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1. Overview

The most faithful lattice regularization of fermions has been achieved using Domain Wall
Fermions (DWF) and closely related methods. This is of particular importance to lattice QCD. At
the time of this writing the supercomputing technology has progressed far enough to allow us to
simulate dynamical QCD for inverse lattice spacings in the 1to 2 GeV region. Here I introduce Gap
Domain Wall Fermions (GDWF) which significantly improve thechiral symmetry properties of
DWF in this regime. As a result substantially less computational resources are needed for the same
chiral symmetry properties. Furthermore, GDWF and their properties are of theoretical interest
since their topological properties closely resemble thoseexpected in the continuum theory. The
GDWF method was first proposed in [1] and first results were presented in [2] which is the basis
for these proceedings. The reader is referred to [2] for moredetails and extended references. For
related works the reader is referred to [3].

Lattice DWF are defined in five dimensions. The fifth dimensionhasLs lattice sites and the
five-dimensional fermion has positive bare massm0 (domain wall height). The five dimensional
Dirac operatorDF employs free boundary conditions at the edges of the fifth dimension (walls).
As a result the plus chirality fermionic components are localized on one wall while the minus
chirality components are localized on the other. The two chiralities are explicitly mixed with a
mass parameterm f . The gauge fields are defined in four dimensions only. They arethe same along
the fifth dimension and have no fifth component. This allows for a definition of a transfer matrix
T along the fifth direction that is the same in all “slices” along that direction. The product of the
transfer matrices along the fifth direction is thereforeT Ls . The single particle HamiltonianH4(m0)

associated with this transfer matrix is then also independent of the fifth dimension. It is defined
in four dimensions and, for the case where the fifth dimensionis continuous, one can show that
H4(m0) = γ5D/w(−m0) whereD/w(−m0) is the standard Wilson fermion Dirac operator with mass
−m0. When the fifth dimension is not continuous the Hamiltonian has a more complicated form,
but one can show that it has the same zero eigenvalues asH4(m0).

The localization of the two chiral components on the opposite walls is exponentially good.
The slowest decay coefficient is proportional to the smallest, in absolute value, negative eigenvalue
of H4(m0). For infiniteLs (overlap fermions) the two chiralities completely decouple provided that
H4(m0) does not have eigenvalues that are exactly zero. That possibility is of measure zero and
is therefore of no concern. Nevertheless, at finiteLs, where simulations are performed, the two
chiralities will mix and break chiral symmetry. Furthermore, if H4(m0) has very small eigenvalues
the exponential decay will be overshadowed by slow power lawdecay even for very largeLs. This
mixing is of a similar nature as the one produced by a mass term. It is possible to calculate this
“effective” mass (usually called residual mass,mres) and use it to quantify the quality of the DWF
regulator. Clearly at finiteLs one would likeH4(m0) to have a substantial gap which in turn would
result to a rapidly decreasingmres asLs is increased.

For any gauge field configurationH4(µ) has the same number of positive (n+) and negative
(n−) eigenvalues forµ < 0. However, asµ is increased above zero some eigenvalue ofH4(µ) may
cross zero and change sign. Thenn+ −n− would not be zero just after the crossing occurs. It has
been shown that the number and direction of crossings is directly related to the number of instantons
and anti-instantons present in the gauge configuration and thatn+−n− is an integer Dirac operator
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index that is in fact equal, in a statistical sense, to the net(global) topological charge of the gauge
field configuration. The Atiyia-Singer index theorem is realized on the lattice in a statistical sense.
These are rather remarkable properties.

A very nice way to look at the spectrum ofH4(µ) is to plot the eigenvalues ofH4(µ) as a
function ofµ . This is an eigenvalue flow diagram (see Figure 1). Instantons that are larger than the
lattice spacing are of course of physical interest and it hasbeen shown [4] that they produce cross-
ings in rather localized neighborhoods ofµ that correspond to the edges of the standard Brillouin
zones. For a single flavor DWF one picksµ = m0 in between the first and second set of cross-
ings. Since this is a finite range no fine-tuning is required. In the continuum limit the range for
one flavor extends from 0 to 2 and the width of the neighborhoods where crossings occur tends to
zero. The location and width of the crossing neighborhoods is renormalized from their continuum
values as the coupling is made stronger. For example, for lattice spacinga−1

≈ 1.4 GeV , the first
set of crossings occur in the neighborhood ofµmin ≈ 0.9 and the second in the neighborhood of
µmax≈ 2.2. Their width is approximately 0.2. However, small instantons of the size of the lattice
spacing are generated/destroyed because they can “come up/fall in” through the discrete lattice.
This generates additional crossings throughout theµmin, µmax region.

In a numerical simulation at small lattice spacing (weak coupling) there are few to no such
small instanton crossings. The simulation is performed at aµ = m0 in the middle of the relevant
range (in this workm0 = 1.9). At that value, since there are no crossings, the eigenvalue gap is
large and therefore the localization on the walls is good. Asa result, the two chiralities mix very
weakly and break chiral symmetry minimally (as a resultmres decreases rapidly with increasingLs).
However, at large lattice spacings (strong coupling) the small instantons generate crossings across
the whole range and therefore also close tom0. As a result the eigenvalue gap becomes very small.
For example, one can see from Figure 1 that the DWF gap is very small (left column) for inverse
lattice spacings in the 1 to 2 GeV region. The challenge is to suppress the crossings due to the lattice
spacing size instantons, which are an artifact of the lattice “discreteness”, without destroying the
crossings due to the all-important physical instantons with size of many lattice spacings.

2. Gap Domain Wall Fermions

The method of GDWF is based on the simple fact that sinceH4(m0) = γ5D/w(−m0), where
D/w(−m0) is the standard Wilson fermion Dirac matrix, one can induce alarger gap by adding
to the theory standard dynamical Wilson fermions with mass−m0. Here I add two flavors. When
integrated out these fermions contribute a factor ofdet2[D/w(−m0)] = det2[H4(m0)] to the Boltzman
weight. Gauge field configurations for whichH4(m0) has small eigenvalues will be suppressed by
this Boltzman weight and therefore they will be sampled veryinfrequently. In particular, any gauge
field configuration for whichH4(m0) has a zero eigenvalue is explicitly excluded (not to mention
that the set of such configurations is of measure zero). This Boltzman weight “repels” gauge
configurations for which the gap atm0 is small. One can expect a substantially largergap even for
strong couplings. This gap is the reason for the name of thesefermions. Notice that I have not
added any extra parameters since the Wilson fermions have mass equal to−m0 which is already
a parameter of the theory. Furthermore, a larger gap inH4(m0) will obviously also improve the
Neuberger-overlap fermion method [5].
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Figure 1: The 10 smallest magnitude eigenvalues ofH4(m0) vs. m0 from 20 independent configurations.

Figure 2: The Wilson hadron spectrum is above the cutoff.

The Wilson fermions that I added to the theory have mass−m0 with m0 somewhere in the
middle of the crossings region[µmin,µmax]. I have chosenm0 = 1.9 which is a good choice for
the whole range of lattice spacings of interest. Such a mass is in the supercritical region of Wil-
son fermion masses and is very heavy. The hadron spectrum, including the pions, of these two
flavors of Wilson fermions, should be above the cutoff. In that case their contribution to the low
energy physics of the theory is irrelevant. Furthermore, itis important that crossings due to the
all-important physical instantons with size of many lattice spacings are present. The added Wilson
fermions have mass−m0 and they suppress the crossings aroundm0 but have little effect further
away. Becausem0 is chosen somewhere in the middle of the allowed range, the larger instanton
crossings should not be affected since they occur at the edges of the allowed range.
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3. Numerical simulation results

Here I demonstrate the properties of GDWF outlined in the previous section using numeri-
cal simulations. Because of limited computational resources I use the “quenched” approximation
for the DWF sea fermions. However, unlike standard quenchedsimulations I consider large lat-
tice spacings that are of interest to dynamical DWF simulations. I compare results obtained from
simulations with no dynamical Wilson flavors with results obtained at the same lattice spacing
(measured using them f = 0 extrapolatedρ mass) with two dynamical Wilson flavors with mass
−m0. I only use one value ofm0 = 1.9 throughout this work. In order to compare results I match the
lattice spacing between the two cases by adjustingβ . Here I achieve a 5% or better matching level
at three values of the lattice spacinga−1

≈ 1.0 GeV , 1.4 GeV and 2.0 GeV . Measurements are
done using the DWF operator atm0 = 1.9. The space-time volume of all simulations is 163

×32.

In Figure 1 the ten smallest magnitude eigenvalues ofH4(m0) are plotted vs.m0. The eigenval-
ues are calculated with an accuracy 10−6 and are measured inm0 steps of 0.025. An aggregate of
the results from 20 independent configurations (separated by 20 configurations) is plotted in each
plot. The left column is from 0-flavor Wilson simulations while the right column is from 2-flavor
Wilson with mass−m0. Horizontally, the 0-flavor and 2-flavorβ values correspond to the same
lattice spacing. From top to bottoma−1

≈ 1.0 GeV , 1.4 GeV and 2.0 GeV . Notice the difference
in the y-axis scale for the different lattice spacings. The “crosshairs” indicate them0 = 1.9 point.
One can clearly see that the 2-flavor Wilson fermions generate a substantial gap aroundm0 where
none existed before even at the large lattice spacinga−1

≈ 1.0 GeV .

Furthermore, it is very important to observe in Figure 1 thatthe 2-flavor Wilson fermions
generate the gap at a neighborhood ofm0 = 1.9, but allow for a copious amount of crossings at
the edges of the allowedm0 range. These crossings correspond to instantons with size larger than
a lattice spacing and are of physical interest. Although Figure 1 shows the cumulative results
of 20 configurations, by close inspection, for example see Figure 5, I confirmed that the number
of crossings changes from configuration to configuration. This indicates instanton, anti-instanton
activity.

As discussed, it is expected that the added 2-flavors of Wilson flavors with supercritical mass
µ = −1.9 should have a hadron spectrum above the lattice cutoff. This is verified in Figure 2.
The pion (diamonds), rho (squares) and nucleon (stars) masses vs.a−1 in GeV measured using
2-flavor dynamical Wilson fermions (both for the propagatorand the sea quarks) is shown. The
scale is set using the GDWFρ mass. The straight line marks the cutoff. Masses above that line are
above the lattice cutoff. Clearly the Wilson hadron spectrum is above the lattice cutoff.

Also, one may worry that the Wilson fermions may break paritysince they have mass in the
supercritical region. This is obviously not the case as can be seen from Figure 1 where the corre-
sponding operatorH4(m0) = γ5D/w(−m0) has no zero eigenvalues atm0 = 1.9. Also, I explicitly
confirmed that< Ψγ5Ψ > is zero well within the corresponding error bars.

The residual massmres is measured using the ratio method. In Figure 3 the quenched DWF
and GDWF residual massesmres vs. Ls are shown. From left to right the three frames correspond
to a−1

≈ 1.0 GeV , 1.4 GeV and 2.0 GeV . The top points (squares) are from the quenched DWF
simulations while the bottom points (diamonds) are from thequenched GDWF simulations. In both
casesm0 = 1.9 andmres was measured atm f = 0.02 (the value ofmres is fairly insensitive to the
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Figure 3: The quenched DWF and GDWF residual massesmres vs. Ls.

Figure 4: The pion mass squared vs.m f from quenched GDWF simulations.

Figure 5: The few smallest eigenvalues ofH4(m0) vs. m0 for 3 GDWF configurations ata−1 = 2.0 GeV .

value ofm f ). The expected faster exponential decay and much smaller values ofmres are evident.
The difference becomes more dramatic as the lattice spacingis decreased. Also, any improvement
method should result in small pion masses. In Figure 4 the GDWF pion mass squared vs.m f from
quenched GDWF simulations is shown. The squares are the measured data points, the straight
line is a leastχ2 fit and the star is them f = 0 extrapolated point. Herem0 = 1.9 andLs = 16.
From left to right the three frames correspond toa−1

≈ 1.0 GeV , 1.4 GeV and 2.0 GeV . For
a−1

≈ 1.0 GeV the straight line fit intersects the x-axis atm f ≈ −0.004 which is consistent with
the value ofmres ≈ 0.006 from Figure 3. Fora−1

≈ 1.4 GeV , and 2.0 GeV the straight line
fit gives m2

π ≈ 0 at m f = 0 within the error bar. Furthermore, as a demonstration of the method
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I did a simulation of quenched GDWF ata−1 = 1.356(75) GeV , Ls = 24 andm f = 0.005 with
space-time volume 163

×32 andm0 = 1.9. In order to mimic the way dynamical simulations are
analyzed I calculateda−1 using theρ mass at the bare quark massm f = 0.005 and not at them f = 0
extrapolated value. I find thatmres = 0.00064(4) which is about 10% of the explicit quark mass
m f = 0.005. And finally the pion mass is under control. I findmπ = 140(40) MeV at m f = 0.005.

4. Topology

From Figure 1 one can see that the number and location of crossings change from configuration
to configuration. This is more evident in Figure 5 where the eigenvalue flow for 3 consecutive
configurations, each separated by 20 HMC trajectories, is shown in greater resolution atβ = 4.8,
a−1 = 2.0 GeV . This indicates the desired instanton anti-instantonactivity. Measuring the net
index requires more computational resources. However, notice that the configurations of Figure 5
have zero net index. They were produced after an initial 200 HMC thermalization trajectories from
an ordered initial configuration which obviously has zero net index. This is a strong indicator that
the net index is not changing or is changing very slowly.

If the update algorithm “smoothly” transforms the gauge field configuration then the net index
changes in a smooth way too. In that case the heavy Wilson fermion determinant will prohibit any
flow line from crossing throughm0 and as a result the net index will not be able to change. The
simulation will generate configurations with the same net index as the initial configuration and will
not be able to tunnel between sectors. This does not change the ability of the simulation to generate
crossings (as in Figures 1, 5). It simply means that the appearance / disappearance of an instanton
will always be accompanied by that of an anti-instanton of some size at some location.

It is not clear if the HMC Phi is capable of topologically non-smooth gauge field evolution
that would generate tunneling between sectors. However, this is an algorithmic issue and is not
particular to GDWF. For example, net index change is suppressed as the lattice spacing gets smaller
irrespectively of using or not using GDWF. The gauge action barriers between topological sectors
are a property of QCD. This has not been identified as a problemyet because the couplings used in
today’s simulations are not weak enough. In any event, as is well known, in many cases one only
needs to stay within sector zero provided that the volume is large for the physics at hand.
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