2 shows< Q2 > at variousβ . Clear discontinuity of< Q2 > can be seen aroundβc which
is the criticalβ of Z(2) gauge theory.< Q2 > is finite for β < βc and< Q2 > is consistent to be
0 for β > βc. This means that chiral symmetry is broken in the confinement phase whereas it is
restored in the deconfinement phase.

This feature is very similar to that inSU(2) gauge theory at finite temperature. The result
shows that the existence of the topological remnant inZ(2) gauge model as expected.

Compared withSU(2), Z(2) seems easy to handle, so theZ(2) gauge model should be revisited
as for the testbed to investigate the connection between confinement and chiral symmetry breaking.

5. Summary and Discussion

We found the existence of the topological remnants inZ(2) gauge model. It is also observed
that the topological nature changes drastically at the critical point ofZ(2) gauge model.< Q2 > is
finite in the confinement phase and consistent to zero in the deconfinement phase.

Metropolis type cooling is introduced to smooth the discontinuousZ(2) gauge variables and
successfully applied to extract the topology.

Present result suggests that theZ(2) gauge model with simple plaquette action might be the one
obtained by center projection fromSU(2) preserving the non-perturbative nature of confinement
and chiral symmetry breaking.
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Figure 1: Topological charge Q as a function of smoothing sweeps. Q seems unstable for the early stage of
smoothing reflecting the discontinuity ofZ(2) at the starting point.
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It is very important to apply the appropriate smoothing, because the result obtained may de-
pend on the way of smoothing. It is desirable to clarify the smoothing dependence or smoothing
independence in near future.

Revisiting theZ(2) and analyzing the nature ofZ(2) may reveal the non-perturbative nature of
non-abelian gauge theories.
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