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1. Introduction

Our main and original purpose was to gather tables givingatheristic numbers fosl(3)
boundary conformal field theories on a torus: dimensionsheflilocks of the associated weak
bialgebras, global quantum dimensions ("quantum magssijdtion tables, etc. a material that is
hitherto scattered in a number of publications or unaviélamMany formulae given here are new.
The corresponding data fal(2) does not use much space, and we could easily summarize it,
but the situation is different witkl(3): to keep the size of this paper below the prescribed limits,
we had sometimes to restrict ourselves to the case of Di Esanc Zuber graphs with self-fusion
(other cases will be described in [17]) and give only pargsllts for induction tables. Because we
also needed a short introductory section discussing therlymoly algebraic structures and giving
our notations, we decided to describe boundary conformil fieories on a torus in terms of
module categories (action of a monoidal category on a categoostly extracting the relevant
material from [36], while adding few things like the congttion of weak bialgebras in terms of
Hom spaces, or the description of the bimodule structdre ¢ x </ — €', wheres/ is the fusion
algebra an@ is the Ocneanu algebra of quantum symmetries. Indepegdsgfitie interest of the
tables of results, we hope that our presentation will preddridge between several mathematical
or physical communities interested in those topics.

2. The stage

In this paperw is the fusion category of the affine algeb?aZ), or §I(3), at levelk, or
equivalently, the category of irreducible representatiaith non-zeraj-dimension for the quantum
groupssl(2) or sl(3) at roots of unity (sef| = exfin/k), with k = k+ 2 for sl(2) andk = k+ 3
for sI(3). This category is additive (existence @), monoidal (existence ab : o x @ — o,
with associativity constraints, unit object, etc.), temso(® is a bifunctor), complex-linear, rigid
(existence of duals), finite (finitely many irreducible ati, and semisimple, with irreducible unit
object. Itis also modular (braided, balanced, with inlx@etiS-matrix) and ribbon (or tortile). We
refer to the literature [28], [26], [1] for a detailed degdion of these structures. The Grothendieck
ring of this monoidal category comes with a special basisrésponding to simple objects), it
is usually called the fusion ring, or the Verlinde algebraneTcorresponding structure constants,
encoded by the so - called fusion matric(Nﬁ)g, are therefore non - negative integers: NIM-reps
in CFT terminology. The rigidity property of the categoryglies that(Nn)pq = (Nn)qp, Where
n refers to the dual object i.e., , in our case, to the conjuggpeesentation, so that the fusion
ring is automatically a based. ring in the sense of [36] (maybe it would be better to call it
“rigid”). In the case ofsl(2), this is a ring with one generator (corresponding to the &umental
representation), and fusion matrices are symmetric, l3edaw- n. In the case o&l(3), it has
two generators (corresponding to the two fundamental sepitations) that are conjugate to one
another. Multiplication by a generator (choose one of tresjide two in thesl(3) case) is encoded
by a particular fusion matrix; it is a finite size matrix of ddmsionr x r, withr = k+ 1 for sl(2) and
r =k(k+1)/2 for sl(3). Since its elements are non negative integers, it can bepieted as the
adjacency matrix of a graph, which is the Cayley graph of ipligation by this generator, that we
call the McKay graph of the category. Edges are non oriemtéle case o$l(2) (rather, they carry
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both orientations) and are oriented in the casel@). Irreducible representations are denoted by
Ap, With p > 0, in the first case, andl,g, with p,q > 0 in the next. Notice the shift of indices: the
unit 1 of the category correspondsAgor to Ago. One should certainly keep in mind the distinction
between the monoidal category, with its objects and momiignd its Grothendieck ring, but they
will often be denoted by the same symbol. Actually, the Mclegph itself is also denoted. In

the sl(2) case, it can be identified with the Coxeter - Dynkin diagramwith r = k+ 1. In both
sl(2) andsl(3) cases, it is a truncated Weyl chamber at lévgd Weyl alcove). It is often useful to
think of .27 as a category of representations of a would-be quantumtobjet can be also denoted
by the same symbol, although this can be quite misleading.

The next ingredient is a catego#y, not necessarily monoidal, but we suppose that it is ad-
ditive, semisimple and indecomposable, on which the ptevmness (which is monoidal) acts.
Action of a monoidal category on a category has been deskrioeder the name “module cate-
gories” by [19], and, in our context, by [36]. Using a slighshorter description, we may say that
we have such an action when we are given a (monoidal) funaior 4 to the (monoidal) category
of endofunctors of’. The reader can think of this situation as being an analofjtleeaction of a
group on a given space. Actually, it may be sometimes iniegeto think that4” can be acted upon
in more than one way, so that we can think of the action/pfis a particular “enrichment” of’.
The word “module” being used in so many different ways, wdar say that we have an action,
or that& is an actegory (another nice substantive coined by R. $teeel we shall freely use both
terminologies. Irreducible objects &f are boundary conditions for the corresponding Conformal
Field Theory specified bys. It is useful to assume, from now on, that the categéris inde-
composable (it is not equivalent to the direct sum of two nonal categories withez action).
Sinceé’ is additive, we have a Grothendieck group, also denoted &éwdme symbol. Because
of the existence of an action, this (abelian) group has to l®dule over the Grothendieck ring
of @4, and it is automatically &, module: the structure constants of the module, usuallydall
annulus coefficients in string theory articles [20], andctiéed by (annular) matricds, = (F,)ab,
are non negative integers. Let us consider the class of @ydartsimple object ok, namely the
generaton = 1, forsl(2) orn= (1,0) for sl(3) (one of the two conjugated fundamental irreps). We
interpretF, (or F1)) as the adjacency matrix of a graph, called the McKay graghetategory
&. The rigidity property ofez implies that the modul€’ is rigid (or based [36]). In other words:
(Fv)ab = (Fn)ba- In the case 0$l(2), Z, modules for fusion rings at levilhave been classified by
[16] and [18]; McKay graphs are all the Coxeter - Dynkin degr, plus some diagrams with loops
(tadpoles), anéF; = 2 Cartan matrix- 1. The rigidity condition in the case af(2) implies that the
matrix F; is symmetric; this condition implies that non simply lacadglamsB;, C;, F, and G,
should be rejected (this only means that they do not fit in teegnted framework: see also [24]
Eand references therein): we are left with &kiBE diagrams and the tadpoles. A detailed analysis
of the situation ([34], [36]) shows that the tadpole grapbsdt give rise to any category endowed
with an action of the monoidal categories of tygl€2). As already mentioned, the categafyis
not required to be monoidal, but there are cases where @ ihas it has a tensor product, compat-
ible with the <7 action. In another terminology, one says that the corredipgngraphs have self
- fusion (this is also related to the concept of flatness)hat they define “quantum subgroups”
of sl(2), whereas the others are only “quantum modules”. Like in thssical situation, we have
a restriction functor — & and an induction functo€’ — 2. The cases wher& is monoidal
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correspond to the grapls (with k=r — 1), Deyen With k = 0mod4,Eg, with k = 10, andEg, with

k = 28. This was already known, at the level of rings, in [37],][A6d was proved, at the categor-
ical level, by [27]. The caseByqq, With levelk = 2mod 4, andEy, at level 16, are non monoidal
actegories.« is always modular, but the corresponding actegories areeweh when they happen
to be monoidal; however, they always contain a subcategbighis modular (we shall come back
to it). At the level of graphs, th® diagrams (even of odd) af orbifolds of theA diagrams at
the same level. In the casesf3), the classification of... modules over the corresponding fusion
rings at levelk is not tractable (or not useful), however there is anothatergtemming from the
classification ofsl(3) modular invariants [21]. The graphs encoding €d{B) module categories
are called the di Francesco - Zuber diagrams [16]. Existendiee corresponding categories was
shown by A. Ocneanu [33], actually one of the candidates bduetdiscarded, very much like
the tadpole graphs «fi(2). Severalsl(3) actegories have monoidal structure (graphs with self -
fusion), namely.oz itself, the 2, whose McKay diagrams af&; orbifolds of those ofe, when

k is divisible by 3, and three exceptional cases calfedéy and &>1, at levels 5, 9 and 21. The
other actegories (not monoidal) are: the serigs for which the number of simple objects is equal
to the number of self dual simple objects., the %k series, wherk = 1 or 2 mod 3, the series
7, for all k, and several modules of exceptionals callgd &5, Z§ (a generalization oE7) and
29", Some of the graphs of that system have double lines 4keso that it is not appropriate to
say that Di Francesco - Zuber diagrams are the “simply lacéatjrams of typesl(3): better to
call them “higher ADE". In all cases however, with self-fosior not, the rigidity property implied
by 2% holds (the conditior{Fy)ap = (Fn)ba does not forbid double lines). Taking quotients of the
above diagrams by discrete groups gives higher analoguhes abnADE Dynkin diagrams which
define modules over the Grothendieck ring.«f, but the rigidity condition is not satisfied and
the corresponding category should not exist (see howeegurivious footnote). Classification of
sl(4) module categories is also claimed to be completed [33].

Let us pause to develop a tentative pedagogical analogghioatd make the next result look
natural. Consider a finite group, a subgroup, and the carrepg homogenous space (the space
of right cosets, for example). The group can be fibered asaipél bundle over the coset space,
the structure group being the chosen subgroup. This supdras representations, in particular
irreducible ones. For any such, let us sapne can build an associated vector bundle, and consider
the spacd , of its sections. It carries a representation of the big gr@aljmough not irreducible
(theory of induced representations). For the particulamcghof the trivial representation of the
small group, call it 0, the space of sectidngis an algebra, namely the space of functichson
the coset. Moreover every space of sections,lsays a module over the algebr#. In our case
we have a non commutative geometry which is still, in a sefiisiée, but the situation is similar.
Simple objects, labelled by, of the module categony’ can be thought as points of a graph, as
irreducible representations of a would-be quantum sulmg@fsu2) or su3) at some root of
unity, or as spaces of sectiofg above a quantum space determined by the @aj; &), i.e., as
modules over some particular algeb#awhich is an algebra in a monoidal categoryi(in our
case), and right modules ovér form an additive categorylod,, (.#). Reciprocally, we have the
following theorem proved in [36] under actually weaker asptions than those listed previously
for the action of(.#4 on &": there exists a semisimple indecomposable alggbraelonging to the
set of objects ok such that the module categori€sandMod,, (.#) are equivalent. It is shown
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in [27] that & is monoidal (self-fusion) if and only i is commutative. In the next section we
shall describeZ as an object i/ for all sl(2) andsl|(3) actegories, in particular for those that are
monoidal, but we shall not use the above characterizatitmsiinple summands play the role of
guantum Klein invariants. The same algels#¥a called Frobenius algebra, plays a prominent role
in the approach of [20]. Notice that module categories datet withADE Dynkin diagrams for
sl(2), or with Di Francesco - Zuber diagrams fi(3) are never modular (unlegs= <7 itself) but
they contained a subcategatyalso denotecﬂ/lodgfk(ﬁ) which is modular. Whe®&’ is monoidal,
the subring of its Grothendieck ring associated with thisiodar subcategory is called the modular
subring (or subalgebra) and is also denailed

The third and final needed ingredient is the centralizergrateof & with respect to the action
of 4. Itis sometimes called the “dual category” (not a very goatha) and is defined as the cat-
egory of module functors frorf to itself: these endofunctors should be functer&commuting”
with the action ofc, i.e., such thaF (An® A,) is isomorphic withA, @ F (A,), for A, € Ob(.2%) and
Aa € Ob(&), via a family of morphisms,_,  obeying triangular and pentagonal constraints. We
simply call &' = Fun,, (&, &) this centralizer categoty but one should remember that its defini-
tion involves bother and&. Because of the previous compatibility propertys'ifs a left actegory
over u, it is probably better to consider it as a right actegory afgfactually over its opposite,
since we are permuting the two factors). The categdiig additive, semi-simple in our case, and
monoidal (use composition of functors as tensor produgtjs therefore both a module category
over o and overd. The Grothendieck group of is therefore not only &, module over the
fusion ring, but also & module over the Grothendieck ring 6f, called the Ocneanu ring (or al-
gebra) of quantum symmetries and denoted by the same syBtibetture constants of the ring of
guantum symmetries are encoded by matr@gscalled “matrices of quantum symmetries”; struc-
ture constants of the module, with respect to the action ahtum symmetries, are encoded by the
so called “dual annular matrice$k. The next problem is to find a way to describe explicitly this
centralizer category. The solution lies in the constructad a finite dimensional weak bialgebra
2, which is going to be such that the monoidal categefycan be realized aRef %), and also
such that the monoidal catego#y can be realized aRe m@?) whereZ is the dual of%. These
two algebras are finite dimensional (actually semisimpleuncase) and one algebra structure (say
Q) can be traded against a coalgebra structure on its déidéd.a weak bialgebra, not a bialgebra,
becausé\l # 1® 1, whereA is the coproduct ir4, and 1 is its unit. Actually, in our cases, it is
not only a weak bialgebra but a weak Hopf algebra (we can dafirentipode, with the expected
properties [2], [31], [32]). One categorical constructminZ is given in [36]. We propose another
one that should lead to the same bialgebra, and may be simyabel irreducible objectd_ of
categoriese by min,..., of & by a,b,..., and of &' by x,y,.... CallHf}) = Hom(A, ® A3, Ap), the
“horizontal space of type from a to b” (also called space of essential paths of typieom a to
b, space of admissible triples, or triangle$ Call V}j, = Hom(A; ® Ay, Ap) the “vertical space of
typex from ato b”. We just take these horizontal and vertical spaces as veptizes and consider
the graded sumbBl™ = 5, HI} andV* = S ,,V2,. To construct the weak bialgebra, we take the
(graded) endomorphism algebras= S ,End(H™) and % = Y xEnd(V*). For obvious reasons,
% and % are sometimes called “algebra of double triangles”. Eristeof the bialgebra struc-

Forsl(2), the structure oFun, (&1,4%), where& » can be distinct module categories was obtained by [34].
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ture (compatibility) rests on the properties of the pairiag equivalently, on the properties of the
coefficientd (Ocneanu cells) obtained by pairing two bases of matrixstifiir the two products.
Being obtained by pairing double triangles, Ocneanu cgisi¢ralized & symbols) are naturally
associated with tetrahedra with two types (black “b”, ort@Hiv”) of vertices, so that edgdsb,

bw or ww refer to label, a, x of <7, & and . Using the two product and coproduct structires
one can obtain representation categoReg{%#) andRe m@?) respectively equivalent tez and

0. As already discussed, the character ring of the first (thmfualgebra) is always described by
a (generalized) Dynkin diagram of typ#. The character ring of the next (the algebra of quantum
symmetries) is not always commutative, it has two genesatmalled chiral, in the case 6f(2),
together with their complex conjugated in the cassl(8). The Cayley graph of multiplication by
the two chiral generators (two types of lines), called the€amu graph of’, encodes the structure.
As already mentioned? is weak. This should not be a surprise since not any monoatabory
arises as representation category of a bialgebra, howat/égast when the category has finitely
many simple objects, and this is our case), it can be realizdtie category of representations of
a weak bialgebra. In the next paragraph, we shall see th&ntheledge of a modular invariant is
sufficient to reconstruct the character ringsaf(that we already know), of’, and the semisimple
and co semisimple structure &f. The @4 x ¢ module corresponding 6 itself can be recovered
from the study of the source and target subalgebra® ofResults obtained in operator algebra
by [34] and [4, 5, 6] have been translated to a categoricguage by [36]: choice of a braiding
or of the opposite braiding in the categogg can be used to construct two tensor functors from
(@) to 0, calleda“R (“alpha induction” in the language of [5]). Here our presgian differs
from [36], because we find easier to think that there existgatbr.« x & x <% — O, so that the
previousaR are obtained as particular caseg (o x .2 or t0 2% x 1o x ). At the level of
Grothendieck rings, we have a bimodule property, that réadonly use labels to denote the cor-
responding irreducible objectshxn= ¥ (Wsy)mny, wherem, nrefer to irreducible objects of,

X,y to irreducible objects of’, and wher&\,, constitute a family of so - called toric matrices, with
matrix elementgW,y)mn, @gain non negative integers. When batandy refer to the unit object
(that we label 0), one recovers the modular invariant pantitunctionZ = Wgg of conformal field
theory. As explained in [38], when one or two indiceandy are non trivial, toric matrices are inter-
preted as partition functions on a torus, in a conformal mhebtype <, with boundary conditions
specified by#’, but with defects (one or two) specified kyandy. Only Z is modular invariant
(it commutes with the generat@and T of SL(2,Z) in the Hurwitz - Verlinde representation).
Toric matrices were first introduced and calculated by Oanganpublished). Various methods
to compute or define them can be found in [8], [38]. Ref. [11jgiexplicit expressions for all
W, for all members of thel(2) family. The modular invariant partition functions themaes have
been known for many years: we have thBE classification of [7] forsl(2), and the classification
[21] for sl(3), encoded by Di Francesco - Zuber diagrams. Left and rightcéestivity constraints
(m(nxp)q) = (mn)x(pg) for the o7 x o7 bimodule structure o’ can be written in terms of fu-

2Constructions of#, inspired from [35], and using these properties, were ging88] and [13].

3Definition of cells involve normalization choices: the seskl]} are not always one-dimensional, moreover one
may decide to use bases made of vector proportional to matiig rather than matrix units themselves.

4In the operator algebra community, one would usually defiseroperation and a scalar product®h so that
both products could be defined on the same underlying veptme$35].
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sion and toric matrices; a particular case of this equag@ulsy ,(Wox) , Wxo = Ny Z N}{ , called
“equation of modular splitting”, was presented by A.OcneanBariloche (2000). Given fusion
matricesN, (known in general) and a modular invariant maffix- Woo, solving this equation, i.e.,
finding theW,g, allows one to reconstruct the character ringzof A practical method to solve
this equation is given in [24], with several(2) andsl(3) examples. Left and right chiral cate-
gorieso) g are defined, using alpha-induction functors, as additiceraanoidal subcategories of
¢ whose objects are direct summandpk(A ), for all A in «%. They are not braided but their
intersection, the ambichiral subcategog is. Whené’ is monoidal, the Grothendieck ring of,
called ambichiral, is isomorphic with the modular subahgebalready defined.

3. Notations and miscellaneousresults

3.1 Notations (summary)

From now on we shall work at the level of Grothendieck growpsings, but use for them the
same notation as for the categories themselves. So, we ltaverautative and associative algebra
o/ with® a base\,, structure constant$\,) ,q, @an associative algebra, with a baseoy, structure
constantgOy)y,, a vector spacé’ with a baseo, which is a module over7 and @, with structure
constantgF,)ap and(S)ap. Whené has self fusion, its structure constants @g)c. The ringd
is a.«/ bimodule with structure coefficient¥\y)mn. The modular invariant partition function is
Z =Wpo. Like before, the notatio#’ refers to a generic example, unless it denotes an exceptiona
case (the context should be cleaf)being chosen, the numbers of irreducible objects in caiegor
@, & and 0 are respectively denotaq, r = rg andrp. They are the number of vertices of the
associated graphs. In the casegtéﬂ)k, ra =k+ 1. In the case o§|(3)k, ra= (k+1)(k+2)/2.
The script notation using the levklas an index can be generalized tosd{N) theories but it is
incompatible with the traditional notation fet(2) (the Dynkin diagrams), where the index refers
to the rank. We have the identificatiorts; = &10, E7 = &16, Es = é28, Ar = Fh=r_1, Ds12 = Dk—2s.
There are n@ cases with odd level in the(2) family. Notations for higher ADE diagrams of type
sl(3) were given in the previous section. Generalized Coxeterbausnare< = k+ N for members
of sI(N) families.

3.2 Modular blocks

Call Z =Wy the modular invariant. It is a matriXm, indexed by (classes of) irreducible
objectsm,n € Irr (<7). It can also be written as a sesquilinear quadratic S XmZmXn (the
partition function). The following results are attributed[34] and [4, 5, 6]:rg = Tr(Z), andrp =
Tr(ZZ'); the Grothendieck ring of7 is commutative but the one @F, which is not necessarily
commutative, is isomorphic to the direct sum of matrix ahgsbof sizesZ,n. For example, take
sl(2) at level 8; if we are givelZ = |xo + Xs|? + |X2 + Xe|2 + 2| xa|2, we know a priori thats =
9, re =6, ro = 12, and that the algebra of quantum symmetries is isomomhh:@ﬁj‘fcx@
M(2,C). Actually this is theDg module ofAg. The collectionK of those irreducible objects,
of <7 that appear on the diagonal &f with multiplicity Z,, is called the multisétof exponents

5In the previous section, we used the notatl@nAa, Ay for An, Oa, Ox.
8Exponents are conventionally defined as indieshifted by-+1 for sl(2), or by +(1, 1) for sl(3).
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of Z (or exponents of’). Forgetting multiplicities, the matriX defines a partition on this set:
two exponentsn, n are in the same modular block i, # 0. For instance, at level 10, in the
case ofEg, we haveZ = |xo + Xe|® + | X3 + X7/ + | Xa + X10/°> and therefore a partition df =
{0,6,3,7,4,10} into three subset§0,6}, {3,7}, {4,10}. Atlevel 17, in the case dE7, we have
Z = |Xo+ X16° + | Xa+ X121? + | X6 + X10* + | X8|* + (Xs) (X2 + X14) + (X2 + X14) X8, SO We have a
partition ofK = {0,16,4,12 6,10,8} into four subset$0,16}, {4,12}, {6,10}, {8}. The modular
block of the origin (containing 0) is denot&@. We observe that whefi is monoidal (self-fusion),
Z is a sum of squares and there is a one to one correspondemoechanodular block&, and
the moduled ; sitting above the irreducible objedselonging to the modular subalgehraf the
Grothendieck ring o&’. For instance the first modular blo&g = {0,6} of Eg corresponds to the
algebra¥ =g = Ag@® Ag. This is not so when there is no self-fusion: the first modblack Kq
of E7 is {0,16} although# =Ty = Ao @ Ag® Ass.

3.3 Dimensions of horizontal and vertical spacesH and V, dimension of the weak Hopf
algebra #

The horizontal spacel = @,,Hn, coming in the construction of the first algebra structure on
the weak Hopf algebrag was defined before, in terms of categorical data. Irstfi2) caseH can
be realized as the (Ocneanu) vector space of essential @ahBE graphs but also as the vector
space underlying the Gelfand-Ponomarev preprojectivebatgassociated with the corresponding
unoriented quiver. In the first realizatidt, is defined as a particular subspace of the sjRaths
of all paths on the grap#f, whereas in the second construction it is defined as a qtotadantifi-
cation stems, for instance, from the fact that dimensiorthede finite dimensional vector spaces,
calculated according to the two definitions, are equal. éndhse o8l(3), the grading label of the
horizontal spaceél, refers to a pair of integersy, n,), specifying an irreducible representation (it
can also be seen as a Young tableau), this suggests a gestevaliof the notion of preprojective
algebras associated with quivers.

In the case 08l(2), dimensiongd, = dimH,, dy = y,dy anddgz = 5, d2, wheren runs in
the set of irreducible objects o, anddyx = dim\, dy = y,dx andd; = 3 df, wherex runs in
the set of irreducible objects @ have been calculated first by [34], then by [8], [38], [11]. In
the case o8I(3), they have been calculated by [34], [12], [39] and [22]. Oheak, of course,
thatdy = d_; in all cases, since the underlying vector space is the samgpri§ingly, one also
observe&thatdy = dy in most cases. The collection of known results giviigfor all sl(2) cases
can be condensed into a closed formula by using a recent adgained by [30] for the dimensions
of preprojective algebras associated WNBE quiver$. To computed,,, the pedestrian approach,
that works in all cases, is to calculate the annular matigedescribing the module action efi
on &, using recursion formulae giving irreps if2) or sl(3), then to sum over all matrix elements,
sinceHJ, = Hom(A,® A4, Ap). To computedy, one has first to determing, for instance by solving
the modular splitting equation, then the dual annular roess, describing the module action of
¢ oné&, and finally to sum over all matrix elements, singg = Hom(Aa® Ay, Ap).

"When it is not so, in particular when the gragtis aZ or Z3 orbifold, one knows how to “correct” this curious
linear sum rule, which was first observed in the cass @) by [38].

8Warning: the preprojective algebra is a multiplicativaisture orH, at least forsl(2) cases, it cannot be identified
with either% or %, see also [10].
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3.3.1 sl(2)

We shall give the values of,, dy,dy, dy anddg in tables, but thanks to the above identification
with the vector space underlying the preprojective algeifrguiver theories, we have a closed
formula fordy that work for allsl(2) cases, namelgy = 1 Recall thakis the levely = k+1
is the rank (the number of vertices), amd= k+ 2 is the Coxeter number. In terms of the dimension
dim(E) of the Lie group corresponding to the chogeDE diagram, and using the Kostant formula
dim(E) = (k +1)r, we can also writely = %”‘(E). For instancefg — 156 = 78%2 E; —
399=133¥  Eg— 1240=248%. ForA graphs, the rank=k+ 1=k — 1 so thatdy (A;) =
(k —1)k(k +1)/6, this can be obtained directly from the fact tilgt= (n+ 1)(k+ 1—n), the
trivial representation being labelled= 0. Notice that & is the period (im) of matricesF,. It is
interesting to summarize how the general formuladgris obtained in quiver theories [30]: one
constructs a generating function for tthe(matrix Hilbert series) and obtair; as twice the sum
of matrix elements of the inverse of the Cartan matrix of thesen graph (24 F,); this, in turn, is
given by the Freudenthal - de Vries strange formula, whisimgiKostant relation, can be written
K(k +1)r/12) , hence the result.

332 sl(3)

Dimensions are later given in tables. In the casd.gfthere is no known formula that works
in all cases. We however obtained the following closed tdsuler diagrams:dy = (k+ 1)(K+
2)(k+3)(k+4)(k+5) (k% + 6k +14) /1680 or, usings = k+3,dy = (k — 2)(k — 1)k (K +1)(K +
2)(k?+5)/1680. There is no Lie group theory associated with the Di&&aco Zuber diagrams,
nevertheless it is natural to call rank the quantity (k+ 1)(k+ 2)/2, since it is the number of
vertices of thea4 Weyl alcove. Our previous result fafy uses the fact that the sum of matrix
elements of the inverse ¢8 1— (F + F})/2) can be shown to be equaliték + 1)(k + 2)/60.

3.4 Quantum dimensions

As usual,grintegers are denoteft) = (" —q")/(q— g 1) with q = exgdin/k]. One can
define quantum dimensions of the vertices ofs” from the Perron Frobenius eigenvector of its
adjacency matrix. If the grapf has self - fusion, they can be calculated from the quantum di-
mensions of the unit (which is 1) and of the generator (Wh&l2]i= 2coqm/k) for sl(2) and
[3] = 1+ 2com/k for sl(3)), by using the character property pf Let py = dimg(0,) the
quantum dimension of the vertex. Call also|&| =3, u2. Graphse and ¢ describing fusion
and quantum symmetries have self - multiplication, and guardimensiong, = dim.,(A,) and
Uy = dimg(0y) for their vertices can be obtained in a similar way. In thetipalar caset’ = <7,
the up can be obtained from the modular gener&¢a unitarizing matrix for the adjacency matrix
of the graph):tin = Son/Soo. Forsl(2), pn = [n+1]. ForsI(3), Hpq = [p+1J[q+1][p-+a+2]/[2].
Unitarity of Simplies|«/| = 5, u2 = 1/, and several explicit expressions given at the end of this
section.

Call e the intertwiner describing induction - restriction betwe# andé& (also called essential
matrix relative to the unit vertex). It is a rectangular maitvith r lines andrg columns. Essential
matricese, are obtained from annular matricé$ as follows: (¢a)np = (F")ap. The intertwiner
iS e = eg. From induction, one obtaindim(I'y) = S(¢)nafin. It is convenient to writeA, T T4
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when the space of sectiofig containsA, in its reduction, i.e., when the integ@fn, > 1. Possible
multiplicities being understood, we shall write

AnTTa

In particular, for the space of function® over the “discrete non commutative space’;/ &,
we havedim(['g) = ¥ (¢)no Un @and we shall write (see also [9]):

|/ /6| =dim(To) = dim(Z) = 3 i

AnTro
Then, we have the following result :
. _dimly  dimly
dims(2) = Fimry = 17/

Moreover,|<7 /8| = |</|/|&|. To obtain the quantum dimensiopg of vertices of£’, and therefore
the order{&’|, it is therefore enough to know the, for o7 diagrams and the induction rules.

Example: takes” = Eg, and consider the central vertex (the triple point). Its quantum dimension can be calculaisihg
Perron Frobenius, or directly, usig = 012 — 0p:

dime (02) = dime (01)? — dime (0g) = (2cog/12))2 —1=1++/3

but one can also obtain froky1: induction fromap givesIo = Ao @ Ag, SO that|/A11/Eg| = [1] + [7] = 3+ /3, and induction frono>
givesl > = A2 ® A4 P A D Ag, SO
. Bl +[5]+[7]+[9 6+4V3
dime(02) = = =1+3,.
mel2) =g 343

Call J the modular subalgebra &. For graphs with self - fusion, we have boftr| =
|&] x |&]/|3] and|C| = |.<7|, so that we have alde?|/|&] = |&£]/|d].

Using quantum dimensions 6f, one can computs| = 5 5 cjc¢ HE = ¥ g.e31 cl?/|Tol?, but
the relation for|&'| can be writterjJ| = |.«7] /| 0|2, so that comparing the two expressions implies
|A| = S ces|Tcl? Actually the followingADE or generalized\DE trigonometric identities, which
seem to belong to the folklore of CFT (we shall write themratea non standard but suggestive
way), imply the previous result. L& be a modular invariant matrix of al(N) system at level
k, with or without self-fusion. Its matrix elementZ),, are indexed by a pair of irreps, and
An. Forsl(N), these are of course multi-indices. As before, ggllthe quantum dimension af,,.
Then we have the following identity :

Z U (Z)mn Un = Z Ur%
! m

The right hand side of this identity |s#| and can be calculated from the modular maS&ix

K

1
A= 25k (@)

for sl(2), with k = k+2

3 , 1

1 .
|| = 56K it (1) o2 (7) for sI(3), with k =k+3

10
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After simplification by a common denominator tA®E trigonometric identities reddcexplicitly

i Z)mn SIN(MTT/K) sin(NTT/K) = Kk /2
mn=1

For instance in th&g case k = 30, we have

{sm( 30)+S|n(1330)+S|n(1730)+5|n(2330)}2 + {sm(l—)-i—sm(ll )+S|n(1930)+5|n(2930)}2:15

30 30

After simplification, the higheADE trigonometric identities o$l(3) type read:

(Z)mnsin(my 2) sin(mo2) sin( (my + mg) ) sin(ny 2 sin(np 2 ) sin((m + n2) =) = 3k2/64
i K K K K K K
m=(my,mp)

For instance in th&>; casex = 24, settings, = sin(n71/24), we have

(251576 + 25556513+ 255511516 + 251516517 + 256511510+ 257S516523)° +
(5 + 510+ 25511513 + S814 + 257510517 + 255514510+ S2 1502 + 281520503)° = 27

Product of quantum dimensions and the discriminant formula

DefineD = (z)\neﬁuﬁ)r/mneduﬁ, wherer is the total number of irreps of the fusion algehra;
k41 forsl(2), r = (k+1)(k+2)/2! for sI(3), r = (k+1)(k+2)(k+3) /3! for sl(4). In the case of
sl(2), using previous results fdbneﬂuﬁ and a classical trigonometric identity givilty <., u =
[2-Dk (Sin(11/k))~ (k= 1>] where results are written in terms of the Coxeter numbeone
finds D = 2¥~1kX=3. More generally, it was shown recently in [25], tHatis the square of the
determinant of the matri§,,/Swo (this is the matrix of “quantum conjugacy classes”) which,
in the case 06l(2) could also be defined as the discriminant of the charadgtepstynomial of
the adjacency matrix of the gragh. Example: TakeA;; of the sl(2) system, the characteristic
polynomial of the adjacency matrix iss'! 4 10s® — 365’ 4 568> — 35s% 4 6sand its discriminant is
10567230160896, indeed equal td 22°. D is an integer and general expressions for this quantity
are obtained in the quoted reference. In the cas#(@f, one recovers the expression calculated
previously, whereas [25] gives = 3(K—2)(k=1)/2 x (k=4)(k=2) for g|(3), wherek = k+ 3. Since|.«|

is already known, one can use the Gepner formuldfto provide an efficient way for obtaining
the square product of quantum dimensions. $t@®) we find:

My cor ME =16 (K2 K1) 3K=2) (COS( 9 e ( ’;T))(””“)

3.5 Tables
3.5.1 Thesl(2) family

There are two tables. Notations should be clear. Most esué hardly new. In particular,
the dimensiongsl, andd, given in table 1 were obtained already in [34], [8], [38] add ]} The
compact expression faly can be seen in [30], and several quantum dimensions or Mgisses
in table 2 can also be found in [11] and [39]. Neverthelessh bables contain new entries and
explicit formulae.

SWarning: In this expression, we shifted byl the indices labelling irreps.

11



Quantum Symmetries of(8) and s(3) graphs R. Coquereaux

3.5.2 Thesl(3) family

Many results about thel(3) graphs can be found in the original article [16] and in thekboo
[3], chap.17. Other aspects of members of this system, ticpkar their quantum symmetries, are
described in [33], [23], [14], [24] and [22]. Here we are omiyerested in giving tables describing
the block structure of the quantum groupadil i.e., dimensionsl,, dy, the quantum dimensions
and the quantum masses. Many such numbers were certairiynethtby [34], several examples
are studied in [12] and [39]. Generic formulae are ours. Resuesented here are complete only
for the cases with self - fusion, for which we also give taldescribing induction rules (actually
the induction tables faf»1 could not fit in this publication and will appear in a unabedgversion
of our work). A description of the cases without self-fusiatong the same lines, should be made
available in [17] and [22]. Some of the results presented heady appeared in [12].
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Graph K=k+2 dn, Zand exponents .7 dx dy =k(k+1)r/6 | dy —dy dy = d%
oy =Py 3 (2,2) (2,2) 4 0 8=23
o = Ag 4 (3,4,3) (3,4,3) 10 0 34=21171
oy =Py 5 (4,6,6.4) (4,6,6.4) 20 0 104=2313!
Ay =As 6 (5,8,9,8,5) (5,8,9,8,5) 35 0 259= 71371
g5 = Pg 7 (6,10,12,12,10,6) (6,10,12,12,10,6) 56 0 560= 245171
o= A1 12 (11,20,27,32,35,36,35,32,27,20,11) 286= 2111113t 0 8294= 2111113 29"
e =A17 18 (17,32,45,56,65,72,77,80,81,80, 77, 72,65,56,45,32,17) 3l17l1gt 0 3lsliglizligh
tog = Pog 30 (29,56,81,104,125 144,161, 176,189, 200,209, 216,221, 224; 225; syn). 51201311 0 174291311531
o = A ki1 k+2 dh=(n+1)(k+1—-n), n=0,....k dx =dn (k—1)k(k+1)/6 0 K(k*—1)/30
P4 =Dy 6 (4,6;8;64) (4,6;4,4)(4,6,4,4) 28=4171 (4+4) 168= 233171
Pg =Dg 10 (6,10,14,16;18;1614,10,6) (6,10,14,16;9,9)(6,10,14,16;99) 110= 2151111 (9+9) 1500= 223153
Ph6=D1g 18 (10,18, 26,32, 38,42, 46, 48;50; sym). (10,18, 26,32, 38,42,46,48; 25 25), 570=213151191 | (25+25) 2255011
Jrg=D1g 30 (16, 30, 44, 56, 68, 78, 88, 96, 104, 110, 116, 120, 124,128 ;8gm.) | ... 2480= 2451311 | (64+ 64) 257757
H=D, k| -2 (K 3+ 5)Z K0, F =A@ A (ki 21+ 52,31+ 5)%), K(K+1)(k+2)/12| §(1+ )2 | (HR0200K (28 K(26+K(17+46)))
P =Ds 8 (5,8,11,12,11,8,5) (5,8,11,12,11,8,5) 60= 223151 0 564= 2231470
Pho=Dy 12 (7,12,17,20,23,24,23,20,17,12,7) (7,12,17,20,23,24,23,20,17,12,7) 182=217113t 0 3398= 211699
Fk=D, k. ,| -2 (LK KT, T =A@ A (LK+2,... k+2.r) K(k+1)(k+2)/12| 0 K(LTEHK(B0+K (604K (25+4K))))
—2
6
(6,10,14,18,20,20,20,18,14,10,6)
10=Eg 12 Z=[1472+|4+82+|5+11]2 156= 223113t 0 2512= 24157
F=d®As
(7,12,17,22,27,30,33,34,35,34,33,30,27,22,17,12,7)
&e=Ey 18 Z=|1+172 + |5+ 132 +(7+ 112+ |92+ ((3+15) 9+hc.) 399=3'7119! 0 10905= 3151727
F =M®Ag® A6
(8,14,20,26,32,38,44,48,52,56,60,62,64,64,64; sym.)
_ 2 2
o8 — Eg 30 Z=]14114+19429°+[7+13+17+23 1240= 235131 o 63136= 251973

F =M @A 0B A18B A28

Table 1: Horizontal dimensions, vertical dimensions, and bialgslatimensions fogl(2) cases.
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Graph induction g—dim |&€) | /&) |7
=Py V2,1 7z 1 =1
oy =Py 1,3(1+Vv5),31+v5).1 545 1 = ||
oy =Ps 1,v/3.2./3,1 12 1 = ||
o5 =Pg 1,2c08 %), 1+2cog ¥), 1+ 2cog §),1 1859 1 = ||
e =PA—ki1 (1.[2,...[2, 11 (k/2)cs (11/K) 1 = ||
o= A1 1,V/2+V3,1+V3,1/3(2+V3),2+v3;2V/2+ V3;+ sym. 24(2+/3) 1 = ||
e=P7 9cs@ (1/18) = 298471 1 ||
oog = Agg 30 (12+ 5v5+,/3(85+ 38\/5)) 1 = |o|
* 2 * 1 p
4 3 3 1
* 4
7 = De T s 35+ v6), 3(3+ V), 5+ 25 5 (1+ VB), § (1+v5) 18 _5(3+ vB) 2 lesl
8 7 6 5 3
_ 7 EZ
Z16=D1o (1], (2).3).14].[5). [61. (7). 8] [9/2.[9]/2 17l — 149235 2 7
Zpg=D L0l 2 g
728 =16 | e e ==
. * 3
P =Dsg 8 % % 1L,V2+V2,1+v2;, /1+ %,\/H%Z |A7]/2 = 2cs@(m1/8) = 1365 ?
3
P19=D7 (;‘ R — 5 1,V2+3,14+3,1/32+3),2+v3,V2+3,V2+ /3 |A11]/2 = 3cs@(11/12)
0 5 8 7 6 3
37 I V2
610=Eg :F—O—I—o—c 4(3+\/§) 3+43 4
0 1 2 3 4 1 1
6 5 4 5 10 24V3 143 2+v3
7 6 9
8
14
4,812 @ )
I I q=exp(¥g)
& = 222+ 42+ 42/[32
- - ! _ 3g4]68 M /B0 IJ\:\D%OI/ZZZ\AU\ZM
&6=FE o 4 - 1)+[9]+[17 = 7.758 | = [12+ (32 + [5]2+
=& | 9 1 2 3 4 85 nR el /Al = D10/ Dyol/19 e e s
6 9 8 7 10 [D1ol = |Aq7l/2
5 10 9 12
12 11
13
15
5,9,13,15,19,23 el
q=exp(43)
* I : I
7
& %Og 1:9; 1§o 2 é 1§1 %6% WEE e e 5 (15(3+5) +,/30(65+29v5) ) | 4 (3(5+ v5) + V/150+6615) 1 (5+v5
=B 1R D A BB 2( <+ + ( * ) 2<<+ )+ + 2<+ )
19 16 13 15
27 18 15 (14§2 17
20 17 16° 21
26 19 18 23
21 20
25 22
24

Table 2: Quantum dimensions fal(2) cases.
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Graph K TEfAsTO dy dy —dy dg=dg 1] /&) I
e 4 3,33 9 0 27 3 1 =&
A 5 6,6,6 45 0 351 3(5+V5) 1 =&
A 6 10,10,10 164 0 2920 36 1 =&
g 7 15,1515 486 0 17766 106027 1 =&
s 8 21,2121 1242 0 85644 48(3+2v/2) 1 =&
oy 12 55,55,55 21307 0 10517299 4327+ 4V/3) 1 =&
e 24 253253 253 2729870 0 41644127980 288(18+ 10V3+1/6(97+ 56\/§)2) 1 =1é|

o ki3l e = ra = 1o = (1)(t2) (K=2)(k—D)K(K+1)(k+2) (k2 +5) 0 Aot axzcs&n/mse@(n/x) 1 —le
Pk +3|re=ra=ro= 2 1680 () 256 =1
o 6 2,10,10 36 0 144 2 4

g 7 3,15,15 102 0 798 2.86294 3

g 8 321,21 0

AEq k+3 STALTA 0
24 6 6.10,18 96 30 1032 12=1|an| 3 4
T 9 12,2836 1218 . 64698 67156= 3 || 3 223853
29 12 21,55,63 8193 622 1573275 1447+ 4V/3) = | oA 3 48(7+4V/3)

_ -1
De_omods | K+3 A 433 = 34l 3 116
D4 7 5,15,15 30 (o) = 162 0 %d%(m) =1974 || = 35.3424 3
Ds 8 7,21,21 Ldy (o) =414 0 %d%(cys) = 9516 1)) = 16(3+2v2) 3
D1 2mods | K+3 Lrarara Ldn (o) 0 g 14| 3

—1, TA; \B() 319
7 6 6,10,18 3dy (o) = 108 9dy(s75) = 1296
7 12 18,5554 3dy () 9d5( )

Zs_omods | K+3 3rpx A To(%) 3d () 9dz(24)
%) 7 9,10,10 3dy (7) = 306 0 |9dy(wy)=7182
7 8 9,21,21 3dy () 0 9dz( )
P31 amods | K+3 3rps,Ta A 3dn () 0 9dz(24)
7 12 17,5563 7001 1167355 72(2+V/3) 6(2+/3)
[z 12 11,55,63 . :
&5 8 12,21,24 720 0 29376 12(2+V/2) 2(2+v2) 6
85/3 8 4,21,24 1dn(65) =240 0 §0(85) =3264 1165l =42+ V2) 6(2+/2)
Sy 12 12,5572 4656 792 518976 36(2+/3) 12(2+/3) 3
5/3 12 12,5572 5616 936 754272 116 =122+ V3) 36(2+V3)
&n 24 24,253 288 288576 0 480701952 | 24 (18+ 10V3+,/6(97+ 56\/5.)) 12 (18+ 10V/3+/6(97+ 56\/§)> 2

Table 3: Dimensions and quantum massesdtjB) cases.

— —1)k2 2 4 6
dop () = (Kk—2)(K—1)k?(K+1)(k+2)(1052+ 325« *+58k*+5k°)

4435200
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Quantum Symmetries of(8) and s(3) graphs R. Coquereaux

Z = [[1,1+[3,32+[1,3]+ [4,3]]* +][2,3 +[6,1]]
+ [4,1+[1,4)2 43,2+ [1,6]> +[3,1] +[3,4]|2

with [a,b] = (a—1,b—1).

1 g-dim &5 — o

[1]=1 1y < (0,0),(2,2)

[1] 1L « (Oa 2)5(35 2)

23 24 [1] 1 < (1a 2)5(55 O)

L 1 ] 13 — (3,0),(0.3)

(1] 14 < (2,1),(0,5)

22 25 [1] 15 « (Za O),(Z, 3)
(3] =1++v2|2 « (1,1),(3,0),(2,2),(1,4)
1 [3] 21 < (1a O)v (25 1)v (15 S)v (35 2)
0 2 % L 3 2, < (0,1),(1,2),(3,1),(2.3)
[3] 23 < (1’ 1)5 (O’ 3)5 (Za 2)a (4a 1)
3] 24 < (0,2),(2,1),(4,0),(1,3)
15 [3] 25 (Za O)v (15 2)v (35 1)v (Ov 4)

Figure 1. Theds graph, quantum dimensions a#fgl<— .o75 induction rules.

12
24 24
36 48 36
36 60 60 36
12 46 60 48 24
12 24 36 36 24 12

(4
13®2

(24)
Loz

Figure 2: Dimensiond, anddy of the blocks forés.
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Quantum Symmetries of(8) and s(3) graphs R. Coquereaux

g-dim &g — gy

=1 O < (0,0),(4,1),(1,4),(4,4),(9,0),(0,9)

[1] 1o < (22),(52),(2,5

(1 20 < (22),(52),(25)

3+2V3 3 < (1,1),(3,0),(0,3),(6,0),(0,6),(7,1),(1,7),(6,3),(3,6),
(2,2)2,(4.1)2,(1,4)2,(5.2)2,(2.5)2,(4,4)2,(3.3)3

[3]:l+\/.'§ 0; < (1,0),(4,0),(1,3),(3,2),(0,5),(5,1),(2,4),(4,3),(3,5),
(0,8),(8,1),(5,4)

3] 1 < (21),(1,3),(3.2),(51).(2,4),(4,3),(1,6).(6,2),(3,5)

[3] 21 < (21),(1,3),(3,2),(51).(2,4),(4,3),(1,6),(6,2),(3,5)

3+3 3 < (0,2),(2,1),(4,0),(1,3),(0,5),(5,1),(7,0),(1,6),(6,2),
(3.5),(5,4),(2,7),(3,2)2,(2,4)2,(4,3)2

[3) 0 < (0,1),(3.1),(0,4).(5,0),(2,3),(4,2),(1,5),(3.4).(8,0).
(5,3),(4,5),(1,8)

3] 1 < (1,2),(31),(2.3),(4,2).(1,5),(6,1),(3,4).(53),(2.6)

[3) 2 < (1,2),(31),(2.3),(42).(1,5),(6,1),(3,4).(5,3),(2.6)

3+3 3 <« (2,0),(1,2),(3,1),(0,4),(5,0),(1,5),(6,1),(0,7),(5,3),

(2,6),(7,2),(4,5),(2,3)2,(4,2)2,(3,4)2

Figure 3: Thed&y graph, quantum dimensions a#fgl<— <% induction rules.

\ﬂ'.w

12
26 26 42
42 60 42
60 94 94 60
68 120 144 120 68
68 132 162 162 132 68
60 120 162 180 162 120 60
42 94 144 162 162144 94 42
26 60 94 120 132 12094 60 26

12 26 42 60 68 68 60 42 26 12

Figure 4: Dimensiongd, anddy for the &5 graph.
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Quantum Symmetries of(8) and s(3) graphs R. Coquereaux

[1,1)+[5,5 + [7,7) + (10,10 + 1,22 + [22,1] + [2,11] + [11,2] + [5, 14 + [14,5) + [7,10] + [10,7] 2

oy -
+ |[L7)+[7.2) +[1.16) + [16,1] + [5,8] + [8.5) + [5.11] + [11.5 -+ [7,16) + [16,7) + [8,11] -+ [118]|2 with [a,b] = (a-1,b-1)

F = Noo) ©Aa.4) A6 PA9.9) PA021) BA210)
& A1,10 B A(101) SA (4,13 B A134) SA(6,9) PA(96)

& — o

0 — (0,0),(4,4),(10,1),(1,10),(6,6),(9,6),
(6,9),(13,4),(4,13),(10,10),(21,0),(0,21)

21 — (6,0),(0,6),(7,4),(4,7),(10,4),(4,10),
(15,0),(0,15),(10,7),(7,10),(15,6),(6,15)

Figure5: The &»1 graph ands,1 < o1 induction rules (for vertices J).

24
60 60
108 144 108
168 252 252 168
240 384 432 384 240
312 528 636 636 528 312
384 672 852 912 852 672 384
444 804 1056 1188 1188 1056 804 444
492 912 1236 1440 1512 1440 1236 912 492
528 996 1380 1656 1800 1800 1656 1380 996 528
552 1056 1488 1824 2040 2112 2040 1824 1488 1056 552
552 1080 1548 1932 2208 2352 2352 2208 1932 1548 1080 552
528 1056 1548 1968 2292 2496 2568 2496 2292 1968 1548 1056 528
492 996 1488 1932 2292 2544 2676 2676 2544 2292 1932 1488 996 492
444 912 1380 1824 2208 2496 2676 2736 2676 2496 2208 1824 1380 912 444
384 804 1236 1656 2040 2352 2568 2676 2676 2568 2352 2040 1656 1236 804 384
312 672 1056 1440 1800 2112 2352 2496 2544 2496 2352 2112 1800 1440 1056 672 312
240 528 852 1188 1512 1800 2040 2208 2292 2292 2208 2040 1800 1512 1188 852 528 240
168 384 636 912 1188 1440 1656 1824 1932 1968 1932 1824 1656 1440 1188 912 636 384 168
108 252 432 636 852 1056 1236 1380 1488 1548 1548 1488 1380 1236 1056 852 636 432 252 108
60 144 252 384 528 672 804 912 996 1056 1080 1056 996 912 804 672 528 384 252 144 60
24 60 108 168 240 312 384 444 492 528 552 552 528 492 444 384 312 240 168 108 60 24

Figure 6: Dimension of the blocks labelled by vertices of tt#, graph foré>;.
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