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The so-called asymmetric phase of the massiveλ φ4 model in 3+ 1 dimensions (where the con-

densate< vacjφ jvac>6= 0) is considered for the search of privileged values of its parameters

(mass and coupling constant) and possible conditions they can be expected to satisfy. For this,

a successful renormalization procedure for the variational approximation with a trial Gaussian

ansatz is re-analysed as a departing framework. The extremization of the renormalized energy

density with relation to the renormalized mass, coupling and φ̄ �< φ > is done. These minimiza-

tions do not yield the same expressions of the regularized equations as it is done in the variational

approach. Some expressions have an “energy scale” invariance unless for a term usually propor-

tional to an energy scale. A different view on the restoration of symmetry issue is presented. The

transcendental character of the GAP equation can be reducedor even eliminated by placing some

variables in the complex plane. With this ansatz it is possible to go from a phase in which̄φ = 0

to the other phase by a transformation (which can be a rotation) of the mass parameters in the

complex plane. The eventual relevance of the method and of the results for some specific systems

as well as some applications are pointed out.
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1. Introduction

It is usually highly desirable to predict the values of the free parameters of a physical model,
such as masses and couplings, from the theory itself before comparisons or fits to experimental
observations. In particular, quantum many body theories (for example in nuclear physics and con-
densed matter) and effective models for quantum field theories have free parameters which are
expected to be fitted to reproduce observables which are measured and known from experiments.
Usually for the determination of these parameters there is alarge range of values which can be
acceptable and used for investigating the properties of theparticular system. Therefore in another
level of reasoning, although the degrees of freedom do not necessarily correspond to fully physi-
cal degrees of freedom (or rather effective ones) it is highly desirable to obtain them from a more
fundamental theory when the understanding of the relationship among the (effective) parameters
acquire a deeper meaning. Besides that the relationships among the parameters might be of great
interest for the understanding of the structure of the theory itself. For the programs discussed above
it may be possible to predict values, either exact values or arange of them for which the theory
exhibits a particular or special behavior. These "privileged" values can be associated to the va-
lidity of the approximation method used to treat the theory,to the applicability of the model and
also to points in which particular physical effects can be expected. The main aim of the present
work is to suggest and investigate some ways according to which values (or range of values) for
these parameters could be found. Eventually this may suggest sort of “constraints” between the
parameters inside the model. The basic ideas are: to search for renormalized couplings and masses
which extremize (minimize/maximize) the renormalized energy density. Besides that the parame-
ters are placed in the complex plane to investigate whether relationships among them, which can
be highly transcendental in non perturbative methods, can be either simplified or more precisely
defined. In some sense this procedure can be considered as complementary to the renormalization
group method [1].

Theλφ4 model has been extensively studied for different reasons among which to shed light
on non perturbative effects in quantum field and many body theories (QFT, QMBT). It corresponds
to one of the simplest self interacting model whose structure is expected to be (partially) present
in several more elaborated theories and it presents interesting features [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
It has also been considered for the investigation of the Higgs sector of particle theories [6, 11],
cosmological models [12], some aspects of Bose-Einstein-Condensation [1, 13, 14] among other
systems. Besides that this models shares several properties with the linear sigma model (LSM)
which is an effective model for low energy QCD. Although it strongly seems to exhibit the property
of asymptotic freedom in the asymmetric phase [3, 4, 7], the model is “trivial” in the symmetric
phase [8, 1, 15].

The framework adopted to carry out the investigations mentioned above is the variational
Gaussian approximation in the Schroedinger representation. It is equivalent to the Hartree Bo-
goliubov approach [14], in which a Bogoliubov transformation can yield a non equivalent basis
of Fock states [16, 17, 18], and also to the leading order large N approximation [20, 21]. The
choice of a particular basis of the Fock space is due to the infinite number of degrees of freedom or
conversely, to the non unitarity of the underlying Bogoliubov transformation. In this approach the
ground state of the system is determined by (GAP) equations for the variational parameters, which
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are choosen to be a mass and the classical expected value of a field characteristic from a SSB state
(for a scalar field< φ >� φ̄ , which will be referred to as condensate even because it appears due
to long range interaction of the model [14]). The Bogoliubovtransformation is also appropriated
the investigation of non equibrium time dependent situations [14]. In some sense we also hope that
the present work can provide some insight on a possible way ofinvestigating these issues because
of the (eventual) time dependence (and eventual in medium dependence for many body systems)
of the parameters of an interacting field or particle.

In the present work the usual renormalization scheme of the Gaussian approach as carried out,
for example, in [22] for theλφ4 model is used as starting point for further investigation. It is
proposed the extremization of the renormalized energy density with relation to the renormalized
parameters (coupling constant and mass). Besides that somevariables are placed in the complex
plane to search suitable (physical) values and eventual conditions for these parameters. The work
is organized as follows. In the next section the Gaussian approximation is summarized: the GAP
equation (transcendental) is derived, obtained from the regularized theory (with a cutoff) and the
renormalization procedure is sketched as done in [22]. In sections 3 and 4 values of the renormal-
ized mass, condensate and coupling constant which extremize the energy density are searched and
analysed. For some ranges of the values of the parameters instabilities of the theory can appear. In
section 5 transcendental solutions for the equations whichdefine the ground state are investigated
by allowing some parameters to be complex such that the imaginary part disappears in the end
of the calculation to keep real values of mass parameters andcoupling constant. The last section
presents a summary.

2. Gaussian approximation for the λφ4 model

The Lagrangian density for a self interacting scalar fieldφ(x) is given by:L (x) = 1
2

�
∂µφ(x)∂ µ φ(x)�m2

0φ2(x)� λ
12

φ4(x)� ; (2.1)

where bare mass ism2
0 and coupling constantλ . The theory is quantized in the (functional)

Schrodinger representation [18, 19]. The action of the fieldand momentum operators over a func-
tional statejΨ[φ ℄> are given respectively by:̂φ jΨ >= φ jΨ > andπ̂ =�i~δ=δφ jΨ >.

In the static Gaussian approximation at zero temperature the trial ground state wave functional
Ψ can be parametrized by a Gaussian like:

Ψ [φ(x)℄ = Nexp

��1
4

Z
dxdyδφ(x)G�1(x;y)δφ(y)� ; (2.2)

Whereδφ(x) = φ(x)� φ̄ (x) is the field shifted by the condensate, the point where the wave func-
tion is centered; the normalization factor isN, the variational parameters are the (classical) expected
value of the field,φ̄ (x) =< Ψjφ jΨ >, and the quantum fluctuations represented by the two point
function, i.e., the width of the Gaussian:G(x;y) =< Ψjφ(x)φ(y)jΨ >. In variational calculations
the averaged energy calculated withΨ[φ(x)℄ is to be minimized to obtain the GAP equations. In
principle it yields a maximum bound for the ground state (averaged) energy, although ultraviolet
divergences make this not necessarily (completely) reliable. The minimization of the renormalized
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theory is useful for this theoretical bound of the variational principle. Each of these variational
parameters represents one component of the scalar field: theexpected value in the ground state
("classical" part) and the two-point Green’s function withthe mass of the quantum which is de-
composed into creation and annihilation operators [14]. Considering this wavefunctional yields a
self energy in which there is a resummation of “cactus” type loop diagrams [4, 15, 23, 24, 26].

The averaged value of the Hamiltonian is calculated and expressed in terms of the variational
parameters by means of expressions written above. The variational procedure requires the mini-
mization of the averaged energy density with respect to the variational parameters to produce the
following GAP and condensate equations:

δH
δG(x;y) ! 0=�1

8
G�2(x;y)+ Γ(x;y)

2
+ λ

2
φ̄(x)2 (i)

δH
δ φ̄ (x) ! 0= Γ(x;y)φ̄ (y)+ λ

6
φ̄2(x); (ii) (2.3)

WhereΓ(x;y) = �∆+�m2
0+ λ

2 G(x;x)�δ (x� y). The Green’s functionG can be written from
expressions above as:

G0(x;y) =< xj 1p�∆+m2
jy > (2.4)

wherem2 is given by the self consistent (transcendental) GAP equation (expression (2.3)):

m2 = m2
0+ λ

2
TraceG(x;x;m2)+ λ

2
φ̄2: (2.5)

An analogous expression holds for the case in whichφ̄ = 0, i.e.,

µ2 = m2(φ̄ = 0) = m2
0+ λ

2
TraceG(x;x;µ2):

Expression (2.4) is equivalent to the Feynman Green’s function with time integrated and with sign
changed in the imaginary part by replacing the self consistent mass by the bare massm2

0. The
physical masses in the different phases can assume different values from each other. The condition
of minimum for this procedure and its stability was partially investigated in [4] and it corresponds to
analysing the second order variation of the energy density with respect to the variational parameters.

The above expression for the Gaussian width (2.4) (and its inverseG�1
0 ) can be calculated in

the momentum space with a regulatorΛ (cutoff). which will be eliminated latter The renormaliza-
tion procedure has been performed in three dimensions for example in [22, 15, 3, 4, 9]. According
to the procedure shown below the non equivalence of the Fock basis for each of the phases (ex-
plicited through the Gaussian covariances or equivalentlym2 andµ2) is exhibitted as discussed in
[16].

2.1 Renormalized parameters

The renormalization procedure of the parameters of the model is done as follows [22, 4]. The
energy density of the symmetric phase, as well as its GAP equation (2.5), is subtracted from the
corresponding expression of the asymmetric phase. The GAP equation as defined in expression
(2.5) can be rewritten as:

µ2 = m2+gR

�
φ̄2+ m2

8π2 Ln

�
m
µ

�� ; (2.6)
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where the renormalized parameters were defined as:

µ2 = m2
R� m2

0+ λΛ2

16π2

1+ λ
16π2 log

�
dΛ
µ

� ; gR = �λ
2

1+ λ
16π2 log

�
dΛ
µ

� : (2.7)

In the first of these expressionsm2
R� µ2 was chosen to produce the usual effective potential [15,

22]. It is seen from the second of these expressions that in the limit of Λ! ∞ the bare coupling
constant would go to zero in order to keepgR finite if µ is kept constant. This is the ”triviality”
problem. It does not make any consideration of how the ratioΛ=µ behaves asΛ! ∞.

The resulting subtracted energy density,Hsub=H (φ̄ )�H (φ̄ = 0), is re-written in terms of
the renormalized mass, coupling constant and the mass scaleeliminating the cutoff. It is given by:Hsub= m2

2
φ̄2+ 1

4gR

�
m2�µ2�2+ 1

128π2

�
m4Ln

�
m4

µ4

��m4+µ4
� : (2.8)

The mass scaleµ2 is not a free parameter for the ground state in fact, it can be considered to be a
function of the massm2 and the couplinggR by the GAP expression (2.6). Other approaches can be
of interest for investigating the variational method in theSchrodinger picture [25]. In the ground
state the parameters̄φ ;m2;µ2 (for a givengR) are related by the GAP and condensate expressions
shown above. Any deviation of these values fixed in the GAP equation induce temporal evolution
or can correspond to excited states (stable or not).

However the integration of the GAP equation with relation tom2 should also yield an expres-
sion equal to (2.8) in the case the order of performing renormalization and extracting the ground
state does not change results. This does not happen [10].

3. Energy density and renormalized mass

In the following the renormalized energy densityHsub is minimized with relation to the renor-
malized (physical) mass is searched:

∂Hsub

∂m
= 0: (3.1)

Considering that̄φ2 is in fact dependent onm2
R by expression (2.6) the resulting expression is given

by:

0= m3
�
Ln2

�
m
µ

�
a1+Ln

�
m
µ

�
a2+a3

� ; (3.2)

whereai can be given in terms of

J = 1� gR(8π)2 = 1�GR;
and:

a1 = 1
gR

J2+ 1
32π2 ; a3 = 1

32π2

�
1+ gR

32π2

� :
a2 = 2

gR

��1+J+ J2(32π2)�+ 1
128π2

�
1+ 2J2(8π)2

� ; (3.3)

5



P
o
S
(
I
C
2
0
0
6
)
0
2
1

Free Parameters in Quantum Theories: an Analysis with the Variational Approximation Fábio L. Braghin

The expression (3.2) is not equal to the GAP (3.2) obtained from the minimization of the regularized
energy density with relation toG(m2), i.e. the variational parameter. There are therefore five
solutions for the renormalized massm2 which can be written in the following form:

m3 = 0; m� = µ exp(H�); (3.4)

where:

H� = �a2�qa2
2�4a1a3

2a1
: (3.5)

These solutions form� can be viewed as having corrections for the value ofµ due to the self inter-
action through the parametersH� due to the appearance of̄φ 6= 0. In these expressions there is an
energy scale invariance form� with simultaneous changes in the mass renormalization parameter
µ .

The particular case ofm2 = µ2, for which the GAP equation is trivially satisfied with̄φ ! 0, is
found fora3 = 0 yieldinggR =�32π2. This point can correspond to a restoration of the symmetry
breaking whenφ̄ 6= 0. According to expression (3.5) there are two solutions forthe above value of
a3 = 0. The first one, in whichm+ = 0, is not consistent as it will be discussed below, and the other
corresponds to following solution:

m�
µ

= exp

��a2

a1

� : (3.6)

These resulting values can be compared to the limit for the stability of a two-body bound state,
whenm= µ , found by Kerman and Lin:g<�8π2 [9].

A similar case is obtained whena1 = 0. In this pointgR= 64π2 yielding undefined ratiom+=µ
(i.e., this ratio can be defined by the GAP equation as usuallyfor the coupling above).

The zero mass solutions correspond to a saddle point, they are not minima neither maxima of
the energy density in agreement with [4, 9]. If the others solutions are minima is checked via the
positiveness of the second derivative:

∂ 2Hsub

∂m2 = m2(8π)2

�
2Ln

�
m
µ

�
a1+a2

�> 0: (3.7)

For the derivation of these expressions the complete self consistency of the Gaussian equations
was not completely considered. There has been used a truncation on the dependence onµ , i.e., the
dependence ofLn(µ=m) on µ (self consistency) was considered only forµ not very different from
m, i.e. µ2 = m2+δ whereδ << m2. Out of this range the above solutions are not expected to be
valid. Considering that in each of the phases the corresponding particle can be expected to have
different masses, eventually in a Higgs-like picture, thismeans that these masses in the different
phases are not very different.

In the limits ofgR!�∞ it is obtained analytically that eitherm= µ or m= 0. Forµ !∞ the
renormalized coupling constantGR! 0. While the solutionm�

R in the weak coupling regime can
be identified to the renormalization point usually considered (for µ >> m and/or the cutoff going
to infinite), although in the present analysisδ << µ2, there is a consistent stable solutionm+ for
which µ 'm+. Therefore the ground state can impose several restrictions on the values that mass

6
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and coupling can assume. It is worth to remind that the massesin the different phases (m2 andµ2)
can be expected to be different, even though very close, giving rise toφ̄ 6= 0 according to the GAP
equation. This is actually intensively investigated in strong interacting matter at finite density and
temperature where the QCD scalar condensate, that varies considerably with energy density and
temperature, which varies accordingly for example in [27] and references therein. These equations
are numerically investigated in [10].

Analogously to what was done for the renormalized mass in thepreceeding section the ex-
tremization of the renormalized energy density with respect to the renormalized coupling constant
is done in [10]. Moreover, one relevant subject for any approximation method is the understanding
of the range of values of the parameters of the model (as mass and mainly coupling constants) for
which the approximation is more appropriated. The extremization is found from:

∂Hsub

∂gR
= 0:

Some numerical solutions are presented in [10]. Most of the solutions however correspond to

maxima of the energy density because∂ 2Hsub
∂g2

R
< 0. This analysis provides an assessment of the

amount of energy involved in scattering process of two scalars at the threshold (this energy is
maximized by particular values of the couplling constant shown in [10]), whose amplitude reduces
to the scattering length. These couplings which maximize the energy density are positive and do
not give rise to bound states. Conversely the two-scalar scattering is favored in energy ranges which
are associated to a different range of values of the couplingconstant.

4. The condensate: φ̄

In the framework of the variational approximation the variational equation for the condensate
(expression (2.3 (ii))) (a variational parameter from the trial wavefunctional) is obtained from the
regularized energy densityHreg. Alternatively it will be argued that the minimization of the renor-
malized energy density can also provide reliable information about the model in the framework of
the approach. The minimization equation is done as:

∂Hsub

∂ φ̄
= 0: (4.1)

For this derivation the GAP equation provides the dependence of the mass on the condensate, i.e.,
m2(φ̄ ) andµ2�m2(φ̄ = 0) is kept constant. It yields the following expressions:

φ̄ = 0; φ̄2 =�m2

gR

�
1+ 1

8π2 Ln

�
m
µ

�� : (4.2)

This last expression can be imposed to be equal to the expression of φ̄0 obtained from the mini-
mization of the regularized energy density depending on therelation betweenλ and mass scaleµ
as it will be shown below. However it is not completely consistent with the GAP equation (2.6)
which is obtained from the minimization of the reguralized energy density with respect to the mass
m in the asymmetric phase and then renormalized. To make theseexpressions compatible it would

7
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be necessary to consider the following alternatives for these expressions:

µ2 6= m2
R; or µ2 = (gR�1) m2

8π2 Ln

�
m
µ

� ; (4.3)

wherem2
R is the one of expression (2.7). It is not clear whether these identifications are reasonable

or if they imply a meaningful loss of generality. The limit ofgR= 1 does not seem to be reasonable,
being a very particular point. Furthermore to be meaningfulit requiresµ2 = 0 (and thusm2 = 0) or
m2 ! ∞ according to these expressions (4.3). Therefore the two minimization procedures (of the
regularized and the renormalized energy densities with respect to the regularized and renormalized
parameters respectively) do not seem to yield necessarily the same expressions for the parameters in
the ground state. Nevertheless it is worth to remember that renormalization is performed essencially
from the regularized GAP equation. These points are discussed further latter.

>From the expression (4.2) the following conditions to obtain non zero real values of̄φ can be
considered:

i f : gR > 0! Ln

�
m
µ

�<�8π2;
i f : gR < 0! Ln

�
m
µ

�>�8π2: (4.4)

The energy density is expected be stable for the condensate values found in expression (4.2).
This minimum is verified by calculating the second derivative of the energy density with relation
to φ̄ , i.e.: ∂ 2Hsub=∂ φ̄2 > 0. Its positiveness corresponds to the condition:

gR

�
1+ gR

32π2

�> 0: (4.5)

>From this it is seen that for positive coupling constantgR, it can assume any value (from this
stability criterium) whereas ifgR < 0 one would have to considergR <�32π2. Again, this value
can be compared to the value obtained in [9] for the thresholdof the two particle bound state given
by: g < �8π2. Expressions (4.4) and (4.5) can correspond to constraintsfor the values that the
renormalized coupling assumes in order to yield stable realground states.

Expression (4.2) can be written as:

gRφ̄2 =�m2
�

1+ 1
8π2 Ln

�
m
µ

�� : (4.6)

Whenµ = m exp(8π2) it follows that eitherφ̄ = 0 or gR = 0 in the asymmetric phase of the po-
tential. This can correspond to the so called symmetry restoration when the condensate disappears
at a particularly high excitation energy, i.e., the symmetry is restored. A different solution for the
particular limit of φ̄ = 0 was found in expression fora3 shown above where the energy density is
minimum with relation to the mass form2 = µ2.

4.1 Further comments

The above expression for the condensate (4.2) can be equatedto the previous (regularized)
one. Taking into account the expression of the renormalizedcoupling constant in terms of the bare

8
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one (expression (2.7)) this can be written as:

λ = 16π2

Ln
�

Λd
µ

� 0��1+ 3

2
�

1+ 1
8π2 Ln

�
m
µ

��1A : (4.7)

If the cutoff is sent to infinite the bare coupling constant assumes different values depending on the
ratio of µ=m. For example, there is a case in whichλ = 0 if eitherΛ! ∞ for finite µ or:

m
µ

= exp(4π2); (4.8)

being thereforem2 >> µ2. Varying µ together withΛ it can yield solutions with non zeroλ . For
Λ=µ finite, the couplingλ can even diverge when:

m
µ

= exp(�8π2): (4.9)

This is the same point found above (for expression (4.6)) forthe possible restoration of the sym-
metry.

It is worth emphasizing that it has been assumed, according to the variational principle, that the
minimum of the effective potential with relation to the condensate necessarily defines the ground
state together with its minimum in respect to the (physical)massm2 in the regularized theory.
The different results found in this work from the minimization of the regularized and renormalized
theory may indicate that these assumptions are not (complete) correct. Furthermore in the renor-
malized theory the bare mass and coupling which determine the effective potential at the tree level
are eliminated in favor of the renormalized (physical) ones.

5. The GAP equation in the complex plane, explicit solutions

The logarthmic term of the GAP equation introduces non linearities which hinders the extrac-
tion of (numerical) explicit solutions. It is proposed in the following part of this work an heuristic
trick to extract analytical non transcendental solutions for the GAP equation. It can also relate
further the parameters reducing the number of free parameters, making them "constrained" in the
ground state of the model. Firstly it is considered that the the mass scale and renormalized mass
develop imaginary parts:

µ2! ν2 = reiθ ; m2! τ2 = teiω ; (5.1)

wherer;s;θ ;ω are respectively modulus and phases. Depending on the relative values of these
parameters this parametrization corresponds simply to a rotation. With these parametrizations the
GAP equation (2.6) can be written as:�

rcosθ � tcosω�gRφ̄2�D(t cosω Ln(t=r)� (ω �θ)tsinω)�++i [t sinω � r sinθ +D(t cosω (ω�θ)+ t sinω Ln(t=r))℄ = 0; (5.2)

whereD = gR
8π2 . Both the real and the imaginary parts in this expression have basically the same

structure of the usual GAP equation. It is worth to emphasizethat requiring the GAP equation to
be real is equivalent to keep masses as real number parameters.

9
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The parametrization in the complex plane can be just a trick to reduce the transcendental char-
acter of the GAP equation (2.6). However an imaginary part for the covariance of the Gaussian
(G or correspondinglym2, µ2) can introduce time dependence, instability of the system,if consid-
ered in the wavefunctional. However in this case other considerations are needed to keep unitarity
[28]. Therefore the phasesθ ;ω can have different roles, eventually corresponding to (dynamical)
corrections to the calculation of the ground state from virtual unstable states. This will not be
discussed further here.

Several cases can be analysed separatedly in the following.
1a) Firstly for θ = ω the GAP equation is given by:�(r� t)cosω�gRφ̄2�D(t cosω Ln(t=r))�++i [(t� r) sinω +Dt sinω Ln(t=r)℄ = 0: (5.3)

The real part of the GAP equation is the usual one (apart from thecosθ term which corresponds
to a normalization of the mass parameters) and the imaginarypart, like a rotation in this complex
plane, is the GAP equation in the symmetric phase.
2a) For r = t the GAP equation is rewritten as:

r(cosθ �cosω)�gRφ̄2�D(θ �ω)rsinω++i [r (sinω �sinθ)+Dr cosω (ω�θ)℄ = 0: (5.4)

In this case, these two expressions yield values forω andθ and they can be solved as function of
r andD ∝ gR. The resulting (real) values form2 andµ2 still can be different. However the GAP
expression has not the logarithmic term anymore. It is decomposed in two trigonometric equations.

Other limits yield interesting features as well.
3a) Requiring the GAP equation (5.2) to have only real component(this is considered to be a stable
system) the imaginary part is set to zero. The expression still is quite complicated but the analysis
of some particular cases will be very useful. Forω = 0 it follows that:

rsinθ =�Dt θ ; or cosθ =r
1� B2θ2

r2 : (5.5)

In this case the self consistent character of the GAP equation remains strong. The real part of
expression (5.2) keeps the same form of expression (2.6) basically with the mass parametersm2;µ2

replaced byr; t.
4a) For θ = 0 (andω 6= 0) the resulting expressions for the real part of the GAP equation and its
imaginary part (to be equated to zero) can be obtained from expression (5.2). They can be written
as:

r� t cosω �gRφ̄2�D(t cosω Ln(t=r)�ωt sinω) = 0;+i [t sinω +D(ωt cosω + tLn(t=r) sinω)℄ = 0: (5.6)

It does not provide simpler solutions and therefore they arenot shown. The resulting number of
free parameters is not reduced because although there is onemore expression (ℑm(GAP)) there
also is one extra variable (ω).

Since the phases are auxiliar parameters it is reasonable toassume they are very small without
(great) loss of generality for the results. The expression for the imaginary part of the GAP equation

10
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in the limit whensin(θ) � θ andsin(ω) � ω is given by:

ωt
�

1+D+DLn
� t

r

��= θ (r +Dt) : (5.7)

This expression can be regarded as fixing the ratioθ=ω .
Several particular cases are analyzed below although the more interesting case is obtained for

ω ;θ non zero and very small.
(1b) Assuming the phases are equalθ = ω expression (5.7) reduces to:

r� t = Dt Ln
� t

r

� ; (5.8)

which fixes the ratior=t or correspondentlym2=µ2. This expression is only consistent with the
renormalized GAP equation 2.6 for̄φ = 0 (which is obtained from the minimization of the regu-
larized energy density). Besides that it was mentioned above that, sinceω 6= 0 andθ 6= 0, it is not
clear whetherµ2 andm2 remain real although the GAP equation is necessarily real. This happens
because, in this case, the imaginary part of both parameterscan cancel with each other to result a
real GAP equation instead of allowing for independent cancelation. On the other hand each angle
(ω or θ ) can be set to zero separatedly as done below.
(2b) Forω = 0 it follows from expression (5.7):

r '�Dt; (5.9)

which also fixes the ratiom2=µ2 being a real number only forgR < 0.
(3b) Forθ = 0, expression (5.7) is re-computed up to the order ofO(ω2) and it reduces to:

ω2 = 6+6D+6DLn
�

t
r

�
1+3D+Ln

�
t
r

� ; ; (5.10)

where it has been assumed thatsinω � ω . In this case it is reasonable to considerω2 � 0 leading
to the expression:

t
r
= exp

�
1+D

D

� : (5.11)

For gR =�8π2 it follows thatt = r, and thereforem2' µ2.
If ω 6= 0 it will appear in the real part of the GAP equation and therefore the number of free

parameters in the renormalized equation does not diminish with the new parametrization. Therefore
ω = 0 would be the only possibly interesting case. This does not happens because of expression
(5.9) which imposes negative couplinggR < 0.

The real part of the GAP equation for small angles keeps nearly the form of the original GAP,
it can be written as:

t� r +gRφ̄2+D
h
tLn

� t
r

�� t ω (ω�θ)i= 0; (5.12)

where eitherr or t can be written as a function of the other by means of the constraints of the
imaginary parts from the expressions (5.8), (5.9) or (5.10). In this third case the auxiliar parameter
ω was not eliminated (althoughθ = 0). However for very small phases the expression (5.12)
reduces to the usual real GAP equation (2.6). In this case thereal part of the GAP equation is the
same as expression (2.6) written as:

t� r +gRφ̄2+Dt Ln
� t

r

�= 0: (5.13)
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5.1 The energy density

Simultaneously the renormalized energy (density) can be required to be a real number. How-
ever it is easy to notice from expression (5.7) that the resulting expression for the imaginary part
of Hsub will be quite complicated. Below it will be assumed that the phases have small values.
Although this might impose limitations in the results depending on what kind of system one deals
with, it will be just considered that they are "auxiliar" parameters eliminated in the end. With this
assumption several simplifications occurs because:sin(θ) � θ andsin(ω) � ω . The result for the
imaginary part of the energy density, up to first order in the phases, will be given by:

ℑm(Hsub) = ω
�

tφ̄2

2
+2t2A�+ tr

2gR
+ r2

64π2

�+θ
�

2A+r2� rt
2gR

+ r2

32π2 Ln
� t

r

�� r2
�! 0;

(5.14)
Where

A� = 1
4gR

� 1
128π2 :

One of these variables (A+) can be identified with a solution forgR if ones consider a fixed value
ofHsub(ω = θ = 0) for µ = mgiven by expression:

A+ =� Hsub

m4

����
µ=m

: (5.15)

Expression (5.14) still is very complicated and it can also be used to fix the ratioθ=ω which can
be equated to the same ratio obtained from expression (5.7).However this has been written forHsub in the form given by expression (2.8), which can be written differently by means of the GAP
equation form2 = m2(µ2). This allows to re-arrange an equation ofr as a function oft and to
eliminate one of these variables. The resulting identity reads:

ω
θ

=�2A+r2� rt
2gR

+ r2

32π2 Ln
�

t
r

�� r2

tφ̄2

2 +2t2A�+ tr
2gR

+ r2

64π2

=� r
t +D�

1+D+DLn
�

t
r

�� : (5.16)

In this expression the same parameter is used:D = gR=(8π2). This (highly transcendental) expres-
sion appears in addition to the usual real part of the GAP equation, expression (5.13), making a
system of two algebraic expressions with two variables (r; t). gR is a remaining input/free parameter
although the previous sections might provide elements to the range in which it acquires acceptable
values.

6. Discussion, Summary

A further analysis of the usual variational Gaussian approximation was done to propose some
ways to explore the behavior of the model (theλφ4 was chosen) with respect to its parameters. The
renormalized energy density was extremized with respect tothe renormalized mass and coupling
and to the condensate. Concerning the extremization with respect to the mass, five solutions were
found, two of which which can correspond to stable vacua in specific ranges of the renormalized
coupling constant. For this it was considered that the mass scaleµ is close to the physical mass. A

12
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sort of “energy scale” invariant algebraic expression was found in this calculation. In other words,
a variation in the renormalized (physical) massm2 with a corresponding variation in the renormal-
ization mass scale parameterµ2 yield the same solutions. The minimization (maximization)of the
energy density was also discussed.

Furthermore the minimization of the renormalized energy density with relation toφ̄ , in the
vacuum, was also discussed. The resulting expression is notcompletely consistent with the renor-
malized GAP equation unless the expression (2.7) is modifiedsuch thatµ2 6= m2

R! 0. >From this
expression it was pointed out that either the “condensate” or gR disappears when the mass scale
(introduced in the renormalization procedure) assumes thevalue

φ̄
�
µ = m exp(8π2)�= 0:

This can be seen as a restoration of the spontaneous symmetrybreaking. With this value forµ , the
bare couplingλ may also diverge forΛ=µ finite, as shown in expression (4.7).

Finally the mass parameters were placed in the complex plane. With this non-transcendental
solutions for the GAP equation were found besides other relations among the parameters reducing
the number of free parameters. The imaginary part of the masses can be required to be zero at
the end of the calculation producing another expression which relates the mass, coupling and the
renormalization scale parameter. This parametrization for the imaginary part may lead to new
relation between the parameters reducing the number of freevariables. The imaginary parameters
may be required to be very small (sin(ω)�ω or sin(θ)� θ ). The same parametrization is applied
to the energy density which also must be a real number. The number of free parameters (m2 or
µ2, andgR) is reduced and non transcendental solutions may result such as that of expression
(5.9). However the imaginary parts can also acquire physical meaning in the case of unstable or
time dependent situations although the results would need more input to respect unitarity and other
fundamental properties.

It is worth to remind that the ground state in the framework ofthe variational approximation is
found by the minimization with respect to the two point function G(x;y;m2) (which is a function
of the physical massm2 or µ2 = m2(φ̄ = 0)) and to the condensatēφ - they are the variational
parameters (given in expressions (2.3)). Although they areregarded initially as independent vari-
ables, the GAP equation (for ground state) relates them and eventually the mass scale (µ2) might
be eliminated. While the GAP equation is used for the renormalization of the bare parameters in
the vacuum, expression (4.2) was calculated from renormalized expressions for the ground state.
However there is nothing really defined about the behavior ofthe renormalized parameters in ex-
cited states. It was shown with sections 2.1, 3 and 4 that the minimizations of the renormalized
energy with relation to the mass and̄φ yield different ground state (GAP) expressions from the
ones obtained by the usual variational procedure for the regularized theory. This may have several
meanings. It might not be evident whether these variationalparameters are really or completely
suitable as independent parameters for the Gaussian approximation and extensions (or leading order
large N, Hartree Bogoliubov) or even in theexact ground state, i.e., the energy must be minimum
with respect to particular combination(s) of these (or other) (physical?) variables. Notwithstand-
ing the minimization of the regularized energy may not be equivalent to the minimization of the
renormalized one because in the regularized theory there still are other (bare) parameters which
are eliminated in the renormalization procedure corresponding to a sort of "hidden dependences"
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among them. It may also be that the renormalization procedure has to be improved such as to make
both ways of obtaining the ground state expressions equivalent. In this case the renormalization
procedure would be allowed to be done at any moment independently of the order of the the varia-
tion, renormalization and extraction of observables within a certain (non)perturbative approach.

Some physical situations in which these ranges of the space of parameters of the model can be
of relevance were proposed. Other aspects were raised including the eventual equivalence to the
Bogoliubov transformation for describing superfluid systems and the possibility of modification
in the physical mass of the particle due to the presence of thecondensatem2(φ̄ ) 6= µ(φ̄ = 0). In
particular issues of relevance for systems investigated inthe Many body problem, finite density
formalisms and effective field theories were raised and discussed such as the role of "constraining"
the parameters to define the ground state of the corresponding system.

At last, it is interesting to look at the procedures adopted here as a complementary investiga-
tion to the renormalization group method in which the behavior of the renormalized/bare parame-
ters with the scale parameter can be established. Although they provide different insights into the
issue of the behavior of the theory and its structure and observables at different energy scales, most
part of the methods presented here is not directly (nor necessarily) concerned about the variation of
the renormalization energy scale. It is rather (at first order) concerned about the total amount en-
ergy (or energy density) involved in a physical process withthe corresponding coupling constants,
condensate and masses. A full analysis "coupling" the renormalization group equations to those
found above will be done elsewhere.
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