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Quantum Symmetries of sl(2) and sl(3) graphs R. Coquereaux

1. Introduction

Our main and original purpose was to gather tables giving characteristic numbers forsl(3)

boundary conformal field theories on a torus: dimensions of the blocks of the associated weak
bialgebras, global quantum dimensions ("quantum mass"), induction tables, etc. a material that is
hitherto scattered in a number of publications or unavailable. Many formulae given here are new.
The corresponding data forsl(2) does not use much space, and we could easily summarize it,
but the situation is different withsl(3): to keep the size of this paper below the prescribed limits,
we had sometimes to restrict ourselves to the case of Di Francesco - Zuber graphs with self-fusion
(other cases will be described in [17]) and give only partialresults for induction tables. Because we
also needed a short introductory section discussing the underlying algebraic structures and giving
our notations, we decided to describe boundary conformal field theories on a torus in terms of
module categories (action of a monoidal category on a category) mostly extracting the relevant
material from [36], while adding few things like the construction of weak bialgebras in terms of
Hom spaces, or the description of the bimodule structureA ×O×A 7→O, whereA is the fusion
algebra andO is the Ocneanu algebra of quantum symmetries. Independently of the interest of the
tables of results, we hope that our presentation will provide a bridge between several mathematical
or physical communities interested in those topics.

2. The stage

In this paperAk is the fusion category of the affine algebrâsl(2), or ŝl(3), at level k, or
equivalently, the category of irreducible representations with non-zeroq-dimension for the quantum
groupssl(2) or sl(3) at roots of unity (setq = exp(iπ/κ), with κ = k+ 2 for sl(2) andκ = k+ 3
for sl(3). This category is additive (existence of⊕), monoidal (existence of⊗ : Ak×Ak 7→ Ak,
with associativity constraints, unit object, etc.), tensorial (⊗ is a bifunctor), complex-linear, rigid
(existence of duals), finite (finitely many irreducible objects), and semisimple, with irreducible unit
object. It is also modular (braided, balanced, with invertible S-matrix) and ribbon (or tortile). We
refer to the literature [28], [26], [1] for a detailed description of these structures. The Grothendieck
ring of this monoidal category comes with a special basis (corresponding to simple objects), it
is usually called the fusion ring, or the Verlinde algebra. The corresponding structure constants,
encoded by the so - called fusion matrices(Nn)

p
q, are therefore non - negative integers: NIM-reps

in CFT terminology. The rigidity property of the category implies that(Nn)pq = (Nn)qp, where
n refers to the dual object i.e., , in our case, to the conjugaterepresentation, so that the fusion
ring is automatically a basedZ+ ring in the sense of [36] (maybe it would be better to call it
“rigid”). In the case ofsl(2), this is a ring with one generator (corresponding to the fundamental
representation), and fusion matrices are symmetric, because n = n. In the case ofsl(3), it has
two generators (corresponding to the two fundamental representations) that are conjugate to one
another. Multiplication by a generator (choose one of the possible two in thesl(3) case) is encoded
by a particular fusion matrix; it is a finite size matrix of dimensionr× r, with r = k+1 for sl(2) and
r = k(k+ 1)/2 for sl(3). Since its elements are non negative integers, it can be interpreted as the
adjacency matrix of a graph, which is the Cayley graph of multiplication by this generator, that we
call the McKay graph of the category. Edges are non oriented in the case ofsl(2) (rather, they carry
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both orientations) and are oriented in the case ofsl(3). Irreducible representations are denoted by
λp, with p≥ 0, in the first case, andλpq, with p,q≥ 0 in the next. Notice the shift of indices: the
unit 1l of the category corresponds toλ0 or toλ00. One should certainly keep in mind the distinction
between the monoidal category, with its objects and morphisms, and its Grothendieck ring, but they
will often be denoted by the same symbol. Actually, the Mckaygraph itself is also denotedAk. In
thesl(2) case, it can be identified with the Coxeter - Dynkin diagramAr , with r = k+ 1. In both
sl(2) andsl(3) cases, it is a truncated Weyl chamber at levelk (a Weyl alcove). It is often useful to
think of Ak as a category of representations of a would-be quantum object, that can be also denoted
by the same symbol, although this can be quite misleading.

The next ingredient is a categoryE , not necessarily monoidal, but we suppose that it is ad-
ditive, semisimple and indecomposable, on which the previous oneAk (which is monoidal) acts.
Action of a monoidal category on a category has been described, under the name “module cate-
gories” by [19], and, in our context, by [36]. Using a slightly shorter description, we may say that
we have such an action when we are given a (monoidal) functor fromAk to the (monoidal) category
of endofunctors ofE . The reader can think of this situation as being an analogue of the action of a
group on a given space. Actually, it may be sometimes interesting to think thatE can be acted upon
in more than one way, so that we can think of the action ofAk as a particular “enrichment” ofE .
The word “module” being used in so many different ways, we prefer to say that we have an action,
or thatE is an actegory (another nice substantive coined by R. Street), and we shall freely use both
terminologies. Irreducible objects ofE are boundary conditions for the corresponding Conformal
Field Theory specified byAk. It is useful to assume, from now on, that the categoryE is inde-
composable (it is not equivalent to the direct sum of two non trivial categories withAk action).
SinceE is additive, we have a Grothendieck group, also denoted by the same symbol. Because
of the existence of an action, this (abelian) group has to be amodule over the Grothendieck ring
of Ak, and it is automatically aZ+ module: the structure constants of the module, usually called
annulus coefficients in string theory articles [20], and described by (annular) matricesFn = (Fn)ab,
are non negative integers. Let us consider the class of a particular simple object ofAk, namely the
generatorn= 1, for sl(2) or n= (1,0) for sl(3) (one of the two conjugated fundamental irreps). We
interpretF1 (or F(1,0)) as the adjacency matrix of a graph, called the McKay graph ofthe category
E . The rigidity property ofAk implies that the moduleE is rigid (or based [36]). In other words:
(Fn)ab = (Fn)ba. In the case ofsl(2), Z+ modules for fusion rings at levelk have been classified by
[16] and [18]; McKay graphs are all the Coxeter - Dynkin diagram, plus some diagrams with loops
(tadpoles), andF1 = 2Cartan matrix−1l. The rigidity condition in the case ofsl(2) implies that the
matrix F1 is symmetric; this condition implies that non simply laced diagramsBr , Cr , F4 andG2

should be rejected (this only means that they do not fit in the presented framework: see also [24]
Êand references therein): we are left with theADE diagrams and the tadpoles. A detailed analysis
of the situation ([34], [36]) shows that the tadpole graphs do not give rise to any category endowed
with an action of the monoidal categories of typesl(2). As already mentioned, the categoryE is
not required to be monoidal, but there are cases where it is, so that it has a tensor product, compat-
ible with theAk action. In another terminology, one says that the corresponding graphs have self
- fusion (this is also related to the concept of flatness), or that they define “quantum subgroups”
of sl(2), whereas the others are only “quantum modules”. Like in the classical situation, we have
a restriction functorAk 7→ E and an induction functorE 7→ Ak. The cases whereE is monoidal
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correspond to the graphsAr (with k = r−1), Deven, with k = 0mod4,E6, with k = 10, andE8, with
k = 28. This was already known, at the level of rings, in [37], [16] and was proved, at the categor-
ical level, by [27]. The casesDodd, with level k = 2mod 4, andE7, at level 16, are non monoidal
actegories.Ak is always modular, but the corresponding actegories are not, even when they happen
to be monoidal; however, they always contain a subcategory which is modular (we shall come back
to it). At the level of graphs, theD diagrams (even of odd) areZ2 orbifolds of theA diagrams at
the same level. In the case ofsl(3), the classification ofZ+ modules over the corresponding fusion
rings at levelk is not tractable (or not useful), however there is another route stemming from the
classification ofsl(3) modular invariants [21]. The graphs encoding allsl(3) module categories
are called the di Francesco - Zuber diagrams [16]. Existenceof the corresponding categories was
shown by A. Ocneanu [33], actually one of the candidates had to be discarded, very much like
the tadpole graphs ofsl(2). Severalsl(3) actegories have monoidal structure (graphs with self -
fusion), namely:Ak itself, theDk, whose McKay diagrams areZ3 orbifolds of those ofAk, when
k is divisible by 3, and three exceptional cases calledE5, E9 andE21, at levels 5, 9 and 21. The
other actegories (not monoidal) are: the seriesA ∗

k , for which the number of simple objects is equal
to the number of self dual simple objects inAk, theDk series, whenk = 1 or 2 mod 3, the series
D∗k , for all k, and several modules of exceptionals calledE ∗5 , E ∗9 , D t

9 (a generalization ofE7) and
D9

t∗. Some of the graphs of that system have double lines, likeE9, so that it is not appropriate to
say that Di Francesco - Zuber diagrams are the “simply laced”diagrams of typesl(3): better to
call them “higher ADE”. In all cases however, with self-fusion or not, the rigidity property implied
by Ak holds (the condition(Fn)ab = (Fn)ba does not forbid double lines). Taking quotients of the
above diagrams by discrete groups gives higher analogues ofthe nonADE Dynkin diagrams which
define modules over the Grothendieck ring ofAk, but the rigidity condition is not satisfied and
the corresponding category should not exist (see however the previous footnote). Classification of
sl(4) module categories is also claimed to be completed [33].

Let us pause to develop a tentative pedagogical analogy thatshould make the next result look
natural. Consider a finite group, a subgroup, and the corresponding homogenous space (the space
of right cosets, for example). The group can be fibered as a principal bundle over the coset space,
the structure group being the chosen subgroup. This subgroup has representations, in particular
irreducible ones. For any such, let us saya, one can build an associated vector bundle, and consider
the spaceΓa of its sections. It carries a representation of the big group, although not irreducible
(theory of induced representations). For the particular choice of the trivial representation of the
small group, call it 0, the space of sectionsΓ0 is an algebra, namely the space of functionsF on
the coset. Moreover every space of sections, sayΓa, is a module over the algebraF . In our case
we have a non commutative geometry which is still, in a sense,finite, but the situation is similar.
Simple objects, labelled bya, of the module categoryE can be thought as points of a graph, as
irreducible representations of a would-be quantum subgroup of su(2) or su(3) at some root of
unity, or as spaces of sectionsΓa above a quantum space determined by the pair(Ak,E ), i.e., as
modules over some particular algebraF which is an algebra in a monoidal category (Ak in our
case), and right modules overF form an additive categoryModAk(F ). Reciprocally, we have the
following theorem proved in [36] under actually weaker assumptions than those listed previously
for the action of(Ak onE : there exists a semisimple indecomposable algebraF , belonging to the
set of objects ofAk such that the module categoriesE andModAk(F ) are equivalent. It is shown
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in [27] that E is monoidal (self-fusion) if and only ifF is commutative. In the next section we
shall describeF as an object inA for all sl(2) andsl(3) actegories, in particular for those that are
monoidal, but we shall not use the above characterization. Its simple summands play the role of
quantum Klein invariants. The same algebraF , called Frobenius algebra, plays a prominent role
in the approach of [20]. Notice that module categories associated withADE Dynkin diagrams for
sl(2), or with Di Francesco - Zuber diagrams forsl(3) are never modular (unlessE = A itself) but
they contained a subcategoryJ, also denotedMod0

Ak
(F ) which is modular. WhenE is monoidal,

the subring of its Grothendieck ring associated with this modular subcategory is called the modular
subring (or subalgebra) and is also denotedJ.

The third and final needed ingredient is the centralizer category ofE with respect to the action
of Ak. It is sometimes called the “dual category” (not a very good name) and is defined as the cat-
egory of module functors fromE to itself: these endofunctors should be functorsF “commuting”
with the action ofAk, i.e., such thatF(λn⊗λa) is isomorphic withλn⊗F(λa), for λn∈Ob(Ak) and
λa ∈ Ob(E ), via a family of morphismscλn,λm

obeying triangular and pentagonal constraints. We
simply callO = FunAk(E ,E ) this centralizer category1, but one should remember that its defini-
tion involves bothAk andE . Because of the previous compatibility property, ifE is a left actegory
overAk, it is probably better to consider it as a right actegory overO (actually over its opposite,
since we are permuting the two factors). The categoryO is additive, semi-simple in our case, and
monoidal (use composition of functors as tensor product).E is therefore both a module category
over Ak and overO. The Grothendieck group ofE is therefore not only aZ+ module over the
fusion ring, but also aZ+ module over the Grothendieck ring ofO, called the Ocneanu ring (or al-
gebra) of quantum symmetries and denoted by the same symbol.Structure constants of the ring of
quantum symmetries are encoded by matricesOx, called “matrices of quantum symmetries”; struc-
ture constants of the module, with respect to the action of quantum symmetries, are encoded by the
so called “dual annular matrices”Sx. The next problem is to find a way to describe explicitly this
centralizer category. The solution lies in the construction of a finite dimensional weak bialgebra
B, which is going to be such that the monoidal categoryAk can be realized asRep(B), and also
such that the monoidal categoryO can be realized asRep(B̂) whereB̂ is the dual ofB. These
two algebras are finite dimensional (actually semisimple inour case) and one algebra structure (say
B̂) can be traded against a coalgebra structure on its dual.B is a weak bialgebra, not a bialgebra,
because∆1l 6= 1l⊗1l, where∆ is the coproduct inB, and 1l is its unit. Actually, in our cases, it is
not only a weak bialgebra but a weak Hopf algebra (we can definean antipode, with the expected
properties [2], [31], [32]). One categorical constructionof B is given in [36]. We propose another
one that should lead to the same bialgebra, and may be simpler. Label irreducible objectsλ− of
categoriesAk by m,n, . . ., of E by a,b, . . ., and ofO by x,y, . . .. Call Hm

ab = Hom(λn⊗λa,λb), the
“horizontal space of typen from a to b” (also called space of essential paths of typen from a to
b, space of admissible triples, or triangles. . .) Call Vx

ab = Hom(λa⊗ λx,λb) the “vertical space of
typex from a to b”. We just take these horizontal and vertical spaces as vector spaces and consider
the graded sumsHm = ∑abHm

ab andVx = ∑abVx
ab. To construct the weak bialgebra, we take the

(graded) endomorphism algebrasB = ∑mEnd(Hm) andB̂ = ∑xEnd(Vx). For obvious reasons,
B andB̂ are sometimes called “algebra of double triangles”. Existence of the bialgebra struc-

1Forsl(2), the structure ofFunAk
(E1,E2), whereE1,2 can be distinct module categories was obtained by [34].
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ture (compatibility) rests on the properties of the pairing, or, equivalently, on the properties of the
coefficients2 (Ocneanu cells) obtained by pairing two bases of matrix units3 for the two products.
Being obtained by pairing double triangles, Ocneanu cells (generalized 6J symbols) are naturally
associated with tetrahedra with two types (black “b”, or white “w”) of vertices, so that edgesbb,
bw or ww refer to labelsn, a, x of A , E andO. Using the two product and coproduct structures4

one can obtain representation categoriesRep(B) andRep(B̂) respectively equivalent toAk and
O. As already discussed, the character ring of the first (the fusion algebra) is always described by
a (generalized) Dynkin diagram of typeA . The character ring of the next (the algebra of quantum
symmetries) is not always commutative, it has two generators, called chiral, in the case ofsl(2),
together with their complex conjugated in the case ofsl(3). The Cayley graph of multiplication by
the two chiral generators (two types of lines), called the Ocneanu graph ofE , encodes the structure.
As already mentioned,B is weak. This should not be a surprise since not any monoidal category
arises as representation category of a bialgebra, however (at least when the category has finitely
many simple objects, and this is our case), it can be realizedas the category of representations of
a weak bialgebra. In the next paragraph, we shall see that theknowledge of a modular invariant is
sufficient to reconstruct the character rings ofAk (that we already know), ofO, and the semisimple
and co semisimple structure ofB. TheAk×O module corresponding toE itself can be recovered
from the study of the source and target subalgebras ofB. Results obtained in operator algebra
by [34] and [4, 5, 6] have been translated to a categorical language by [36]: choice of a braiding
or of the opposite braiding in the categoryAk can be used to construct two tensor functors from
(Ak) to O, calledαL,R (“alpha induction” in the language of [5]). Here our presentation differs
from [36], because we find easier to think that there exists a functorAk×O×Ak 7→O, so that the
previousαL,R are obtained as particular cases (1lA×1lO×Ak or to Ak×1lO×1lA). At the level of
Grothendieck rings, we have a bimodule property, that reads(we only use labels to denote the cor-
responding irreducible objects):mxn= ∑y (Wxy)mny, wherem,n refer to irreducible objects ofAk,
x,y to irreducible objects ofO, and whereWxy constitute a family of so - called toric matrices, with
matrix elements(Wxy)mn, again non negative integers. When bothx andy refer to the unit object
(that we label 0), one recovers the modular invariant partition functionZ = W00 of conformal field
theory. As explained in [38], when one or two indicesxandyare non trivial, toric matrices are inter-
preted as partition functions on a torus, in a conformal theory of typeAk, with boundary conditions
specified byE , but with defects (one or two) specified byx andy. Only Z is modular invariant
(it commutes with the generatorS and T of SL(2,Z) in the Hurwitz - Verlinde representation).
Toric matrices were first introduced and calculated by Ocneanu (unpublished). Various methods
to compute or define them can be found in [8], [38]. Ref. [11] gives explicit expressions for all
Wx0, for all members of thesl(2) family. The modular invariant partition functions themselves have
been known for many years: we have theADE classification of [7] forsl(2), and the classification
[21] for sl(3), encoded by Di Francesco - Zuber diagrams. Left and right associativity constraints
(m(nxp)q) = (mn)x(pq) for the A ×A bimodule structure ofO can be written in terms of fu-

2Constructions ofB, inspired from [35], and using these properties, were givenin [38] and [13].
3Definition of cells involve normalization choices: the spacesHm

ab are not always one-dimensional, moreover one
may decide to use bases made of vector proportional to matrixunits rather than matrix units themselves.

4In the operator algebra community, one would usually define astar operation and a scalar product onB, so that
both products could be defined on the same underlying vector space[35].
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sion and toric matrices; a particular case of this equation reads∑x(W0x)λ µ Wx0 = Nλ Z Ntr
µ , called

“equation of modular splitting”, was presented by A.Ocneanu in Bariloche (2000). Given fusion
matricesNp (known in general) and a modular invariant matrixZ =W00, solving this equation, i.e.,
finding theWx0, allows one to reconstruct the character ring ofO. A practical method to solve
this equation is given in [24], with severalsl(2) andsl(3) examples. Left and right chiral cate-
goriesOL,R are defined, using alpha-induction functors, as additive and monoidal subcategories of
O whose objects are direct summands ofαLR(λ ), for all λ in Ak. They are not braided but their
intersection, the ambichiral subcategoryJ is. WhenE is monoidal, the Grothendieck ring ofJ ,
called ambichiral, is isomorphic with the modular subalgebra J already defined.

3. Notations and miscellaneous results

3.1 Notations (summary)

From now on we shall work at the level of Grothendieck groups,or rings, but use for them the
same notation as for the categories themselves. So, we have acommutative and associative algebra
A with5 a baseλn, structure constants(Nn)pq, an associative algebraO, with a baseox, structure
constants(Ox)yz, a vector spaceE with a baseσa which is a module overA andO, with structure
constants(Fn)ab and(Sx)ab. WhenE has self fusion, its structure constants are(Ea)bc. The ringO

is aA bimodule with structure coefficients(Wxy)m,n. The modular invariant partition function is
Z = W00. Like before, the notationE refers to a generic example, unless it denotes an exceptional
case (the context should be clear).E being chosen, the numbers of irreducible objects in categories
A , E andO are respectively denotedrA, r = rE and rO. They are the number of vertices of the
associated graphs. In the case ofŝl(2)k, rA = k+ 1. In the case of̂sl(3)k, rA = (k+ 1)(k+ 2)/2.
The script notation using the levelk as an index can be generalized to allsl(N) theories but it is
incompatible with the traditional notation forsl(2) (the Dynkin diagrams), where the index refers
to the rank. We have the identifications:E6 = E10, E7 = E16, E8 = E28, Ar = Ak=r−1, Ds+2 = Dk=2s.
There are noD cases with odd level in thesl(2) family. Notations for higher ADE diagrams of type
sl(3) were given in the previous section. Generalized Coxeter numbers areκ = k+N for members
of sl(N) families.

3.2 Modular blocks

Call Z = W00 the modular invariant. It is a matrixZmn indexed by (classes of) irreducible
objectsm,n ∈ Irr (A ). It can also be written as a sesquilinear quadratic form∑mnχmZmnχn (the
partition function). The following results are attributedto [34] and [4, 5, 6]:rE = Tr(Z), andrO =

Tr(ZZt); the Grothendieck ring ofA is commutative but the one ofO, which is not necessarily
commutative, is isomorphic to the direct sum of matrix algebras of sizesZmn. For example, take
sl(2) at level 8; if we are givenZ = |χ0 + χ8|2 + |χ2 + χ6|2 + 2|χ4|2, we know a priori thatrA =

9, rE = 6, rO = 12, and that the algebra of quantum symmetries is isomorphicwith
⊕x=8

x=1Cx⊕
M(2,C). Actually this is theD6 module ofA9. The collectionK of those irreducible objectsλn

of A that appear on the diagonal ofZ, with multiplicity Znn, is called the multiset6 of exponents

5In the previous section, we used the notationλn,λa,λx for λn, σa, ox.
6Exponents are conventionally defined as indicesn shifted by+1 for sl(2), or by+(1,1) for sl(3).
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of Z (or exponents ofE ). Forgetting multiplicities, the matrixZ defines a partition on this set:
two exponentsm,n are in the same modular block iffZmn 6= 0. For instance, at level 10, in the
case ofE6, we haveZ = |χ0 + χ6|2 + |χ3 + χ7|2 + |χ4 + χ10|2 and therefore a partition ofK =

{0,6,3,7,4,10} into three subsets{0,6}, {3,7}, {4,10}. At level 17, in the case ofE7, we have
Z = |χ0 + χ16|2 + |χ4 + χ12|2 + |χ6 + χ10|2 + |χ8|2 +(χ8)(χ2 + χ14)+ (χ2 + χ14)χ8, so we have a
partition ofK = {0,16,4,12,6,10,8} into four subsets{0,16}, {4,12}, {6,10}, {8}. The modular
block of the origin (containing 0) is denotedK0. We observe that whenE is monoidal (self-fusion),
Z is a sum of squares and there is a one to one correspondence between modular blocksKa and
the modulesΓa sitting above the irreducible objectsa belonging to the modular subalgebraJ of the
Grothendieck ring ofE . For instance the first modular blockK0 = {0,6} of E6 corresponds to the
algebraF = Γ0 = λ0⊕λ6. This is not so when there is no self-fusion: the first modularblock K0

of E7 is {0,16} althoughF = Γ0 = λ0⊕λ8⊕λ16.

3.3 Dimensions of horizontal and vertical spaces H and V, dimension of the weak Hopf
algebra B

The horizontal spaceH =
⊕

nHn, coming in the construction of the first algebra structure on
the weak Hopf algebraB was defined before, in terms of categorical data. In thesl(2) caseH can
be realized as the (Ocneanu) vector space of essential pathson ADE graphs but also as the vector
space underlying the Gelfand-Ponomarev preprojective algebra associated with the corresponding
unoriented quiver. In the first realizationHn is defined as a particular subspace of the spacePaths
of all paths on the graphE , whereas in the second construction it is defined as a quotient. Identifi-
cation stems, for instance, from the fact that dimensions ofthese finite dimensional vector spaces,
calculated according to the two definitions, are equal. In the case ofsl(3), the grading label of the
horizontal spaceHn refers to a pair of integers(n1,n2), specifying an irreducible representation (it
can also be seen as a Young tableau), this suggests a generalization of the notion of preprojective
algebras associated with quivers.

In the case ofsl(2), dimensionsdn = dimHn, dH = ∑n dn anddB = ∑n d2
n, wheren runs in

the set of irreducible objects ofAk, anddx = dimVx, dV = ∑xdx anddB̂ = ∑x d2
x , wherex runs in

the set of irreducible objects ofO have been calculated first by [34], then by [8], [38], [11]. In
the case ofsl(3), they have been calculated by [34], [12], [39] and [22]. One check, of course,
that dB = d

B̂
in all cases, since the underlying vector space is the same. Surprisingly, one also

observes7 thatdH = dV in most cases. The collection of known results givingdH for all sl(2) cases
can be condensed into a closed formula by using a recent result obtained by [30] for the dimensions
of preprojective algebras associated withADE quivers8. To computedn, the pedestrian approach,
that works in all cases, is to calculate the annular matricesFn, describing the module action ofAk

onE , using recursion formulae giving irreps ofsl(2) or sl(3), then to sum over all matrix elements,
sinceHm

ab = Hom(λn⊗λa,λb). To computedx, one has first to determineO, for instance by solving
the modular splitting equation, then the dual annular matricesSx describing the module action of
O onE , and finally to sum over all matrix elements, sinceVx

ab = Hom(λa⊗λx,λb).

7When it is not so, in particular when the graphE is aZ2 or Z3 orbifold, one knows how to “correct” this curious
linear sum rule, which was first observed in the case ofsl(2) by [38].

8Warning: the preprojective algebra is a multiplicative structure onH, at least forsl(2) cases, it cannot be identified
with eitherB or B̂, see also [10].
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3.3.1 sl(2)

We shall give the values ofdn,dx,dH ,dV anddB in tables, but thanks to the above identification
with the vector space underlying the preprojective algebraof quiver theories, we have a closed
formula fordH that work for allsl(2) cases, namelydH = κ(κ+1)r

6 . Recall thatk is the level,r = k+1
is the rank (the number of vertices), andκ = k+2 is the Coxeter number. In terms of the dimension
dim(E) of the Lie group corresponding to the chosenADE diagram, and using the Kostant formula
dim(E) = (κ + 1)r, we can also writedH = κ dim(E)

6 . For instance,E6→ 156= 7812
6 E7→

399= 13318
6 E8→ 1240= 24830

6 . ForAr graphs, the rankr = k+1 = κ−1 so thatdH(Ar) =

(κ − 1)κ(κ + 1)/6, this can be obtained directly from the fact thatdn = (n+ 1)(k+ 1− n), the
trivial representation being labelledn = 0. Notice that 2κ is the period (inn) of matricesFn. It is
interesting to summarize how the general formula fordH is obtained in quiver theories [30]: one
constructs a generating function for thedn (matrix Hilbert series) and obtainsdH as twice the sum
of matrix elements of the inverse of the Cartan matrix of the chosen graph (21l−F1); this, in turn, is
given by the Freudenthal - de Vries strange formula, which, using Kostant relation, can be written
κ(κ +1)r/12) , hence the result.

3.3.2 sl(3)

Dimensions are later given in tables. In the case ofdH , there is no known formula that works
in all cases. We however obtained the following closed result for Ak diagrams:dH = (k+ 1)(k+

2)(k+3)(k+4)(k+5)(k2 +6k+14)/1680 or, usingκ = k+3, dH = (κ−2)(κ−1)κ(κ +1)(κ +

2)(κ2 +5)/1680. There is no Lie group theory associated with the Di Francesco Zuber diagrams,
nevertheless it is natural to call rank the quantityr = (k+ 1)(k+ 2)/2, since it is the number of
vertices of theAk Weyl alcove. Our previous result fordH uses the fact that the sum of matrix
elements of the inverse of(31l− (F1+Ft

1)/2) can be shown to be equal tor(κ +1)(κ +2)/60.

3.4 Quantum dimensions

As usual,q-integers are denoted[n] = (qn−q−n)/(q−q−1) with q = exp[iπ/κ ]. One can
define quantum dimensionsµ of the vertices ofE from the Perron Frobenius eigenvector of its
adjacency matrix. If the graphE has self - fusion, they can be calculated from the quantum di-
mensions of the unit (which is 1) and of the generator (which is [2] = 2cos(π/κ) for sl(2) and
[3] = 1+ 2cos2π/κ for sl(3)), by using the character property ofµ . Let µa = dimE (σa) the
quantum dimension of the vertexσa. Call also|E | = ∑a µ2

a . GraphsA andO describing fusion
and quantum symmetries have self - multiplication, and quantum dimensionsµn = dimA (λn) and
µx = dimO(ox) for their vertices can be obtained in a similar way. In the particular caseE = A ,
theµn can be obtained from the modular generatorS(a unitarizing matrix for the adjacency matrix
of the graph):µn = S0n/S00. Forsl(2), µn = [n+1]. Forsl(3), µp,q = [p+1][q+1][p+q+2]/[2].
Unitarity of S implies|A |= ∑n µ2

n = 1/S2
00 and several explicit expressions given at the end of this

section.

Call e the intertwiner describing induction - restriction between A andE (also called essential
matrix relative to the unit vertex). It is a rectangular matrix with rA lines andrE columns. Essential
matricesea are obtained from annular matricesFn as follows: (ea)nb = (Fn)ab. The intertwiner
is e = e0. From induction, one obtainsdim(Γa) = ∑n(e)na µn. It is convenient to writeλn ↑ Γa

9
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when the space of sectionsΓa containsλn in its reduction, i.e., when the integer(e)na≥ 1. Possible
multiplicities being understood, we shall write

dim(Γa) = ∑
λn↑Γa

µn

In particular, for the space of functionsF over the “discrete non commutative space”:A /E ,
we havedim(Γ0) = ∑n(e)n0 µn and we shall write (see also [9]):

|A /E |= dim(Γ0) = dim(F ) = ∑
λn↑Γ0

µn

Then, we have the following result :

dimE (a) =
dimΓa

dimΓ0
=

dimΓa

|A /E |

Moreover,|A /E |= |A |/|E |. To obtain the quantum dimensionsµa of vertices ofE , and therefore
the order|E |, it is therefore enough to know theµn for A diagrams and the induction rules.

Example: takeE = E6, and consider the central vertexσ2 (the triple point). Its quantum dimension can be calculatedusing
Perron Frobenius, or directly, usingσ2 = σ2

1 −σ0:

dimE(σ2) = dimE(σ1)
2−dimE(σ0) = (2cos(π/12))2−1 = 1+

√
3

but one can also obtain fromA11: induction fromσ0 givesΓ0 = λ0⊕λ6, so that|A11/E6|= [1]+ [7] = 3+
√

3, and induction fromσ2

givesΓ2 = λ2⊕λ4⊕λ6⊕λ8, so

dimE(σ2) =
[3]+ [5]+ [7]+ [9]

[1]+ [7]
=

6+4
√

3

3+
√

3
= 1+

√
3, .

Call J the modular subalgebra ofE . For graphs with self - fusion, we have both|O| =
|E |× |E |/|J| and|O|= |A |, so that we have also|A|/|E|= |E|/|J|.

Using quantum dimensions ofE , one can compute|J|= ∑σc∈J⊂E µ2
c = ∑σc∈J |Γc|2/|Γ0|2, but

the relation for|O| can be written|J| = |A|/|Γ0|2, so that comparing the two expressions implies
|A| = ∑c∈J |Γc|2. Actually the followingADE or generalizedADE trigonometric identities, which
seem to belong to the folklore of CFT (we shall write them later in a non standard but suggestive
way), imply the previous result. LetZ be a modular invariant matrix of ansl(N) system at level
k, with or without self-fusion. Its matrix elements(Z)m,n are indexed by a pair of irrepsλm and
λn. Forsl(N), these are of course multi-indices. As before, callµm the quantum dimension ofλm.
Then we have the following identity :

∑
m,n

µm(Z)m,n µn = ∑
m

µ2
m

The right hand side of this identity is|Ak| and can be calculated from the modular matrixS.

|A|= κ
2

1

sin2(π
κ
) for sl(2), with κ = k+2

|A|= 3
256

κ2 1

sin6
(π

κ
) 1

cos2
(π

κ
) for sl(3), with κ = k+3

10
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After simplification by a common denominator theADE trigonometric identities read9 explicitly

r

∑
m,n=1

(Z)m,n sin(mπ/κ) sin(nπ/κ) = κ/2

For instance in theE8 case,κ = 30, we have
{

sin(7
π
30

)+sin(13
π
30

)+sin(17
π
30

)+sin(23
π
30

)
}2

+
{

sin(1
π
30

)+sin(11
π
30

)+sin(19
π
30

)+sin(29
π
30

)
}2

= 15

After simplification, the higherADE trigonometric identities ofsl(3) type read9:

∑
n=(n1,n2)

m=(m1,m2)

(Z)m,n sin(m1
π
κ

)sin(m2
π
κ

)sin((m1 +m2)
π
κ

)sin(n1
π
κ

)sin(n2
π
κ

)sin((n1 +n2)
π
κ

) = 3κ2/64

For instance in theE21 case,κ = 24, settingsn = sin(nπ/24), we have

(2s1s7s8 +2s5s8s13+2s5s11s16+2s1s16s17+2s8s11s19+2s7s16s23)
2 +

+(s2
1s2 +s2

5s10+2s2s11s13+s2
7s14+2s7s10s17+2s5s14s19+s2

11s22+2s1s22s23)
2 = 27

Product of quantum dimensions and the discriminant formula:
DefineD = (∑λn∈A µ2

n)r/Πλn∈Aµ2
n , wherer is the total number of irreps of the fusion algebra,r =

k+1 for sl(2), r = (k+1)(k+2)/2! for sl(3), r = (k+1)(k+2)(k+3)/3! for sl(4). In the case of
sl(2), using previous results for∑λn∈A µ2

n and a classical trigonometric identity givingΠλn∈A µ2
n =

[2−(κ−1)κ (Sin(π/κ))−(κ−1)]2 where results are written in terms of the Coxeter numberκ , one
finds D = 2κ−1κκ−3. More generally, it was shown recently in [25], thatD is the square of the
determinant of the matrixSmn/Sm0 (this is the matrix of “quantum conjugacy classes”) which,
in the case ofsl(2) could also be defined as the discriminant of the characteristic polynomial of
the adjacency matrix of the graphAr . Example: TakeA11 of the sl(2) system, the characteristic
polynomial of the adjacency matrix is−s11+10s9−36s7+56s5−35s3+6sand its discriminant is
10567230160896, indeed equal to 211129. D is an integer and general expressions for this quantity
are obtained in the quoted reference. In the case ofsl(2), one recovers the expression calculated
previously, whereas [25] givesD = 3(κ−2)(κ−1)/2κ (κ−4)(κ−2) for sl(3), whereκ = k+3. Since|Ak|
is already known, one can use the Gepner formula forD to provide an efficient way for obtaining
the square product of quantum dimensions. Forsl(3) we find:

Πλn∈A µ2
n = 16−(κ−2)(κ−1)κ3(κ−2)

(
cos

(π
κ

)
sin3

(π
κ

))−(κ−2)(κ−1)

3.5 Tables

3.5.1 The sl(2) family

There are two tables. Notations should be clear. Most results are hardly new. In particular,
the dimensionsdn anddv given in table 1 were obtained already in [34], [8], [38] and [11]. The
compact expression fordH can be seen in [30], and several quantum dimensions or massesgiven
in table 2 can also be found in [11] and [39]. Nevertheless, both tables contain new entries and
explicit formulae.

9Warning: In this expression, we shifted by+1 the indices labelling irreps.
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3.5.2 The sl(3) family

Many results about thesl(3) graphs can be found in the original article [16] and in the book
[3], chap.17. Other aspects of members of this system, in particular their quantum symmetries, are
described in [33], [23], [14], [24] and [22]. Here we are onlyinterested in giving tables describing
the block structure of the quantum groupoidB, i.e., dimensionsdn, dx, the quantum dimensions
and the quantum masses. Many such numbers were certainly obtained by [34], several examples
are studied in [12] and [39]. Generic formulae are ours. Results presented here are complete only
for the cases with self - fusion, for which we also give tablesdescribing induction rules (actually
the induction tables forE21 could not fit in this publication and will appear in a unabridged version
of our work). A description of the cases without self-fusion, along the same lines, should be made
available in [17] and [22]. Some of the results presented here already appeared in [12].
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Graph κ = k+2 dn, Z and exponents, F dx dH = κ(κ +1)r/6 dV −dH dB = dB̂

A1 = A2 3 (2,2) (2,2) 4 0 8 = 23

A2 = A3 4 (3,4,3) (3,4,3) 10 0 34= 21171

A3 = A4 5 (4,6,6,4) (4,6,6,4) 20 0 104= 23131

A4 = A5 6 (5,8,9,8,5) (5,8,9,8,5) 35 0 259= 71371

A5 = A6 7 (6,10,12,12,10,6) (6,10,12,12,10,6) 56 0 560= 245171

A10 = A11 12 (11,20,27,32,35,36,35,32,27,20,11) . . . 286= 21111131 0 8294= 21111131291

A16 = A17 18 (17,32,45,56,65,72,77,80,81,80,77,72,65,56,45,32,17) . . . 31171191 0 3151131171191

A28 = A29 30 (29,56,81,104,125,144,161,176,189,200,209,216,221,224;225;sym.) . . . 51291311 0 171291311531

Ak = Ar=k+1 k+2 dn = (n+1)(k+1−n), n = 0, ...,k dx = dn (κ−1)κ(κ +1)/6 0 κ(κ4−1)/30
D4 = D4 6 (4,6;8;6,4) (4,6;4,4)(4,6;4,4) 28= 4171 (4+4) 168= 233171

D8 = D6 10 (6,10,14,16;18;16,14,10,6) (6,10,14,16;9,9)(6,10,14,16;9,9) 110= 2151111 (9+9) 1500= 223153

D16 = D10 18 (10,18,26,32,38,42,46,48;50;sym.) (10,18,26,32,38,42,46,48;25,25)2 570= 213151191 (25+25) 2255011

D28 = D16 30 (16, 30, 44, 56, 68, 78, 88, 96, 104, 110, 116, 120, 124, 126 ; 128 ; sym.) . . . . . . 2480= 2451311 (64+64) 2577571

Dk = D
re= k

2 +2
2r−2 (r,κ, . . .; 1

2 (1+ κ
2 )2; . . .,κ, r), F = λ0⊕λk (r,κ, . . .; 1

4 (1+ κ
2 )2, 1

4 (1+ κ
2 )2)2 κ(κ +1)(κ +2)/12 1

2 (1+ κ
2 )2 (2+κ)(120+κ(28+κ(26+κ(17+4κ))))

480

D6 = D5 8 (5,8,11,12,11,8,5) (5,8,11,12,11,8,5) 60= 223151 0 564= 2231471

D10 = D7 12 (7,12,17,20,23,24,23,20,17,12,7) (7,12,17,20,23,24,23,20,17,12,7) 182= 2171131 0 3398= 2116991

Dk = D
ro= k

2 +2
2r−2 (r,κ, . . .,κ, r), F = λ0⊕λk (r,k+2, . . .,k+2, r) κ(κ +1)(κ +2)/12 0 κ(176+κ(80+κ(60+κ(25+4κ))))

480

E10 = E6 12

(6,10,14,18,20,20,20,18,14,10,6)

Z = |1+7|2 + |4+8|2 + |5+11|2

F = λ0⊕λ6

6

8

6
10

14

10

10

14

1020

28

20

156= 2231131 0 2512= 241571

E16 = E7 18

(7,12,17,22,27,30,33,34,35,34,33,30,27,22,17,12,7)

Z = |1+17|2 + |5+13|2+ |7+11|2+ |9|2 +((3+15) 9+h.c.)

F = λ0⊕λ8⊕λ16

7

17

1718

33

27

30

22

34

12

22

30

34

12

44

16

24

399= 3171191 0 10905= 31517271

E28 = E8 30

(8,14,20,26,32,38,44,48,52,56,60,62,64,64,64; sym.)

Z = |1+11+19+29|2+ |7+13+17+23|2

F = λ0⊕λ10⊕λ18⊕λ28

8

12

28

32

60

96

52

64

14

16

40

64

64

78

14

22

40

48

48

78

20

32

44

52

20

32

32

40

22

26

16

26
1240= 235131 0 63136= 2519731

Table 1: Horizontal dimensions, vertical dimensions, and bialgebras dimensions forsl(2) cases.
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Graph induction q−dim |E | |A /E | |J |

A2 = A3 . 1,
√

2,1 4 1 = |A |
A3 = A4 . 1, 1

2 (1+
√

5), 1
2 (1+

√
5),1 5+

√
5 1 = |A |

A4 = A5 . 1,
√

3,2,
√

3,1 12 1 = |A |
A5 = A6 . 1,2cos( π

7 ),1+2cos( π
7 ),1+2cos( π

7 ),1 18.59 1 = |A |
Ak = Ar=k+1 . [1], [2], . . ., [2], [1] (κ/2)csc2 (π/κ) 1 = |A |
A10 = A11 . 1,

√
2+
√

3,1+
√

3,
√

3(2+
√

3),2+
√

3;2
√

2+
√

3;+ sym. 24
(
2+
√

3
)

1 = |A |
A16 = A17 . . . . 9csc2 (π/18) = 298.471 1 = |A |

A28 = A29 . . . . 30

(
12+5

√
5+

√
3
(

85+38
√

5
))

1 = |A |

D4 = D4

∗
0
4

1
3

2

2

∗
1

√
3

1

1

|A5|
2 = 6 2

|A5|
4

D8 = D6

∗
0
8

1
7

2
6

3
5

4

4

√
1
2 (5+

√
5), 1

2 (3+
√

5),
√

5+2
√

5; 1
2 (1+

√
5), 1

2 (1+
√

5)
|A9|

2 = 5(3+
√

5) 2
|A9|

4

D16 = D10 . . . [1], [2], [3], [4], [5], [6], [7], [8]; [9]/2, [9]/2
|A17|

2 = 149.235 2
|A17|

4

D28 = D16 . . . . . . . . .
|A29|

2 2
|A29|

4

D6 = D5

∗
0
6

1
5

2
4

3

3

1,
√

2+
√

2,1+
√

2;
√

1+ 1√
2
,
√

1+ 1√
2

|A7|/2= 2csc2(π/8) = 13.65 ? .

D10 = D7
∗
0
10

1
9

2
8

3
7

4
6

5

5

1,
√

2+
√

3,1+
√

3,
√

3(2+
√

3),2+
√

3;
√

2+
√

3,
√

2+
√

3 |A11|/2 = 3csc2(π/12) . .

E10 = E6
∗
0
6

1
5
7

2
4
6
8

3
5
9

4
10

3,7

1
√

2+
√

3 1+
√

3
√

2+
√

3 1

√
2

4
(
3+
√

3
)

3+
√

3 4

E16 = E7

∗
0
8
16

1
7
9
15

2
6
8
10
14

3
5
7
9
11
13

4
6
10
12

5
11

4,8,12

∗

q = exp( iπ
18)

[1] [2] [3] [4]
[6]
[2]

[4]
[3]

[4]
[2]

E | = 2([2]2 +[4]2 +[4]2/[3]2)

= 38.468
|A17| = |D10| |D10|/|J|
|D10| = |A17|/2

[1]+ [9]+ [17] = 7.758
|J|= |D10|/2 = |A17|/4
|J|= [1]2 +[3]2 +[5]2+

[7]2 +[9]2/4+[9]2/4

E28 = E8

∗
0
10
18
28

1
9
11
17
19
27

2
8
10
12
16
18
20
26

3
7
9
11
13
15
17
19
21
25

4
6
8
10
12

(14)2
16
18
20
22
24

5
7
11
13
15
17
21
23

6
12
16
22

5,9,13,15,19,23

∗

q = exp( iπ
30)

[1] [2] [3] [4] [5]
[7]
[2]

[5]
[3]

[5]
[2]

1
2

(
15

(
3+
√

5
)

+

√
30

(
65+29

√
5
))

1
2

(
3
(

5+
√

5
)

+
√

150+66
√

5
)

1
2

(
5+
√

5
)

Table 2: Quantum dimensions forsl(2) cases.

14



P
o
S
(
I
C
2
0
0
6
)
0
0
1

Q
u

a
n

tu
m

S
ym

m
e

trie
s

o
fsl
(2

)
a

n
d

sl(3
)

g
ra

p
h

s
R

.C
o

q
u

ereau
x

Graph κ rE , rA, rO dH dV −dH dB = dB̂ |E | |A /E | |J|

A1 4 3,3,3 9 0 27 3 1 = |E |
A2 5 6,6,6 45 0 351 3

2 (5+
√

5) 1 = |E |
A3 6 10,10,10 164 0 2920 36 1 = |E |
A4 7 15,15,15 486 0 17766 106.027 1 = |E |
A5 8 21,21,21 1242 0 85644 48(3+2

√
2) 1 = |E |

A9 12 55,55,55 21307 0 10517299 432(7+4
√

3) 1 = |E |
A21 24 253,253,253 2729870 0 41644127980 288

(
18+10

√
3+

√
6
(
97+56

√
3
)2

)
1 = |E |

Ak k+3 rE = rA = rO =
(k+1)(k+2)

2
(κ−2)(κ−1)κ(κ+1)(κ+2)(κ2+5)

1680 0 dB(Ak) 3 κ2csc6(π/κ)sec2(π/κ)
256 1 = |E |

A ∗3 6 2,10,10 36 0 144 2 4
A ∗4 7 3,15,15 102 0 798 2.86294 3
A ∗5 8 3,21,21 . 0 . . .

A ∗k≥1 k+3 ., rA, rA . 0 . . .

D3 6 6,10,18 96 30 1032 12= 1
3 |A3| 3 4

D6 9 12,28,36 1218 . 64698 671.56= 1
3 |A6| 3 223.853

D9 12 21,55,63 8193 622 1573275 144(7+4
√

3) = 1
3 |A9| 3 48(7+4

√
3)

Dk=0mod3 k+3
rA−1

3 +3, rA,3rE . . . = 1
3 |Ak| 3 1

3 |E |

D4 7 5,15,15 1
3 dH (A4) = 162 0 1

9 dB(A4) = 1974 1
3 |A4|= 35.3424 3

D5 8 7,21,21 1
3 dH (A5) = 414 0 1

9 dB(A5) = 9516 1
3 |A5|= 16(3+2

√
2) 3

Dk=1,2mod3 k+3 1
3 rA, rA, rA

1
3 dH (Ak) 0 1

9 dB(Ak)
1
3 |Ak| 3

D∗3 6 6,10,18 3dH (A ∗3 ) = 108 . 9dB(A ∗3 ) = 1296 . . .

D∗9 12 18,55,54 3dH (A ∗9 ) . 9dB(A ∗9 ) . . .

D∗
k=0mod3

k+3 3rA∗ , rA, rO(Dk) 3dH (A ∗k ) . 9dB(A ∗k ) . . .

D∗4 7 9,10,10 3dH (A ∗4 ) = 306 0 9dB(A ∗4 ) = 7182 . . .

D∗5 8 9,21,21 3dH (A ∗5 ) 0 9dB(A ∗5 ) . . .

D∗
k=1,2mod3

k+3 3rA∗ , rA, rA 3dH (A ∗k ) 0 9dB(A ∗k ) . .

D t
9 12 17,55,63 7001 . 1167355 72(2+

√
3) 6(2+

√
3) .

D t∗
9 12 11,55,63 . . . . .

E5 8 12,21,24 720 0 29376 12(2+
√

2) 2(2+
√

2) 6
E5/3 8 4,21,24 1

3 dH (E 5) = 240 0 1
9 dB(E5) = 3264 1

3 |E5|= 4(2+
√

2) 6(2+
√

2) .

E9 12 12,55,72 4656 792 518976 36(2+
√

3) 12(2+
√

3) 3
E9/3 12 12,55,72 5616 936 754272 1

3 |E9|= 12(2+
√

3) 36(2+
√

3) .

E21 24 24,253,288 288576 0 480701952 24

(
18+10

√
3+

√
6
(
97+56

√
3
))

12

(
18+10

√
3+

√
6
(
97+56

√
3
))

2

Table 3: Dimensions and quantum masses forsl(3) cases. dB(Ak) = (κ−2)(κ−1)κ2(κ+1)(κ+2)(1052+325κ2+58κ4+5κ6)
4435200
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Z = |[1,1]+ [3,3]|2 + |[1,3]+ [4,3]|2 + |[2,3]+ [6,1]|2
+ |[4,1]+ [1,4]|2 + |[3,2]+ [1,6]|2 + |[3,1]+ [3,4]|2

with [a,b] = (a−1,b−1).

F = λ(0,0)⊕λ2,2
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q-dim E5 ←↩ A5

[1] = 1 10 ←↩ (0,0),(2,2)

[1] 11 ←↩ (0,2),(3,2)

[1] 12 ←↩ (1,2),(5,0)

[1] 13 ←↩ (3,0),(0,3)

[1] 14 ←↩ (2,1),(0,5)

[1] 15 ←↩ (2,0),(2,3)

[3] = 1+
√

2 20 ←↩ (1,1),(3,0),(2,2),(1,4)

[3] 21 ←↩ (1,0),(2,1),(1,3),(3,2)

[3] 22 ←↩ (0,1),(1,2),(3,1),(2,3)

[3] 23 ←↩ (1,1),(0,3),(2,2),(4,1)

[3] 24 ←↩ (0,2),(2,1),(4,0),(1,3)

[3] 25 ←↩ (2,0),(1,2),(3,1),(0,4)

Figure 1: TheE5 graph, quantum dimensions andE5←↩ A5 induction rules.
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Figure 2: Dimensiondn anddx of the blocks forE5.
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q-dim E9 ←↩ A9

[1] = 1 00 ←↩ (0,0), (4,1), (1,4), (4,4), (9,0), (0,9)

[1] 10 ←↩ (2,2), (5,2), (2,5)

[1] 20 ←↩ (2,2), (5,2), (2,5)

3+2
√

3 30 ←↩ (1,1), (3,0), (0,3), (6,0), (0,6), (7,1), (1,7), (6,3), (3,6),

(2,2)2, (4,1)2, (1,4)2, (5,2)2, (2,5)2, (4,4)2, (3,3)3

[3] = 1+
√

3 01 ←↩ (1,0), (4,0), (1,3), (3,2), (0,5), (5,1), (2,4), (4,3), (3,5),

(0,8), (8,1), (5,4)

[3] 11 ←↩ (2,1), (1,3), (3,2), (5,1), (2,4), (4,3), (1,6), (6,2), (3,5)

[3] 21 ←↩ (2,1), (1,3), (3,2), (5,1), (2,4), (4,3), (1,6), (6,2), (3,5)

3+
√

3 31 ←↩ (0,2), (2,1), (4,0), (1,3), (0,5), (5,1), (7,0), (1,6), (6,2),

(3,5), (5,4), (2,7), (3,2)2, (2,4)2, (4,3)2

[3] 02 ←↩ (0,1), (3,1), (0,4), (5,0), (2,3), (4,2), (1,5), (3,4), (8,0),

(5,3), (4,5), (1,8)

[3] 12 ←↩ (1,2), (3,1), (2,3), (4,2), (1,5), (6,1), (3,4), (5,3), (2,6)

[3] 22 ←↩ (1,2), (3,1), (2,3), (4,2), (1,5), (6,1), (3,4), (5,3), (2,6)

3+
√

3 32 ←↩ (2,0), (1,2), (3,1), (0,4), (5,0), (1,5), (6,1), (0,7), (5,3),

(2,6), (7,2), (4,5), (2,3)2, (4,2)2, (3,4)2

Figure 3: TheE9 graph, quantum dimensions andE9←↩ A9 induction rules.

12 26 42 60 68 68 60 42 26 12

26 60 94 120 132 120 94 60 26

42 94 144 162 162 144 94 42

60 120 162 180 162 120 60

68 132 162 162 132 68

68 120 144 120 68

60 94 94 60

42 60 42

26 26

12

12 12 12

26
26 2626 26

26

42
60

42

26 26 26

68
68 6872 72

72

120
162

120

26 26 26

72
72 7268 68

68

120
162

120

42

120 120
72

72

72

68

68

68

94

94

94

60

162 162
94

94

94

94

94

94

132

132

132

42

120 120
68

68

68

72

72

72

94

94

94

Figure 4: Dimensionsdn anddx for theE9 graph.
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Z = |[1,1]+ [5,5]+ [7,7]+ [10,10]+ [1,22]+ [22,1]+ [2,11]+ [11,2]+ [5,14]+ [14,5]+ [7,10]+ [10,7]|2
+ |[1,7]+ [7,1]+ [1,16]+ [16,1]+ [5,8]+ [8,5]+ [5,11]+ [11,5]+ [7,16]+ [16,7]+ [8,11]+ [11,8]|2 with [a,b] = (a-1,b-1)

F = λ(0,0)⊕λ(4,4)⊕λ(6,6)⊕λ(9,9)⊕λ(0,21)⊕λ(21,0)

⊕ λ(1,10)⊕λ(10,1)⊕λ(4,13)⊕λ(13,4)⊕λ(6,9)⊕λ(9,6)

E21 ←↩ A21

0 ←↩ (0,0),(4,4),(10,1),(1,10),(6,6),(9,6),

(6,9),(13,4),(4,13),(10,10),(21,0),(0,21)

21 ←↩ (6,0),(0,6),(7,4),(4,7),(10,4),(4,10),
(15,0),(0,15),(10,7),(7,10),(15,6),(6,15)
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Figure 5: TheE21 graph andE21←↩ A21 induction rules (for vertices∈ J).
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108 144 108

168 252 252 168

240 384 432 384 240

312 528 636 636 528 312

384 672 852 912 852 672 384

444 804 1056 1188 1188 1056 804 444

492 912 1236 1440 1512 1440 1236 912 492

528 996 1380 1656 1800 1800 1656 1380 996 528

552 1056 1488 1824 2040 2112 2040 1824 1488 1056 552

552 1080 1548 1932 2208 2352 2352 2208 1932 1548 1080 552

528 1056 1548 1968 2292 2496 2568 2496 2292 1968 1548 1056 528

492 996 1488 1932 2292 2544 2676 2676 2544 2292 1932 1488 996 492

444 912 1380 1824 2208 2496 2676 2736 2676 2496 2208 1824 1380 912 444

384 804 1236 1656 2040 2352 2568 2676 2676 2568 2352 2040 1656 1236 804 384
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24 60 108 168 240 312 384 444 492 528 552 552 528 492 444 384 312 240 168 108 60 24

Figure 6: Dimension of the blocks labelled by vertices of theA21 graph forE21.
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