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1. Overview

The most faithful lattice regularization of fermions hasbeachieved using Domain Wall
Fermions (DWF) and closely related methods. This is of paldr importance to lattice QCD. At
the time of this writing the supercomputing technology hesgpessed far enough to allow us to
simulate dynamical QCD for inverse lattice spacings in thke2GeV region. Here | introduce Gap
Domain Wall Fermions (GDWF) which significantly improve thkiral symmetry properties of
DWEF in this regime. As a result substantially less compateti resources are needed for the same
chiral symmetry properties. Furthermore, GDWF and theipprties are of theoretical interest
since their topological properties closely resemble thogeected in the continuum theory. The
GDWF method was first proposed in [1] and first results wersemted in [2] which is the basis
for these proceedings. The reader is referred to [2] for ndetails and extended references. For
related works the reader is referred to [3].

Lattice DWF are defined in five dimensions. The fifth dimendiasL lattice sites and the
five-dimensional fermion has positive bare mags(domain wall height). The five dimensional
Dirac operatoDg employs free boundary conditions at the edges of the fifthedsion (walls).
As a result the plus chirality fermionic components are liged on one wall while the minus
chirality components are localized on the other. The twoatities are explicitly mixed with a
mass parameten;. The gauge fields are defined in four dimensions only. Theyh@eame along
the fifth dimension and have no fifth component. This allowsafaefinition of a transfer matrix
T along the fifth direction that is the same in all “slices” ajaiat direction. The product of the
transfer matrices along the fifth direction is therefte. The single particle HamiltoniaH(my)
associated with this transfer matrix is then also independéthe fifth dimension. It is defined
in four dimensions and, for the case where the fifth dimen&@aontinuous, one can show that
Ha(mo) = ysD'w(—mo) whereD\y(—myp) is the standard Wilson fermion Dirac operator with mass
—mpy. When the fifth dimension is not continuous the Hamiltonias B more complicated form,
but one can show that it has the same zero eigenvaluds(a®).

The localization of the two chiral components on the opgositlls is exponentially good.
The slowest decay coefficient is proportional to the smiliesbsolute value, negative eigenvalue
of Ha(mp). For infiniteLs (overlap fermions) the two chiralities completely deceuptovided that
Ha(my) does not have eigenvalues that are exactly zero. That jlagsié of measure zero and
is therefore of no concern. Nevertheless, at fihiigewhere simulations are performed, the two
chiralities will mix and break chiral symmetry. Furtherrapif Hs(mp) has very small eigenvalues
the exponential decay will be overshadowed by slow powerdagay even for very larges. This
mixing is of a similar nature as the one produced by a mass. téris possible to calculate this
“effective” mass (usually called residual masses) and use it to quantify the quality of the DWF
regulator. Clearly at finités one would likeH4(mp) to have a substantial gap which in turn would
result to a rapidly decreasinge asls is increased.

For any gauge field configuratidds(u) has the same number of positive,j and negative
(n_) eigenvalues fop < 0. However, ag! is increased above zero some eigenvalud i) may
cross zero and change sign. Then—n_ would not be zero just after the crossing occurs. It has
been shown that the number and direction of crossings isttlinelated to the number of instantons
and anti-instantons present in the gauge configurationteid t —n_ is an integer Dirac operator
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index that is in fact equal, in a statistical sense, to thegiebal) topological charge of the gauge
field configuration. The Atiyia-Singer index theorem is readl on the lattice in a statistical sense.
These are rather remarkable properties.

A very nice way to look at the spectrum bs(u) is to plot the eigenvalues df4(u) as a
function of 4. This is an eigenvalue flow diagram (see Figure 1). Instantioat are larger than the
lattice spacing are of course of physical interest and itdegs shown [4] that they produce cross-
ings in rather localized neighborhoodsothat correspond to the edges of the standard Brillouin
zones. For a single flavor DWF one picks= mg in between the first and second set of cross-
ings. Since this is a finite range no fine-tuning is requiradthe continuum limit the range for
one flavor extends from 0 to 2 and the width of the neighborbagllere crossings occur tends to
zero. The location and width of the crossing neighborhosdsriormalized from their continuum
values as the coupling is made stronger. For example, tirdatpacinga ! ~ 1.4 GeV , the first
set of crossings occur in the neighborhoodugf, ~ 0.9 and the second in the neighborhood of
Hmax =~ 2.2. Their width is approximately 0.2. However, small instargt of the size of the lattice
spacing are generated/destroyed because they can “coffia#t ind/through the discrete lattice.
This generates additional crossings throughoutthe, tmax region.

In a numerical simulation at small lattice spacing (weakpting) there are few to no such
small instanton crossings. The simulation is performed @tamy in the middle of the relevant
range (in this workmyg = 1.9). At that value, since there are no crossings, the eigeevgp is
large and therefore the localization on the walls is good.aAssult, the two chiralities mix very
weakly and break chiral symmetry minimally (as a result decreases rapidly with increasihg).
However, at large lattice spacings (strong coupling) thalsimstantons generate crossings across
the whole range and therefore also closeno As a result the eigenvalue gap becomes very small.
For example, one can see from Figure 1 that the DWF gap is veajl $left column) for inverse
lattice spacings inthe 1 to 2 GeV region. The challenge igppress the crossings due to the lattice
spacing size instantons, which are an artifact of the &attitiscreteness”, without destroying the
crossings due to the all-important physical instantong wite of many lattice spacings.

2. Gap Domain Wall Fermions

The method of GDWF is based on the simple fact that sigeny) = ysDw(—mp), where
Dw(—mp) is the standard Wilson fermion Dirac matrix, one can indudarger gap by adding
to the theory standard dynamical Wilson fermions with masg. Here | add two flavors. When
integrated out these fermions contribute a factatedf [y, (—mg)] = det?[H4(mo)] to the Boltzman
weight. Gauge field configurations for whiety(mg) has small eigenvalues will be suppressed by
this Boltzman weight and therefore they will be sampled wefsequently. In particular, any gauge
field configuration for whichHs(mp) has a zero eigenvalue is explicitly excluded (not to mention
that the set of such configurations is of measure zero). ThitzBan weight “repels” gauge
configurations for which the gap af, is small. One can expect a substantially largaw even for
strong couplings. This gap is the reason for the name of tfegegions. Notice that | have not
added any extra parameters since the Wilson fermions hase atpal to-my which is already
a parameter of the theory. Furthermore, a larger gap,imp) will obviously also improve the
Neuberger-overlap fermion method [5].
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Figure1: The 10 smallest magnitude eigenvaluesigfmy) vs. mp from 20 independent configurations.
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Figure2: The Wilson hadron spectrum is above the cutoff.

The Wilson fermions that | added to the theory have masg with my somewhere in the
middle of the crossings regidipimin, Umay- | have chosemny = 1.9 which is a good choice for
the whole range of lattice spacings of interest. Such a nsaigsthe supercritical region of Wil-
son fermion masses and is very heavy. The hadron spectraiading the pions, of these two
flavors of Wilson fermions, should be above the cutoff. Irt ttase their contribution to the low
energy physics of the theory is irrelevant. Furthermorés important that crossings due to the
all-important physical instantons with size of many lat&pacings are present. The added Wilson
fermions have massmgy and they suppress the crossings aromgdut have little effect further
away. Becausey is chosen somewhere in the middle of the allowed range, theranstanton
crossings should not be affected since they occur at thesaafdbe allowed range.
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3. Numerical simulation results

Here | demonstrate the properties of GDWF outlined in theriptess section using numeri-
cal simulations. Because of limited computational resesiicuse the “quenched” approximation
for the DWF sea fermions. However, unlike standard quendimdlations | consider large lat-
tice spacings that are of interest to dynamical DWF simaiteti | compare results obtained from
simulations with no dynamical Wilson flavors with resultstaibed at the same lattice spacing
(measured using thm; = 0 extrapolategp mass) with two dynamical Wilson flavors with mass
—my. | only use one value afy = 1.9 throughout this work. In order to compare results | mateh th
lattice spacing between the two cases by adjugBinglere | achieve a 5% or better matching level
at three values of the lattice spaciag! ~ 1.0 GeV , 14 GeV and 20 GeV . Measurements are
done using the DWF operator @ = 1.9. The space-time volume of all simulations is’ 3632.

In Figure 1 the ten smallest magnitude eigenvaludd,0ifny) are plotted vsmy. The eigenval-
ues are calculated with an accuracy $@nd are measured img steps of 0025. An aggregate of
the results from 20 independent configurations (separat&dlronfigurations) is plotted in each
plot. The left column is from O-flavor Wilson simulations wathe right column is from 2-flavor
Wilson with mass—my. Horizontally, the O-flavor and 2-flavgs values correspond to the same
lattice spacing. From top to bottoat ~ 1.0 GeV , 14 GeV and 2 GeV . Notice the difference
in the y-axis scale for the different lattice spacings. Tb$shairs” indicate theyy = 1.9 point.
One can clearly see that the 2-flavor Wilson fermions geeeaubstantial gap aroungy where
none existed before even at the large lattice spaaiigz 1.0 GeV .

Furthermore, it is very important to observe in Figure 1 tinet 2-flavor Wilson fermions
generate the gap at a neighborhoodmgf= 1.9, but allow for a copious amount of crossings at
the edges of the allowely range. These crossings correspond to instantons withaigerithan
a lattice spacing and are of physical interest. Althoughufegl shows the cumulative results
of 20 configurations, by close inspection, for example seer€i 5, | confirmed that the number
of crossings changes from configuration to configurationis Tdicates instanton, anti-instanton
activity.

As discussed, it is expected that the added 2-flavors of Willswors with supercritical mass
U = —1.9 should have a hadron spectrum above the lattice cutoffs iBhverified in Figure 2.
The pion (diamonds), rho (squares) and nucleon (stars)@sassa ! in GeV measured using
2-flavor dynamical Wilson fermions (both for the propagaod the sea quarks) is shown. The
scale is set using the GDWHmass. The straight line marks the cutoff. Masses aboveitteaaite
above the lattice cutoff. Clearly the Wilson hadron speautisi above the lattice cutoff.

Also, one may worry that the Wilson fermions may break pasitice they have mass in the
supercritical region. This is obviously not the case as @geden from Figure 1 where the corre-
sponding operatos(mp) = ywDw(—Mp) has no zero eigenvaluesag = 1.9. Also, | explicitly
confirmed thak WyW > is zero well within the corresponding error bars.

The residual masBy is measured using the ratio method. In Figure 3 the quench&g D
and GDWF residual masseses Vs. Lg are shown. From left to right the three frames correspond
toat~10GeV, 14 GeV and 20 GeV . The top points (squares) are from the quenched DWF
simulations while the bottom points (diamonds) are fromghenched GDWF simulations. In both
casesmy = 1.9 andme was measured am; = 0.02 (the value ofn.g is fairly insensitive to the
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Figure 3: The quenched DWF and GDWF residual magsgsVs. Ls.
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Figure4: The pion mass squared ws; from quenched GDWF simulations.
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Figure5: The few smallest eigenvaluesidfi(mp) vs. my for 3 GDWF configurations a1=20GeV.

value ofmg). The expected faster exponential decay and much smallggs/afm. are evident.
The difference becomes more dramatic as the lattice spacilerreased. Also, any improvement
method should result in small pion masses. In Figure 4 the GPWh mass squared vsi; from
guenched GDWF simulations is shown. The squares are theunegadata points, the straight
line is a leasty? fit and the star is then; = 0 extrapolated point. Heney = 1.9 andLs = 16.
From left to right the three frames correspondatd ~ 1.0 GeV , 14 GeV and 20 GeV . For
a1~ 1.0 GeV the straight line fit intersects the x-axisnat ~ —0.004 which is consistent with
the value ofmes ~ 0.006 from Figure 3. Foa ! ~ 1.4 GeV , and D GeV the straight line
fit gives m% ~ 0 atm; = O within the error bar. Furthermore, as a demonstration efntiethod
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| did a simulation of quenched GDWF at?! = 1.356(75) GeV , Ls = 24 andm; = 0.005 with
space-time volume $6< 32 andmy = 1.9. In order to mimic the way dynamical simulations are
analyzed | calculated—! using theo mass at the bare quark mass= 0.005 and not at thexy =0
extrapolated value. | find thae = 0.000644) which is about 10% of the explicit quark mass
m¢ = 0.005. And finally the pion mass is under control. | fimg = 140(40) MeV atm; = 0.005.

4. Topology

From Figure 1 one can see that the number and location ofiegssshange from configuration
to configuration. This is more evident in Figure 5 where tigersvalue flow for 3 consecutive
configurations, each separated by 20 HMC trajectories,da/shn greater resolution @ = 4.8,

a ! =20 GeV . This indicates the desired instanton anti-instamtctivity. Measuring the net

index requires more computational resources. Howeveicattat the configurations of Figure 5
have zero net index. They were produced after an initial 2BCHhermalization trajectories from

an ordered initial configuration which obviously has zerbindex. This is a strong indicator that
the net index is not changing or is changing very slowly.

If the update algorithm “smoothly” transforms the gaugeaifi@nfiguration then the net index
changes in a smooth way too. In that case the heavy Wilsoridardeterminant will prohibit any
flow line from crossing througimy and as a result the net index will not be able to change. The
simulation will generate configurations with the same ndéinas the initial configuration and will
not be able to tunnel between sectors. This does not chaagility of the simulation to generate
crossings (as in Figures 1, 5). It simply means that the appea / disappearance of an instanton
will always be accompanied by that of an anti-instanton ofissize at some location.

It is not clear if the HMC Phi is capable of topologically nemooth gauge field evolution
that would generate tunneling between sectors. Howevierjghan algorithmic issue and is not
particular to GDWF. For example, net index change is suggrkas the lattice spacing gets smaller
irrespectively of using or not using GDWF. The gauge actiarribrs between topological sectors
are a property of QCD. This has not been identified as a propétrecause the couplings used in
today’s simulations are not weak enough. In any event, agiskmwown, in many cases one only
needs to stay within sector zero provided that the volumargel for the physics at hand.
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