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1. Introduction

It is usually highly desirable to predict the values of theefparameters of a physical model,
such as masses and couplings, from the theory itself beforgarisons or fits to experimental
observations. In particular, quantum many body theori@sgkample in nuclear physics and con-
densed matter) and effective models for quantum field thednave free parameters which are
expected to be fitted to reproduce observables which areureghand known from experiments.
Usually for the determination of these parameters therelésge range of values which can be
acceptable and used for investigating the properties gbdntcular system. Therefore in another
level of reasoning, although the degrees of freedom do regsarily correspond to fully physi-
cal degrees of freedom (or rather effective ones) it is figlaisirable to obtain them from a more
fundamental theory when the understanding of the relatipnamong the (effective) parameters
acquire a deeper meaning. Besides that the relationshipagthe parameters might be of great
interest for the understanding of the structure of the théself. For the programs discussed above
it may be possible to predict values, either exact valuesrange of them for which the theory
exhibits a particular or special behavior. These "privéldyvalues can be associated to the va-
lidity of the approximation method used to treat the thetmythe applicability of the model and
also to points in which particular physical effects can bpested. The main aim of the present
work is to suggest and investigate some ways according tohmralues (or range of values) for
these parameters could be found. Eventually this may stiggesof “constraints” between the
parameters inside the model. The basic ideas are: to seamdmnbrmalized couplings and masses
which extremize (minimize/maximize) the renormalizedrggedensity. Besides that the parame-
ters are placed in the complex plane to investigate whetiationships among them, which can
be highly transcendental in non perturbative methods, eaeither simplified or more precisely
defined. In some sense this procedure can be considered ateoaventary to the renormalization
group method [1].

The A ¢* model has been extensively studied for different reasorengrahich to shed light
on non perturbative effects in quantum field and many bodgrtee (QFT, QMBT). It corresponds
to one of the simplest self interacting model whose stracisirexpected to be (partially) present
in several more elaborated theories and it presents ititegeeatures [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
It has also been considered for the investigation of the $igggrtor of particle theories [6, 11],
cosmological models [12], some aspects of Bose-Einsteimd€nsation [1, 13, 14] among other
systems. Besides that this models shares several prapeitie the linear sigma model (LSM)
which is an effective model for low energy QCD. Although iostgly seems to exhibit the property
of asymptotic freedom in the asymmetric phase [3, 4, 7], theehis “trivial” in the symmetric
phase [8, 1, 15].

The framework adopted to carry out the investigations meet] above is the variational
Gaussian approximation in the Schroedinger representatiois equivalent to the Hartree Bo-
goliubov approach [14], in which a Bogoliubov transformatican yield a non equivalent basis
of Fock states [16, 17, 18], and also to the leading ordeel&tgapproximation [20, 21]. The
choice of a particular basis of the Fock space is due to thatefnumber of degrees of freedom or
conversely, to the non unitarity of the underlying Bogobutiransformation. In this approach the
ground state of the system is determined by (GAP) equatmrihé variational parameters, which
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are choosen to be a mass and the classical expected valuelf ehfaracteristic from a SSB state
(for a scalar field< @ >= (E which will be referred to as condensate even because icappee

to long range interaction of the model [14]). The Bogoliutimnsformation is also appropriated
the investigation of non equibrium time dependent situntid 4]. In some sense we also hope that
the present work can provide some insight on a possible wawestigating these issues because
of the (eventual) time dependence (and eventual in mediperdkence for many body systems)
of the parameters of an interacting field or particle.

In the present work the usual renormalization scheme of thes&an approach as carried out,
for example, in [22] for theA ¢* model is used as starting point for further investigatiohis|
proposed the extremization of the renormalized energyigewsth relation to the renormalized
parameters (coupling constant and mass). Besides that\smmables are placed in the complex
plane to search suitable (physical) values and eventuditimms for these parameters. The work
is organized as follows. In the next section the Gaussianoappation is summarized: the GAP
equation (transcendental) is derived, obtained from thalagized theory (with a cutoff) and the
renormalization procedure is sketched as done in [22]. dtimes 3 and 4 values of the renormal-
ized mass, condensate and coupling constant which extehezenergy density are searched and
analysed. For some ranges of the values of the paramet@abilities of the theory can appear. In
section 5 transcendental solutions for the equations wdédime the ground state are investigated
by allowing some parameters to be complex such that the maagipart disappears in the end
of the calculation to keep real values of mass parametergaunuling constant. The last section
presents a summary.

2. Gaussian approximation for the A ¢* model

The Lagrangian density for a self interacting scalar fig(d) is given by:

200 = 3 { 9100400 - P~ 15000} 2.1)

where bare mass 8% and coupling constant. The theory is quantized in the (functional)
Schrodinger representation [18, 19]. The action of the Bld momentum operators over a func-
tional stateW[@] > are given respectively byp|¥ >= @|¥ > andfr= —i%d/3¢|W >.

In the static Gaussian approximation at zero temperatertridi ground state wave functional
Y can be parametrized by a Gaussian like:

= Nexp{—%/dxdyécp(x)G‘l(x,y)éfp(y)}, (2.2)

Wheredp(x) = @(x) — @(x) is the field shifted by the condensate, the point where theiavc-

tion is centered; the normalization factoNsthe variational parameters are the (classical) expected
value of the field,@(x) =< W|g|¥ >, and the quantum fluctuations represented by the two point
function, i.e., the width of the GaussiaB(x,y) =< W|@(x)@(y)|¥ >. In variational calculations
the averaged energy calculated wiktip(x)] is to be minimized to obtain the GAP equations. In
principle it yields a maximum bound for the ground state (aged) energy, although ultraviolet
divergences make this not necessarily (completely) regliakhe minimization of the renormalized
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theory is useful for this theoretical bound of the variasibprinciple. Each of these variational
parameters represents one component of the scalar fiel&expgeeted value in the ground state
("classical" part) and the two-point Green'’s function witle mass of the quantum which is de-
composed into creation and annihilation operators [14]ngitering this wavefunctional yields a
self energy in which there is a resummation of “cactus” tygmpldiagrams [4, 15, 23, 24, 26].

The averaged value of the Hamiltonian is calculated andessed in terms of the variational
parameters by means of expressions written above. Thdigagaprocedure requires the mini-
mization of the averaged energy density with respect to #n@tional parameters to produce the
following GAP and condensate equations:

o g1 roy) Ao
3Gy 0 SG_ 2(%,y ;_ >+ 5e0% () s
o0 7 0T yew)+ 900, (i)

Wherel (x,y) = A+ (mcz,+ %G(x,x)) O0(Xx—Y). The Green'’s functiorG can be written from
expressions above as:

1
Gy(X,Y) =< X| —=|y > 2.4
wheren¥ is given by the self consistent (transcendental) GAP egudtixpression (2.3)):
m = TT%+%TraCG(3(X,X7m2)+)\§(EZ. (2.5)

An analogous expression holds for the case in Wkﬁeh 0,ie.,

p? = (@ =0) =g+ %TraceG(x,x,uz)-

Expression (2.4) is equivalent to the Feynman Green’s fometith time integrated and with sign
changed in the imaginary part by replacing the self consisteass by the bare maﬂ%. The
physical masses in the different phases can assume diffexieres from each other. The condition
of minimum for this procedure and its stability was partiativestigated in [4] and it corresponds to
analysing the second order variation of the energy densityrespect to the variational parameters.

The above expression for the Gaussian width (2.4) (and\iemleGgl) can be calculated in
the momentum space with a regulatofcutoff). which will be eliminated latter The renormaliza-
tion procedure has been performed in three dimensions &mple in [22, 15, 3, 4, 9]. According
to the procedure shown below the non equivalence of the Fasis lfor each of the phases (ex-
plicited through the Gaussian covariances or equivalentland u?) is exhibitted as discussed in
[16].

2.1 Renormalized parameters

The renormalization procedure of the parameters of the hi@dene as follows [22, 4]. The
energy density of the symmetric phase, as well as its GAPtequé2.5), is subtracted from the
corresponding expression of the asymmetric phase. The @G@ARtien as defined in expression

(2.5) can be rewritten as:
v
u _mz+gR(q0 +— Ln(E)), (2.6)
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where the renormalized parameters were defined as:

AN2 A
2 _ Wé"’ 162 2

2.7)

In the first of these expressionsg = u? was chosen to produce the usual effective potential [15,
22]. Itis seen from the second of these expressions thaeifirtht of A — o the bare coupling
constant would go to zero in order to kegpfinite if 1 is kept constant. This is the "triviality”
problem. It does not make any consideration of how the rafip behaves a8 — .

The resulting subtracted energy densit, ,, = 7 (¢) — # (¢ = 0), is re-written in terms of
the renormalized mass, coupling constant and the massealiraleating the cutoff. It is given by:

m—- 1 2 1 m*
Houp= 7¢2+ 4gy, (P —u?)"+ 1282 <m4Ln (F) - m4+u4> ' @9

The mass scalg? is not a free parameter for the ground state in fact, it carobsidered to be a
function of the masa? and the couplingy, by the GAP expression (2.6). Other approaches can be
of interest for investigating the variational method in ®ehrodinger picture [25]. In the ground
state the parameteq% m?, u? (for a givengg) are related by the GAP and condensate expressions
shown above. Any deviation of these values fixed in the GAR&gu induce temporal evolution
or can correspond to excited states (stable or not).

However the integration of the GAP equation with relatiomfoshould also yield an expres-
sion equal to (2.8) in the case the order of performing reatimation and extracting the ground
state does not change results. This does not happen [10].

3. Energy density and renormalized mass

In the following the renormalized energy densi# , is minimized with relation to the renor-

malized (physical) mass is searched:
a‘%psub —

T 0. (3.1)

Considering thatﬁ2 is in fact dependent omg by expression (2.6) the resulting expression is given

by:
0=m? [an (g) a, +Ln (g) a2+a3] : (3.2)

whereg; can be given in terms of

Or
J=1- ~1-G
(8m)2 R
and: 1 1 1
9r
- SRy — = (1+ R,
=5 Te & o (1 322)
2 2 (3.3)
S (P NS S I S
%= o @2 ) 1282 " 8mz )
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The expression (3.2) is not equal to the GAP (3.2) obtainau the minimization of the regularized
energy density with relation t&G(n?), i.e. the variational parameter. There are therefore five
solutions for the renormalized mas8 which can be written in the following form:

m® =0, m* = p expHT), (3.4)
where:
_ [a2 _
HE = il i B (3.5)
2a, '

These solutions fom* can be viewed as having corrections for the valug diie to the self inter-
action through the parametes® due to the appearance Efyé 0. In these expressions there is an
energy scale invariance for™ with simultaneous changes in the mass renormalizatiompetea

H. _

The particular case af? = 2, for which the GAP equation is trivially satisfied with— 0, is
found fora; = 0 yieldinggg = —32r. This point can correspond to a restoration of the symmetry
breaking Whel’l’E # 0. According to expression (3.5) there are two solutiongHerabove value of
a; = 0. The first one, in whiclm™ = 0, is not consistent as it will be discussed below, and theroth
corresponds to following solution:

m :exp(—%). (3.6)

These resulting values can be compared to the limit for thkilgy of a two-body bound state,
whenm = p, found by Kerman and Ling < —817 [9].

A similar case is obtained wheg = 0. In this pointgg = 6417 yielding undefined ration* /u
(i.e., this ratio can be defined by the GAP equation as ust@ilthe coupling above).

The zero mass solutions correspond to a saddle point, teeyodmminima neither maxima of
the energy density in agreement with [4, 9]. If the othersitsmhs are minima is checked via the
positiveness of the second derivative:

92
dﬁ“b = (;7]12)2 (2Ln (g) a +a2> > 0. 3.7

For the derivation of these expressions the complete selistency of the Gaussian equations
was not completely considered. There has been used a tlamoatthe dependence qni.e., the
dependence dfn(u/m) on u (self consistency) was considered only fonot very different from

m, i.e. u2 = m? + & whered << . Out of this range the above solutions are not expected to be
valid. Considering that in each of the phases the correspgmhrticle can be expected to have
different masses, eventually in a Higgs-like picture, thisans that these masses in the different
phases are not very different.

In the limits ofggy — +oo it is obtained analytically that eithen= u orm= 0. Foru — o the
renormalized coupling consta@i; — 0. While the solutiom; in the weak coupling regime can
be identified to the renormalization point usually consedetfor u >> mand/or the cutoff going
to infinite), although in the present analysis< < u?, there is a consistent stable solutiori for
which u ~ m*. Therefore the ground state can impose several restrictiarthe values that mass
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and coupling can assume. It is worth to remind that the masghks different phasesrg and u?)
can be expected to be different, even though very closeygiise IO(E # 0 according to the GAP
equation. This is actually intensively investigated irosty interacting matter at finite density and
temperature where the QCD scalar condensate, that vamsgleoably with energy density and
temperature, which varies accordingly for example in [2¥] eeferences therein. These equations
are numerically investigated in [10].

Analogously to what was done for the renormalized mass irpteeeeding section the ex-
tremization of the renormalized energy density with resp@the renormalized coupling constant
is done in [10]. Moreover, one relevant subject for any apipnation method is the understanding
of the range of values of the parameters of the model (as nmalssiainly coupling constants) for
which the approximation is more appropriated. The extration is found from:

d‘%psub

=0.
Jog

Some numerical solutions are presented in [10]. Most of tietisns however correspond to
maxima of the energy density becausgny—ub < 0. This analysis provides an assessment of the
amount of energy involved in scatterlng process of two ssadh the threshold (this energy is
maximized by particular values of the couplling constamvahin [10]), whose amplitude reduces
to the scattering length. These couplings which maximizeethergy density are positive and do
not give rise to bound states. Conversely the two-scaldiesiay is favored in energy ranges which
are associated to a different range of values of the couplimgtant.

4. Thecondensate: gE

In the framework of the variational approximation the vaoiaal equation for the condensate
(expression (2.3 (ii))) (a variational parameter from thal tvavefunctional) is obtained from the
regularized energy densitfffeg. Alternatively it will be argued that the minimization ofetlienor-
malized energy density can also provide reliable infororatibout the model in the framework of
the approach. The minimization equation is done as:

—sub o, (4.1)

For this derivation the GAP equation provides the deperelefithe mass on the condensate, i.e.,
n?(@) andpu? = nm?(@ = 0) is kept constant. It yields the following expressions:

— v 1 m
=0 P (1+ﬁm<ﬁ>>. (4.2)

This last expression can be imposed to be equal to the e)'qnnes[s@ obtained from the mini-
mization of the regularized energy density depending ondlaion betweed and mass scalg

as it will be shown below. However it is not completely coteig with the GAP equation (2.6)
which is obtained from the minimization of the reguralizeegryy density with respect to the mass
min the asymmetric phase and then renormalized. To make #xpsessions compatible it would
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be necessary to consider the following alternatives fasdlexpressions:

W2 £ R, or uzz(gR—1>ﬁLn(T>, 4.3)

8mn? u
wheremg is the one of expression (2.7). It is not clear whether thésatifications are reasonable
or if they imply a meaningful loss of generality. The limitgf = 1 does not seem to be reasonable,
being a very particular point. Furthermore to be meaningf@quiresu? = 0 (and thusr? = 0) or
n? — o according to these expressions (4.3). Therefore the twamization procedures (of the
regularized and the renormalized energy densities withaiego the regularized and renormalized
parameters respectively) do not seem to yield necesshelgame expressions for the parameters in
the ground state. Nevertheless it is worth to remember ¢ématrmalization is performed essencially
from the regularized GAP equation. These points are discugsther latter.
>From the expression (4.2) the following conditions to abtaon zero real values @ can be
considered:
: m
if :gg>0—=Ln( —
H (4.4)
: m
if :gg<O0—=Ln(—

The energy density is expected be stable for the condenahtesvfound in expression (4.2).
Thif, minimum is ve_rified by calculating the second derivatdf the energy density with relation
to g, i.e.. a%gub/azpz > 0. Its positiveness corresponds to the condition:

9r

Or (1+ @) >0. (4.5)

>From this it is seen that for positive coupling constggt it can assume any value (from this
stability criterium) whereas il < 0 one would have to considey < —32r2. Again, this value
can be compared to the value obtained in [9] for the thresbiolde two particle bound state given
by: g < —8m?. Expressions (4.4) and (4.5) can correspond to constriinthe values that the
renormalized coupling assumes in order to yield stablegemlind states.

Expression (4.2) can be written as:

9o = —n? <1+ 8_7112"” <g>> (4.6)

When p = m ex§8r) it follows that eitherrﬁ: 0 or g = 0 in the asymmetric phase of the po-
tential. This can correspond to the so called symmetry ratstm when the condensate disappears
at a particularly high excitation energy, i.e., the symmérrestored. A different solution for the
particular limit oqu: 0 was found in expression fa;, shown above where the energy density is
minimum with relation to the mass for® = 2.

4.1 Further comments

The above expression for the condensate (4.2) can be equatkd previous (regularized)
one. Taking into account the expression of the renormakpeghling constant in terms of the bare
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one (expression (2.7)) this can be written as:

PR L 3 : 4.7)

(i) ™ o)

If the cutoff is sent to infinite the bare coupling constardumses different values depending on the
ratio of u/m. For example, there is a case in whith= 0 if either A — oo for finite u or:

m

i exp(4m?), (4.8)

being thereforer? >> 2. Varying u together withA it can yield solutions with non zerd. For
N/ u finite, the coupling can even diverge when:

m

H :exp(—8n2). (49)

This is the same point found above (for expression (4.6)}Herpossible restoration of the sym-
metry.

Itis worth emphasizing that it has been assumed, accorditigetvariational principle, that the
minimum of the effective potential with relation to the cemdate necessarily defines the ground
state together with its minimum in respect to the (physicadssn? in the regularized theory.
The different results found in this work from the minimizatiof the regularized and renormalized
theory may indicate that these assumptions are not (coe)pietrect. Furthermore in the renor-
malized theory the bare mass and coupling which determmmefflctive potential at the tree level
are eliminated in favor of the renormalized (physical) ones

5. The GAP equation in the complex plane, explicit solutions

The logarthmic term of the GAP equation introduces non liiea which hinders the extrac-
tion of (numerical) explicit solutions. It is proposed iretfollowing part of this work an heuristic
trick to extract analytical non transcendental solutiomisthe GAP equation. It can also relate
further the parameters reducing the number of free parametaking them "constrained" in the
ground state of the model. Firstly it is considered that treerhass scale and renormalized mass
develop imaginary parts:

pz—svi=re?, m—or?=te?, (5.1)

wherer,s, 08, w are respectively modulus and phases. Depending on thé/eelatiues of these
parameters this parametrization corresponds simply téadéion. With these parametrizations the
GAP equation (2.6) can be written as:

(rcosd — tcogw — gr@? — D(tcowLn(t/r) — (w — B)tsinw)) +

+i[t sinw —r sin@ + D(t cosw (w — 8) +t sinw Ln(t/r))] =0, (5:2)

whereD = %. Both the real and the imaginary parts in this expressior lasically the same

structure of the usual GAP equation. It is worth to emphathaé requiring the GAP equation to
be real is equivalent to keep masses as real number parameter
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The parametrization in the complex plane can be just a tackduce the transcendental char-
acter of the GAP equation (2.6). However an imaginary parthe covariance of the Gaussian
(G or correspondinglyr?, u?) can introduce time dependence, instability of the systeoonsid-
ered in the wavefunctional. However in this case other dmmations are needed to keep unitarity
[28]. Therefore the phase, w can have different roles, eventually corresponding to éaiyital)
corrections to the calculation of the ground state fromuattunstable states. This will not be
discussed further here.

Several cases can be analysed separatedly in the following.
1a) Firstly for 8 = w the GAP equation is given by:

((r —t)cosw — grg? — D(tcogwLn(t/r))) +

+i[(t —r) sinw+ Dt sinw Ln(t/r)] = 0. (:3)

The real part of the GAP equation is the usual one (apart fl@easd term which corresponds
to a normalization of the mass parameters) and the imagjmety like a rotation in this complex
plane, is the GAP equation in the symmetric phase.

2a) Forr =t the GAP equation is rewritten as:

r(cosH — cogw) — gr@ — D(8 — w)rsinw+

+i[r (sinw — sinB) + Dr cosw (w— 6)] = 0. (®-4)

In this case, these two expressions yield valuesd@nd 8 and they can be solved as function of

r andD [ gg. The resulting (real) values far? and p? still can be different. However the GAP

expression has not the logarithmic term anymore. Itis dgom®d in two trigonometric equations.
Other limits yield interesting features as well.

3a) Requiring the GAP equation (5.2) to have only real compoftérg is considered to be a stable

system) the imaginary part is set to zero. The expressithissfuite complicated but the analysis

of some particular cases will be very useful. le@e= 0 it follows that:

292
rsind = —Dt6O, or cos9:\/1—Br—26. (5.5)

In this case the self consistent character of the GAP equatimains strong. The real part of
expression (5.2) keeps the same form of expression (2.&#dtligsvith the mass parameten®, y2
replaced by,t.
4a) For 8 = 0 (andw # 0) the resulting expressions for the real part of the GAP #guand its
imaginary part (to be equated to zero) can be obtained frgression (5.2). They can be written
as:

r—tcosw — chﬁz — D(tcoswln(t/r) — wtsinw) =0,

+i[tsinw+ D(wtcosw+tLn(t/r) sinw)] = 0. (5:6)

It does not provide simpler solutions and therefore theynateshown. The resulting number of
free parameters is not reduced because although there imorgeexpressionf(m(GAP)) there
also is one extra variabley).

Since the phases are auxiliar parameters it is reasonab$stone they are very small without
(great) loss of generality for the results. The expressioife imaginary part of the GAP equation

10
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in the limit whensin(8) ~ 6 andsin(w) ~ w is given by:

wt<1~|—D+DLn(;>>:6(r+Dt). (5.7)

This expression can be regarded as fixing the Bfi@.

Several particular cases are analyzed below although the imeresting case is obtained for
w, 6 non zero and very small.
(1b) Assuming the phases are eqfla: w expression (5.7) reduces to:

r—t=DtLn (;) (5.8)

which fixes the ratia /t or correspondentlyr?/u2. This expression is only consistent with the
renormalized GAP equation 2.6 fq}: 0 (which is obtained from the minimization of the regu-
larized energy density). Besides that it was mentioned elmat, sincev £ 0 and8 # 0, it is not
clear whetheu? andn? remain real although the GAP equation is necessarily re#is Fappens
because, in this case, the imaginary part of both paramedersancel with each other to result a
real GAP equation instead of allowing for independent ckatice. On the other hand each angle
(w or B) can be set to zero separatedly as done below.

(2b) For w = 0 it follows from expression (5.7):

r~—Dt, (5.9)

which also fixes the ratia?/u? being a real number only fay < 0.

(3b) For 8 = 0, expression (5.7) is re-computed up to the orde®@b?) and it reduces to:
,_ 6+6D+6DLN(7)

14+3D+Ln(}),”’

(5.10)

where it has been assumed thao ~ w. In this case it is reasonable to consider ~ 0 leading

to the expression:
t 1+D
C= exp<T> . (5.11)
Forgg = —817 it follows thatt = r, and thereforen? ~ 2.

If w # 0 it will appear in the real part of the GAP equation and thanethe number of free
parameters in the renormalized equation does not diminihthae new parametrization. Therefore
w = 0 would be the only possibly interesting case. This does appéns because of expression
(5.9) which imposes negative coupligg < 0.

The real part of the GAP equation for small angles keepsyédalform of the original GAP,
it can be written as:

t—r+gR(52+D[th<;>—tw(w—e)] _o, (5.12)

where either ort can be written as a function of the other by means of the cainstr of the
imaginary parts from the expressions (5.8), (5.9) or (5.lr0}his third case the auxiliar parameter
w was not eliminated (althougB = 0). However for very small phases the expression (5.12)
reduces to the usual real GAP equation (2.6). In this casestiigart of the GAP equation is the
same as expression (2.6) written as:

t—r+gR(EZ+Dth<;> —0. (5.13)
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5.1 Theenergy density

Simultaneously the renormalized energy (density) can teired to be a real number. How-
ever it is easy to notice from expression (5.7) that the tieguexpression for the imaginary part
of 2, will be quite complicated. Below it will be assumed that theages have small values.
Although this might impose limitations in the results deglieg on what kind of system one deals
with, it will be just considered that they are "auxiliar" pameters eliminated in the end. With this
assumption several simplifications occurs becassg6) ~ 6 andsin(w) ~ w. The result for the
imaginary part of the energy density, up to first order in thages, will be given by:

2 2
Om(A,,) = w<g+2tzA+2%R+ﬁ> +6 <2A+r2— %Rjtﬁm(D —r2> -0,
(5.14)

Where
1

1
=+,
As 49, ~ 1282

One of these variableg\() can be identified with a solution fay if ones consider a fixed value

of #, (w= 08 =0) for u = mgiven by expression:
A
A, = Zsubp 5.15
+ - (5.15)

Expression (5.14) still is very complicated and it can alsaibed to fix the rati®/w which can
be equated to the same ratio obtained from expression (Bl@wever this has been written for
N the form given by expression (2.8), which can be writtefedently by means of the GAP
equation form? = n?(u?). This allows to re-arrange an equationroés a function ot and to

eliminate one of these variables. The resulting identiadse

2_ ot 2 t 2
w A g tgen(p) -t f+D (5.16)
6 t%’ZJFZtZA*JF%RJr% (1+D+DLn(}))

In this expression the same parameter is uBee:gg/ (8m). This (highly transcendental) expres-
sion appears in addition to the usual real part of the GAP temyaexpression (5.13), making a
system of two algebraic expressions with two variabies$. (g is a remaining input/free parameter
although the previous sections might provide elementsgedhge in which it acquires acceptable
values.

6. Discussion, Summary

A further analysis of the usual variational Gaussian appnakon was done to propose some
ways to explore the behavior of the model (fhg* was chosen) with respect to its parameters. The
renormalized energy density was extremized with respetttdaenormalized mass and coupling
and to the condensate. Concerning the extremization wsiberet to the mass, five solutions were
found, two of which which can correspond to stable vacua ec#jec ranges of the renormalized
coupling constant. For this it was considered that the maale g is close to the physical mass. A
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sort of “energy scale” invariant algebraic expression veamél in this calculation. In other words,
a variation in the renormalized (physical) masswith a corresponding variation in the renormal-
ization mass scale paramejet yield the same solutions. The minimization (maximizatioh)he
energy density was also discussed.

Furthermore the minimization of the renormalized energysitg with relation torﬁ, in the
vacuum, was also discussed. The resulting expression ongpletely consistent with the renor-
malized GAP equation unless the expression (2.7) is modifietl thau? # mg — 0. >From this
expression it was pointed out that either the “condensategjzalisappears when the mass scale
(introduced in the renormalization procedure) assumesahe

@ (1 =mexg8m)) =0.

This can be seen as a restoration of the spontaneous synmesiking. With this value fog, the
bare couplingd may also diverge foA/ finite, as shown in expression (4.7).

Finally the mass parameters were placed in the complex plfith this non-transcendental
solutions for the GAP equation were found besides othetioelkramong the parameters reducing
the number of free parameters. The imaginary part of the esasan be required to be zero at
the end of the calculation producing another expressiortlwiglates the mass, coupling and the
renormalization scale parameter. This parametrizatiornttfe imaginary part may lead to new
relation between the parameters reducing the number of/énegbles. The imaginary parameters
may be required to be very smadif(w) ~ w or sin(8) ~ ). The same parametrization is applied
to the energy density which also must be a real number. Thébeuwf free parametersn? or
p?, andgg) is reduced and non transcendental solutions may result asithat of expression
(5.9). However the imaginary parts can also acquire phiysiganing in the case of unstable or
time dependent situations although the results would neméd mnput to respect unitarity and other
fundamental properties.

It is worth to remind that the ground state in the frameworkhefvariational approximation is
found by the minimization with respect to the two point fuantG(x,y,m?) (which is a function
of the physical masa® or 2 = m?(¢ = 0)) and to the condensatp - they are the variational
parameters (given in expressions (2.3)). Although theyegarded initially as independent vari-
ables, the GAP equation (for ground state) relates them eentally the mass scal@?) might
be eliminated. While the GAP equation is used for the renbepaion of the bare parameters in
the vacuum, expression (4.2) was calculated from renorethlexpressions for the ground state.
However there is nothing really defined about the behavidhefrenormalized parameters in ex-
cited states. It was shown with sections 2.1, 3 and 4 that ihemzations of the renormalized
energy with relation to the mass a:ﬁjyield different ground state (GAP) expressions from the
ones obtained by the usual variational procedure for thelaeiged theory. This may have several
meanings. It might not be evident whether these variatipashmeters are really or completely
suitable as independent parameters for the Gaussian apiteon and extensions (or leading order
large N, Hartree Bogoliubov) or even in tegact ground statd.e., the energy must be minimum
with respect to particular combination(s) of these (or otigehysical?) variables. Notwithstand-
ing the minimization of the regularized energy may not beiedent to the minimization of the
renormalized one because in the regularized theory thélrarst other (bare) parameters which
are eliminated in the renormalization procedure corredjpgnto a sort of "hidden dependences”
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among them. It may also be that the renormalization proeelas to be improved such as to make
both ways of obtaining the ground state expressions ea@uitaln this case the renormalization
procedure would be allowed to be done at any moment indepépds the order of the the varia-
tion, renormalization and extraction of observables withicertain (non)perturbative approach.

Some physical situations in which these ranges of the sfgzarameters of the model can be
of relevance were proposed. Other aspects were raisedlinglthe eventual equivalence to the
Bogoliubov transformation for describing superfluid systeand the possibility of modification
in the physical mass of the particle due to the presence ofdhdensaten?(@) # u(@ = 0). In
particular issues of relevance for systems investigatettitenMany body problem, finite density
formalisms and effective field theories were raised andudised such as the role of "constraining™
the parameters to define the ground state of the corresppegatem.

At last, it is interesting to look at the procedures adopteelas a complementary investiga-
tion to the renormalization group method in which the betiaef the renormalized/bare parame-
ters with the scale parameter can be established. Althdwehgrovide different insights into the
issue of the behavior of the theory and its structure andrelbkes at different energy scales, most
part of the methods presented here is not directly (nor saciég concerned about the variation of
the renormalization energy scale. It is rather (at first grdencerned about the total amount en-
ergy (or energy density) involved in a physical process Withcorresponding coupling constants,
condensate and masses. A full analysis "coupling” the mealization group equations to those
found above will be done elsewhere.
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