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1. Introduction

The matter created in relativistic heavy-ion collisions manifests a strongly collective hydro-
dynamic behaviour [2] which is particularly evident in studies of the so-called elliptic flow [3].
A hydrodynamic description requires, strictly speaking, a local thermal equilibrium and experimen-
tal data on the particle spectra and elliptic flow suggest, when analysed within the hydrodynamic
model, that an equilibration time of the parton1 system produced at the collision early stage is as
short as 0.6 fm/c [4]. Such a fast equilibration can be explained assuming that the quark-gluon
plasma is strongly coupled [5]. However, it is not excluded that due to the high-energy density
at the early stage of the collision, when the elliptic flow is generated [6], the plasma is relatively
weakly coupled because of asymptotic freedom. Thus, the question arises whether the weakly
interacting plasma can be equilibrated within 1 fm/c.

Models that assume that parton-parton collisions are responsible for the thermalization of
weakly coupled plasma provide a significantly longer equilibration time. The calculations per-
formed within the ‘bottom-up’ thermalization scenario [7], where the binary and 2↔ 3 processes
are taken into account, give an equilibration time of at least 2.6 fm/c [8]. To thermalize the system
one needs either a few hard collisions of momentum transfer of order of the characteristic par-
ton momentum2, which is denoted here asT (as the temperature of equilibrium system), or many
collisions of smaller transfer. As discussed ine.g. [9], the inverse equilibration time is of order
g4ln(1/g)T (with g being the QCD coupling constant) when the binary collisions are responsible
for the system’s thermalization. However, the equilibration is speeded up by instabilities generated
in an anisotropic quark-gluon plasma [10, 11], as growth of the unstable modes is associated with
the system’s isotropization. The characteristic inverse time of instability development is roughly
of ordergT for a sufficiently anisotropic momentum distribution [10, 11, 12, 13, 14, 15]. Thus, the
instabilities are much ‘faster’ than the collisions in the weak coupling regime. Recent numerical
simulation [16] shows that the instabilities driven isotropization is indeed very efficient.

The isotropization should be clearly distinguished from the equilibration. The instabilities
driven isotropization is a mean-field reversible phenomenon which isnotaccompanied with entropy
production [10, 16]. Therefore, the collisions, which are responsible for the dissipation, are needed
to reach the equilibrium state of maximal entropy. The instabilities contribute to the equilibration
indirectly, shaping the parton momenta distribution. And recently it has been argued [11] that
the hydrodynamic collective behaviour does not actually require local thermodynamic equilibrium
but a merely isotropic momentum distribution of liquid components. Thus, the above mentioned
estimate of 0.6 fm/c [4] rather applies to the isotropization than to the equilibration.

My aim here is to review the whole scenario of instabilities driven isotropization and the ar-
ticle is organized as follows. I start with a brief presentation of numerous efforts to understand
the equilibration process of the quark-gluon plasma which have been undertaken over last two
decades. In Sec. 3 various plasma instabilities are considered and the magnetic Weibel modes are
argued to be relevant for the quark-gluon plasma produced in relativistic heavy-ion collisions. In

1The term ‘parton’ is used to denote a quasiparticle fermionic (quark) or bosonic (gluon) excitation of the quark-
gluon plasma.

2Although anisotropic systems are considered, the characteristic momentum in all directions is assumed to be of the
same order.
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Sec. 4 I discuss how the unstable modes are initiated while in Sec. 5 the mechanism of unstable
mode growth is explained in terms of elementary physics. Sec. 6 is devoted to solutions of the
dispersion equation which provide dispersion relations of the unstable modes. In Sec. 7 it is ex-
plained why the instabilities isotropize the system. A phenomenon of spontaneous abelianization
of the system’s configuration is considered in the same section. The two next sections contain more
formal material. The Hard Loop effective action of anisotropic plasma is presented in Sec. 8 while
Sec. 9 deals with the equations of motion which are used to study temporal evolution of anisotropic
plasma. Results of recent numerical simulations of the plasma evolution are presented in Sec. 10.
The review is closed with a brief discussion on possible signals of the instabilities and on desired
improvements of theoretical approaches to the unstable quark-gluon plasma.

Throughout the article there are used the natural units withh̄ = c = kB = 1; the metric con-
vention is(1,−1,−1,−1); the coupling constantαs ≡ g2/4π is assumed to be small; quarks and
gluons are massless.

2. Equilibration of the Quark-Gluon Plasma

To present the scenario of instabilities driven isotropization in a broader context, I start with
a brief review of numerous attempts to understand the equilibration processes of the quark-gluon.
The problem was posed over twenty years ago when the real prospects to create the quark-gluon
plasma in terrestrial experiments appeared. Already in the early papers published in the eighties
[17, 18, 19, 20, 21, 22, 23], main directions of further studies were drawn. The space-time struc-
ture of ultrarelativistic heavy-ion collisions was found [20] to provide an estimate of the system’s
temperature and the lower bound of the thermalization time. The Boltzmann equation in the Re-
laxation Time Approximation [17] and the Fokker-Planck equation [18] were used to follow the
equilibration process. The Schwinger mechanism of particle production was included in kinetic
theory treatment of the thermalization [19, 23] and the pure perturbative mechanism was analysed
as well [22]. The equilibration was also studied within the Monte Carlo parton cascade model [21]
which, however, took into account only binary parton-parton collisions.

These lines of research were continued in the next decade. The parton cascade approach
was greatly improved [24] by, in particular, including the gluon radiation in the initial and final
states of parton-parton interactions. The radiation proved to be very important for the equilibration
process [25, 26]. These detailed numerical studies are summarized in the review [27]. Another per-
turbative parton cascade approach combined with the string phenomenology for non-perturbative
interactions is presented in [28]. The analytical studies of the thermalization were continued in
[29, 30, 31, 32, 33], see also [28], where, in particular, the gluons were convincingly shown to
equilibrate much faster than the quarks, the free streaming and the role of infrared cut-offs in the
parton-parton cross sections were elucidated. Much efforts were invested in the studies of multi-
particle processes [34, 35, 36, 37] which were already implemented in the parton cascade type
models [27, 28]. The inelastic process 2↔ 3 attracted a lot of attention. Although it is of higher
order inαs, it is responsible for the parton number equilibration and it dominates the entropy pro-
duction [35, 36, 37].

There are two very recent transport theory approaches to the equilibration problem based on
big numerical codes where the role of the multi-particle processes is emphasized [38, 39]. The
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authors of [38] include particle production and absorption via the process 2↔ 3 while the three-
particle collisions 3↔ 3 are studied in [39]. Within both approaches the equilibration is claimed
to be significantly speeded-up when compared to the equilibration driven by the binary collisions.
However, the interaction rates of multi-particle processes are known to suffer from severe diver-
gences, and thus, the actual role of the multi-particle interactions crucially depends on how the
rates are defined, computed and regularized.

The observation that the multi-particle interaction rates are sometimes divergent was actually
used to explain the very fast equilibration of the quark-gluon system. The so-called collinear di-
vergences of the gluon multiplication process 2↔ 3 cancel in the equilibrium. If the cancellation
does not occur in the non-equilibrium systems, as argued in [40], the equilibration, which is driven
by very large - formally divergent - interaction rates, is extremely fast even in the weakly coupled
plasma [40].

The thermalization of the quark-gluon plasma was also discussed from a very different point of
view where the equilibration is not due to the inter-parton collisions but due to the chaotic dynamics
of the non-Abelian classical fields (coupled or not to the classical coloured particles) [41, 42], see
also a very recent paper [43]. Then, the equilibration time is controlled by the maximal Lyapunov
exponent.

At the turn of the millennium, when a large volume of experimental data from the RHIC started
to flow, understanding of the equilibration process became a burning issue as the data favoured a
very short equilibration mentioned in the Introduction. Within the concept of strongly coupled
quark-gluon plasma, the problem is trivially solved, as the strongly interacting system is indeed
equilibrated very fast. However, it is still an open issue whether the plasma at the collision early
stage is indeed strongly coupled.

A novel development concerned a treatment of the initial state of the parton system which
evolves towards equilibrium. In the papers mentioned above, one usually assumed that the initial
partons are produced due to the (semi-)hard interactions of partons of the incident nuclei. Thus,
jets and minijets form such an initial state which can be parametrized in several ways [44]. Recent
studies of the equilibration problem which adopt the minijet initial conditions are presented in
[45, 46, 47].

In the already mentioned ‘bottom-up’ thermalization scenario [7], the initial state was assumed
to be shaped by the QCD saturation mechanism. Then, the initial state is dominated by the small
x gluons of transverse momentum of orderQs which is the saturation scale. These gluons are
freed from the incoming nuclei after a timeQ−1

s . Weak coupling techniques are applicable asQs

is expected to be much smaller thanΛQCD at sufficiently high collision energies. The saturation
mechanism is incorporated in the effective field approach known as the Colour Glass Condensate
[48] where the smallx partons of large occupation numbers are treated as classical Yang-Mills
fields. Hard modes of the classical fields play the role of particles here. The equilibration processes
with the minijet and saturation initial states were compared to each other in [49].

The ‘bottom-up’ thermalization scenario [7], where not only binary collisions but the pro-
cesses 2↔ 3 are included, takes into account the system’s expansion. The equilibration processes
splits into several stages parametrically characterized byαn

s Q−1
s wheren is a fractional power. The

thermalization time is of orderα−13/5
s Q−1

s . However, as stressed in the Introduction, the collisional
isotropization is apparently too slow to comply with the experimental data. The calculations per-
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formed within the ‘bottom-up’ scenario [7] were criticized [14] for treating the parton momentum
distribution as isotropic, and thus, ignoring the instabilities which actually speed up the equilibra-
tion process. Recently, an influence of the instabilities on the ‘bottom-up’ time scales has been
discussed in [50]. It has been also argued [51] that a somewhat modified scenario remains valid for
a sufficiently late stage of the equilibration process when the instabilities are no longer operative.

At the end I mention rather unconventional approaches to the fast equilibration problem. It was
argued in [52, 53, 54] that the momentum distribution of partons is of the equilibrium form just after
the production process. Thus, the very process of particle production leads to the equilibrium state
without any secondary interactions. The authors of [52, 53] refer to the Schwinger mechanism
of particle’s production due to the strong chromoelectric field. The transverse momentum but not
longitudinal one is claimed to be ‘equilibrated’ in this way [52, 53]. The key ingredient of the
approach [54], where the longitudinal momentum is also thermal, is the Hawking-Unruh effect: an
observer moving with an accelerationa experiences the influence of a thermal bath with an effective
temperaturea/2π, similar to the one present in the vicinity of a black hole horizon. The idea behind
the approaches [52, 53, 54] is elegant and universal – it can be applied not only to nucleus-nucleus
but to hadron-hadron or even toe+e− collisions – but it cannot explain how the equilibrium state
is maintained when the parton’s free streaming drives the system out of equilibrium. Secondary
interactions are then certainly needed.

Finally, I note a very interesting ‘no-go’ theorem [55, 56], which states that the perturbative
thermalization is impossible, as any Feynman diagram of any order leads in the long time limit
to the time scaling of the energy density corresponding to the free streaming, not to the Bjorken
hydrodynamics. However, it is not quite clear whether the theorem applies to the relativistic heavy-
ion collisions as the equilibrium state of matter produced in the collisions is presumably only
a transient state which changes into free streaming at the late times of the system’s evolution.

3. Relevant Plasma Instabilities

The electron-ion plasma is known to experience a large variety of instabilities [57]. Those
caused by coordinate space inhomogeneities, in particular by the system’s boundaries, are usually
calledhydrodynamicinstabilities, while those due to non-equilibrium momentum distribution of
plasma particles are calledkinetic instabilities. Hardly anything is known about hydrodynamic
instabilities of the quark-gluon plasma, and I will not speculate about their possible role in the sys-
tem’s dynamics. The kinetic instabilities are initiated either by the charge or current fluctuations.
In the first case, the electric field (E) is longitudinal (E ‖ k, wherek is the wave vector), while
in the second case the field is transverse (E ⊥ k). For this reason, the kinetic instabilities caused
by the charge fluctuations are usually calledlongitudinalwhile those caused by the current fluctu-
ations are calledtransverse. Since the electric field plays a crucial role in the longitudinal mode
generation, the longitudinal instabilities are also calledelectricwhile the transverse ones are called
magnetic. In the non-relativistic plasma the electric instabilities are usually much more important
than the magnetic ones, as the magnetic effects are suppressed by the factorv2/c2 wherev is the
particle’s velocity. In the relativistic plasma both types of instabilities are of similar strength. The
electric instabilities occur when the momentum distribution of plasma particles has more than one
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maximum, as in the two-stream system. A sufficient condition for the magnetic instabilities is, as
discussed in Sec. 6, anisotropy of the momentum distribution.

Soon after the concept of quark-gluon plasma had been established, the existence of the colour
kinetic instabilities, fully analogous to those known in the electrodynamic plasma, was suggested
[58, 59, 60, 61, 62, 63, 64]. In these early papers, however, there was considered a two-stream
system, or more generally, a momentum distribution with more than one maximum. While such a
distribution is common in the electron-ion plasma, it is rather irrelevant for the quark-gluon plasma
produced in relativistic heavy-ion collisions where the global as well as local momentum distri-
bution is expected to monotonously decrease in every direction from the maximum. The electric
instabilities are absent in such a system but, as demonstrated in [65, 10], a magnetic unstable mode
known as the filamentation or Weibel instability [66] is possible. The filamentaion instability was
shown [65, 10] to be relevant for the quark-gluon plasma produced in relativistic heavy-ion colli-
sions as the characteristic time of instability growth is shorter or at least comparable to other time
scales of the parton system evolution. And the instabilities – usually not one but several modes are
generated – drive the system towards isotropy, thus speeding up its equilibration. In the following
sections a whole scenario of the instabilities driven equilibration is reviewed.

4. Seeds of filamentation

Let me start with a few remarks on degrees of freedom of the quark-gluon plasma. Various
problems will be repeatedly discussed in terms ofclassical fieldsand particles which are only
approximate notions in the quark-gluon plasma being a system of relativistic quantum fields. How-
ever, collective excitations, which are bosonic and highly populated, can be treated as classical
fields while bosonic or fermionic excitations, with the energy determined by the excitation mo-
mentum (due to the dispersion relation), can be treated as (quasi-)particles. In the weakly coupled
quark-gluon plasma in equilibrium, an excitation is calledhard when its momentum is of order
T, which is the system’s temperature, and it is calledsoft when its momentum is of ordergT.
Within the Hard Loop dynamics, the hard excitations can be treated as particles while the gluonic
soft excitations as classical fields [67]. It is expected that a similar treatment is possible in the
non-equilibrium plasma as well. Thus, the terms partons, quarks, gluons, particles will be used
to denote quasiparticle hard excitations. The classical chromodynamic field will represent gluonic
soft collective excitations.

After the introductory remarks, let me discuss how the unstable transverse modes are initi-
ated. For this purpose I consider a parton system which is homogeneous but the parton momentum
distribution is not of the equilibrium form, it isnot isotropic. The system is on average locally
colourless but colour fluctuations are possible. Therefore,〈 jµa (x)〉 = 0 where jµa (x) is a local
colour four-current in the adjoint representation of SU(Nc) gauge group withµ = 0,1,2,3 and
a = 1,2, . . . ,(N2

c −1) being the Lorentz and colour index, respectively;x = (t,x) denotes a four-
position in coordinate space.

Since I assume that the quark-gluon plasma is weakly coupled, the non-interacting gas of
quarks, antiquarks and gluons can be treated as a first approximation. As discussed in detail in
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[68], the current correlator for a classical system of non-interacting massless partons is

Mµν
ab (t,x) def= 〈 jµa (t1,x1) jνb(t2,x2)〉 =

1
8

g2 δab
∫

d3p
(2π)3

pµ pν

p2 f (p) δ(3)(x−vt) , (4.1)

wherev ≡ p/|p|, (t,x) ≡ (t2− t1,x2−x1) and the effective parton distribution functionf (p) equals
n(p)+ n̄(p)+2Ncng(p); n(p), n̄(p) andng(p) give the average colourless distribution function of
quarksQi j (p,x) = δ i j n(p), antiquarksQ̄i j (p,x) = δ i j n̄(p), and gluonsGab(p,x) = δabng(p). The
distribution function of (anti-)quarks and gluons are matrices belonging to the fundamental and
ajoint representation, respectively, of the SU(Nc) gauge group. Therefore,i, j = 1,2, . . . ,Nc and
a,b = 1,2, ...,(N2

c −1).
Due to the average space-time homogeneity, the correlation tensor (4.1) depends only on the

difference(t2− t1,x2−x1). The space-time points(t1,x1) and(t2,x2) are correlated in the system
of non-interacting particles if a particle travels from(t1,x1) to (t2,x2). For this reason the delta
δ(3)(x− vt) is present in the formula (4.1). The momentum integral of the distribution function
simply represents the summation over particles. The fluctuation spectrum is found as a Fourier
transform of the tensor (4.1)i.e.

Mµν
ab (ω,k) =

1
8

g2 δab
∫

d3p
(2π)3

pµ pν

p2 f (p) 2πδ(ω−kv) . (4.2)

To compute the fluctuation spectrum, the parton momentum distribution has to be specified.
Such calculations with two forms of the momentum distribution are presented in [68]. Here I only
qualitatively discuss Eqs. (4.1, 4.2), assuming that the parton momentum distribution is anisotropic.

In heavy-ion collisions, the anisotropy is a generic feature of the parton momentum distribution
in a local rest frame. After the first collisions, when the partons are released from the incoming
nucleons, the momentum distribution is strongly elongated along the beam - it is of the prolate
shape with the average transverse momentum being much smaller than the average longitudinal
one. Due to the free streaming, it evolves in the local rest frame to the distribution which is squeezed
along the beam - it is of the oblate shape with the average transverse momentum being much larger
than the average longitudinal one. In most cases, I assume that the distribution is elongated along
the z axis but my considerations remain valid for the distribution, which is squeezed along the
z axis, but the axes should be relabeled.

With the momentum distribution elongated in thez direction, Eqs. (4.1, 4.2) clearly show that
the correlatorMzz is larger thanMxx or Myy. It is also clear thatMzz is the largest when the wave
vectork is along the direction of the momentum deficit. Then, the delta functionδ(ω−kv) does
not much constrain the integral in Eq. (4.2). Since the momentum distribution is elongated in
the z direction, the current fluctuations are the largest when the wave vectork is thex−y plane.
Thus, I conclude that some fluctuations in the anisotropic system are large, much larger than in
the isotropic one. An anisotropic system has a natural tendency to split into the current filaments
parallel to the direction of the momentum surplus. These currents are seeds of the filamentation
instability.

7
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Figure 1: The mechanism of filamentation instability, see
text for a description.
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Figure 2: The growth rate of the unstable mode
as a function of the wave vector k= (k⊥,0,0) for
σ⊥ = 0.3 GeV and 4 values of the parameterσ‖
which controls system’s anisotropy. The figure
is taken from [12].

5. Mechanism of filamentation

Let me now explain in terms of elementary physics why the fluctuating currents, which flow
in the direction of the momentum surplus, can grow in time. To simplify the discussion, which
follows [68], I consider an electromagnetic anisotropic system. The form of the fluctuating current
is chosen to be

j(x) = j êzcos(kxx) , (5.1)

whereêz is the unit vector in thezdirection. As seen in Eq. (5.1), there are current filaments of the
thicknessπ/|kx| with the current flowing in the opposite directions in the neighbouring filaments.
The magnetic field generated by the current (5.1) is given as

B(x) =
j

kx
êy sin(kxx) ,

and the Lorentz force acting on the partons, which fly along thez direction, equals

F(x) = qv×B(x) = −q vz
j

kx
êx sin(kxx) ,

whereq is the electric charge. One observes, see Fig. 1, that the force distributes the partons in
such a way that those, which positively contribute to the current in a given filament, are focused in
the filament centre while those, which negatively contribute, are moved to the neighbouring one.
Thus, the initial current is growing and the magnetic field generated by this current is growing
as well. The instability is driven by the the energy transferred from the particles to fields. More
specifically, the kinetic energy related to a motion along the direction of the momentum surplus is
used to generate the magnetic field. The mechanism of Weibel instability is explained somewhat
differently in [14].
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6. Dispersion equation

The Fourier transformed chromodynamic fieldAµ(k) satisfies the equation of motion as[
k2gµν −kµkν −Πµν(k)

]
Aν (k) = 0 , (6.1)

wherek ≡ (ω,k) andΠµν(k) is the polarization tensor or gluon self-energy which is discussed
later on. Since the tensor is proportional to a unit matrix in the colour space, the colour indices are
dropped here. A general plasmon dispersion equation is of the form

det
[
k2gµν −kµkν −Πµν(k)

]
= 0 . (6.2)

Equivalently, the dispersion relations are given by the positions of poles of the effective gluon
propagator. Due to the transversality ofΠµν (k) (kµΠµν (k) = kν Πµν(k) = 0) not all components
of Πµν(k) are independent from each other, and consequently the dispersion equation (6.2), which
involves a determinant of a 4× 4 matrix, can be simplified to the determinant of a 3× 3 matrix.
For this purpose I introduce the colour permittivity tensorεlm(k) where the indicesl ,m,n = 1,2,3
label three-vector and tensor components. Because of the relation

ε lm(k)El(k)Em(k) = Πµν(k)Aµ(k)Aν (k) ,

whereE is the chromoelectric vector, the permittivity can be expressed through the polarization
tensor as

ε lm(k) = δ lm +
1

ω2Πlm(k) .

Then, the dispersion equation gets the form

det
[
k2δ lm−klkm−ω2ε lm(k)

]
= 0. (6.3)

The relationship between Eq. (6.2) and Eq. (6.3) is most easily seen in the Coulomb gauge when
A0 = 0 andk ·A(k) = 0. Then,E = iωA and Eq. (6.1) is immediately transformed into an equation
of motion ofE(k) which further provides the dispersion equation (6.3).

The dynamical information is contained in the polarization tensorΠµν(k) given by Eq. (8.2)
or, equivalently, in the permittivity tensorεlm(k) which can be derived either within the transport
theory or diagrammatically [69]. The result is

εnm(ω,k) = δnm+
g2

2ω

∫
d3p

(2π)3

vn

ω−kv+ i0+
∂ f (p)
∂ pl

[(
1− kv

ω

)
δ lm +

kl vm

ω

]
. (6.4)

As already mentioned, the colour indices are suppressed here.
Substituting the permittivity (6.4) into Eq. (6.3), one fully specifies the dispersion equation

(6.3) which provides a spectrum of quasi-particle bosonic excitations. A solutionω(k) of Eq. (6.3)
is calledstablewhen Imω ≤ 0 andunstablewhen Imω > 0. In the first case the amplitude is
constant or it exponentially decreases in time while in the second one there is an exponential growth
of the amplitude. In practice, it appears difficult to find solutions of Eq. (6.3) because of the rather
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complicated structure of the tensor (6.4). However, the problem simplifies as we are interested in
specific modes which are expected to be unstable. Namely, we look for solutions corresponding to
the fluctuating current in the direction of the momentum surplus and the wave vector perpendicular
to it.

As previously, the momentum distribution is assumed to be elongated in thez direction, and
consequently the fluctuating current also flows in this direction. The magnetic field has a non-
vanishing component along they direction and the electric field in thezdirection. Finally, the wave
vector is parallel to the axisx, see Fig. 1. It is also assumed that the momentum distribution obeys
the mirror symmetryf (−p) = f (p), and then the permittivity tensor has only non-vanishing diag-
onal components. Taking into account all these conditions, one simplifies the dispersion equation
(6.3) to the form

H(ω)≡ k2
x −ω2εzz(ω,kx) = 0 , (6.5)

where only one diagonal component of the dielectric tensor enters.

It appears that the existence of unstable solutions of Eq. (6.5) can be proved without solving it.
The so-called Penrose criterion [57], which follows from analytic properties of the permittivity as a
function ofω, states thatthe dispersion equation H(ω) = 0 has unstable solutions if H(ω = 0) < 0.
The Penrose criterion was applied to the equation (6.5) in [10] but a more general discussion of the
instability condition is presented in [14]. Not entering into details, there exist unstable modes if the
momentum distribution averaged (with a proper weight) over momentum length is anisotropic.

To solve the dispersion equation (6.5), the parton momentum distribution has to be specified.
Several analytic (usually approximate) solution of the dispersion equation with various momentum
distributions can be found in [10, 13, 70, 14]. A typical example of the numerical solution, which
gives the unstable mode frequency in the full range of wave vectors is shown in Fig. 2 taken from
[12]. The momentum distribution is of the form

f (p) ∼ 1

(p2
T +σ2

⊥)3
e
− p2

z
2σ2

‖ ,

wherep⊥ ≡
√

p2
x + p2

y. The mode is pure imaginary andγk ≡ Imω(k⊥). The value of the coupling

is αs ≡ g2/4π = 0.3, σ⊥ = 0.3 GeV and the effective parton density is chosen to be 6 fm−3. As
seen, there is a finite interval of wave vectors for which the unstable modes exist.

The dispersion equation (6.5) corresponds to a simple configuration where the wave vector is
parallel to the axisx and it points to the direction of the momentum deficit while the chromoelectric
field is parallel to the axiszand it points to the momentum surplus. However, there are more general
unstable modes which are not aligned along the symmetry axes of the momentum distribution of
particles. The wave vectorsk and chromoelectric fieldsE of these modes have non-vanishing
components in the directions of the momentum deficit and momentum surplus, respectively, and
E is no longer perpendicular tok. Such unstable modes are discussed in [12]. A quite general
analysis of the dispersion equation of anisotropic systems is given in [13, 70]. There is considered
a class of momentum distributions which can be expressed as

f (p) = fiso(
√

p2 + ξ (np)2) , (6.6)
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Figure 3: The effective potential of the unstable magnetic mode as a function of magnitude of two colour
components ofAa belonging to the SU(2) gauge group. The figure is taken from [74].

where fiso(|p|) is an arbitrary (isotropic) distribution, the unit vectorn defines a preferred direction
and the parameterξ ∈ (−1,∞) controls the magnitude of anisotropy.

As explained above, the existence of the unstable gluonic modes is a generic feature of the
anisotropic plasma - even a weak anisotropy generates the instability. In contrary, the quark modes
seem to be always stable [71, 72]. Although, a general proof of the quark mode stability is lacking,
the modes appear to be stable even for an extremely anisotropic parton momentum distribution
as in the two-stream system [71] or as in the case of infinitely oblate distribution (ξ = ∞) [72].
Presumably, the quark modes are always stable because their population is constrained by Pauli
blocking [72].

7. Isotropization and Abelianization

When the instabilities grow the system becomes more isotropic because the Lorentz force
changes the particle’s momenta and the growing fields carry an extra momentum. To explain the
mechanism I assume, as previously, that initially there is a momentum surplus in thez direction.
The fluctuating current flows in thez direction with the wave vector pointing in thex direction.
Since the magnetic field has ay component, the Lorentz force, which acts on partons flying along
the z axis, pushes the partons in thex direction where there is a momentum deficit. Numerical
simulations discussed in Sec. 10 show that growth of the instabilities is indeed accompanied with
the system’s fast isotropization.

The system isotropizes not only due to the effect of the Lorentz force but also due to the
momentum carried by the growing field. When the magnetic and electric fields are oriented along
the y andz axes, respectively, the Poynting vector points in the directionx that is along the wave
vector. Thus, the momentum carried by the fields is oriented in the direction of the momentum
deficit of particles.

Unstable modes cannot grow to infinity and even in the electron-ion plasma there are several
possible mechanisms which stop the instability growth [73]. The actual mechanism depends on the
plasma state as well as on the external conditions. In the case of the quark-gluon plasma one sus-
pects that non-Abelian non-linearities can play an important role here. An elegant argument [74]

11
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suggests that the non-linearities do not stabilize the unstable modes because the system sponta-
neously chooses an Abelian configuration in the course of instability development. Let me explain
the idea.

In the Coulomb gauge the effective potential of the unstable configuration has the form

Veff[Aa] = −µ2Aa ·Aa+
1
4

g2 f abcf ade(AbAd)(AcAe) ,

which is shown in Fig. 3 taken from [74]. The first term (withµ2 > 0) is responsible for the very
existence of the instability. The second term, which comes from the Yang-Mills lagrangian, is of
pure non-Abelian nature. The term appears to be positive and thus it counteracts the instability
growth. However, the non-Abelian term vanishes when the potentialAa is effectively Abelian, and
consequently, such a configuration corresponds to the steepest decrease of the effective potential.
Thus, the system spontaneously abelianizes in the course of instability growth. In Sec. 10, where
the results of numerical simulations are presented, the abelianization is further discussed.

8. Hard-Loop Effective Action

Knowledge of the gluon polarization tensor or, equivalently, the chromoelectric permittiv-
ity tensor is sufficient to discuss the system’s stability and the dispersion relations of unstable
modes. For more detailed dynamical studies the effective action of anisotropic quark-gluon plasma
is needed. Such an action for a system, which is on average locally colour neutral, stationary and
homogeneous, was derived and discussed in [75], see also [76]. The starting point was the effective
action which describes an interaction of classical fields with currents induced by these fields in the
plasma. The lagrangian density is quadratic in the gluon and quark fields and it equals

L2(x) = −
∫

d4y

(
1
2

Aa
µ(x)Πµν

ab (x−y)Ab
ν (y)+ Ψ̄(x)Σ(x−y)Ψ(y)

)
; (8.1)

the Fourier transformed gluon polarization tensorΠµν
ab (k) and the quark self-energyΣ(k) read

Πµν
ab (k) = δab

g2

2

∫
d3p

(2π)3

f (p)
|p|

(p ·k)(kµ pν + pµkν )−k2pµ pν − (p ·k)2gµν

(p ·k)2 , (8.2)

Σ(k) = g2 N2
c −1
8Nc

∫
d3p

(2π)3

f̃ (p)
|p|

p ·γ
p ·k , (8.3)

where f (p) and f̃ (p) are the effective parton distribution functions defined asf (p)≡ n(p)+ n̄(p)+
2Ncng(p) and f̃ (p) ≡ n(p)+ n̄(p)+2ng(p); n(p), n̄(p) andng(p) are, as already mentioned below
Eq. (4.1), the distribution functions of quarks, antiquarks and gluons of single colour component
in a homogeneous and stationary plasma which is locally and globally colourless; the spin and
flavour are treated as parton internal degrees of freedom. The quarks and gluons are assumed
to be massless. The polarization tensor (8.2) can be derived within the semiclassical transport
theory [69, 13] or diagrammatically [69], following the formal rules of the Hard Thermal Loop
approach. The quark self-energy (8.3) has been derived so far only diagrammatically [69, 77] but
the derivation is also possible within the transport theory, as it has been done in [78] for the case of
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equilibrium plasma. The action (8.1) holds under the assumption that the field amplitude is much
smaller thanT/g whereT denotes the characteristic momentum of (hard) partons.

Following Braaten and Pisarski [79], the lagrangian (8.1) was modified to comply with the
requirement of gauge invariance. The final result, which is non-local but manifestly gauge invariant,
is [75]

LHL(x) =
g2

2

∫
d3p

(2π)3

[
f (p) Fa

µν(x)
(

pν pρ

(p ·D)2

)
ab

F bµ
ρ (x) (8.4)

+ i
N2

c −1
4Nc

f̃ (p) Ψ̄(x)
p ·γ
p ·DΨ(x)

]
,

whereFµν
a is the strength tensor andD denotes the covariant derivative. The effective action (8.4)

generatesn−point functions which obey the Ward-Takahashi identities. For the equilibrium plasma
the action (8.4) is equivalent to that one derived in [80] and in the explicitly gauge invariant form
in [79]. The equilibrium Hard Loop action was also found within the semiclassical kinetic theory
[78, 81].

9. Equations of motion

Transport theory provides a natural framework to study temporal evolution of non-equilibrium
systems and it has been applied to the quark-gluon plasma for a long time. The distribution func-
tions of quarks(Q), antiquarks(Q̄), and gluons(G), which are theNc×Nc and(N2

c −1)×(N2
c −1)

matrices, respectively, satisfy the transport equations of the form [82, 83]:

pµDµQ(p,x)+
g
2

pµ
{

Fµν(x),
∂Q(p,x)

∂ pν

}
= 0 , (9.1)

pµDµQ̄(p,x)− g
2

pµ
{

Fµν(x),
∂ Q̄(p,x)

∂ pν

}
= 0 ,

pµDµG(p,x)+
g
2

pµ
{

Fµν (x),
∂G(p,x)

∂ pν

}
= 0 ,

where{..., ...} denotes the anticommutator; the transport equation of (anti-)quarks is written down
in the fundamental representation while that of gluons in the adjoint one. Since the instabilities
of interest are very fast, much faster than the inter-parton collisions, the collision terms are ne-
glected in Eqs. (9.1). The gauge field, which enters the transport equations (9.1), is generated
self-consistently by the quarks and gluons. Thus, the transport equations (9.1) should be supple-
mented by the Yang-Mills equation

DµFµν (x) = jν (x) , (9.2)

where the colour current is given as

jµ(x) = −g
∫

d3p
(2π)3

pµ

|p| τa

[
Tr

[
τa

(
Q(p,x)− Q̄(p,x)

)]
+Tr

[
TaG(p,x)

]]
, (9.3)

with τa andTa being the SU(Nc) group generators in the fundamental and adjoint representation,
respectively. There is a version of the equations (9.1, 9.2) where colour charges of partons are
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treated as a classical variable [84]. Then, the distribution functions depend not only onx andp but
on the colour variable as well.

When the equations (9.1, 9.2) are linearized around the state, which is stationary, homogeneous
and locally colourless, the equations provide the Hard Loop dynamics encoded in the effective
action (8.4). The equations are of particularly simple and elegant form when the quarkδQ(p,x),
antiquarkδQ̄(p,x) and gluonδG(p,x) deviations from the stationary state described byQi j

0 (p) =
δ i j n(p), Q̄i j

0 (p) = δ i j n̄(p), andGab
0 (p) = δabng(p) are parameterised by the fieldWµ(v,x) through

the relations

δQ(p,x) = g
∂n(p)
∂ pµ Wµ(v,x) , δQ̄(p,x) = −g

∂ n̄(p)
∂ pµ Wµ(v,x) ,

δG(p,x) = g
∂ng(p)

∂ pµ TaTr
[
τaW

µ(v,x)
]
,

wherev ≡ p/|p|. Then, instead of the three transport equations (9.1) one has one equation

vµDµWν (v,x) = −vρFρν(x) (9.4)

while the Yang-Mills equation (9.2) reads

DµFµν (x) = jν (x) = −g2
∫

d3p
(2π)3

pν

|p|
∂ f (p)
∂ pρ Wρ(v,x) , (9.5)

wherevµ = (1,v) and, as previously,f (p) ≡ n(p)+ n̄(p)+ 2Ncng(p). In contrast to the effective
action (8.4), the equations (9.4, 9.5) are local in coordinate space. Therefore, the transport equation
(9.4) combined with Eq. (9.5) is often called local representation of the Hard Loop dynamics. The
equations (9.4, 9.5), which for the isotropic equilibrium plasma were first given in [67], are used in
the numerical simulations [15, 85, 86, 87] discussed in the next section.

Recently the fluid equations, which are applicable to short-time scale colour phenomena in the
quark-gluon plasma, have been derived [88] from the kinetic equations (9.1). The quantities, which
enter the equations, like the hydrodynamic velocity or pressure are gauge dependent matrices in the
colour space. The linearized fluid equations were solved analytically but the chromo-hydrodynamic
approach is rather designed for numerical studies of the dynamics of the unstable quark-gluon
plasma.

10. Numerical simulations

Temporal evolution of the anisotropic quark-gluon plasma has been recently studied by means
of numerical simulations [15, 16, 85, 86, 87, 89, 91, 92]. The simulations, which have been per-
formed in two very different dynamical schemes by three groups of authors, are of crucial impor-
tance as they convincingly demonstrate a key role of the instabilities in the evolution of anisotropic
quark-gluon plasma.

The dynamics governed by the Hard Loop action (8.4) and described by the equations (9.4, 9.5)
has been simulated in [15, 85, 86, 87, 92]. These simulations provide fully a reliable information
on the field dynamics provided the potential’s amplitude is not too large:Aµ

a � T/g whereT
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Figure 4: Time evolution of the (scaled) energy den-
sity (split into various electric and magnetic components)
which is carried by the chromodynamic field. The simu-
lation is 1+1 dimensional and the gauge group is SU(2).
The parton momentum distribution is squeezed along the
z axis. The solid line corresponds to the total energy
transferred from the particles. The figure is taken from
[15].
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Figure 5: Time evolution of the kinetic en-
ergy of particles (upper panel) and of the energy
of electric and magnetic fields (lower panel) in
GeV/fm3 for the U(1) and SU(2) gauge groups.
The figure is taken from [16].

is the characteristic momentum of (hard) partons. Since the equations (9.4, 9.5) describe small
deviations from the stationary homogeneous state, only a small fraction of the particles is influenced
by the growing chromodynamic fields. Therefore, the (hard) particles effectively play a role of the
stationary (anisotropic) background. In the simulations [16, 89, 91] the classical version of the
equations (9.1, 9.2) is used. The quark-gluon plasma is treated as a completely classical system:
partons, which carry classical colour charges, interact with the self-consistently generated classical
chromodynamic field.

The simulations [15, 16] have been effectively performed in 1+1 dimensions as the chromo-
dynamic potentials depend on time and one space variable. The calculations [85, 86] represent
full 1+3 dimensional dynamics. In most cases the SU(2) gauge group was studied but some SU(3)
results, which are qualitatively very similar to SU(2) ones, are given in [86].

The techniques of discretization used in the simulations [15, 16, 85, 86, 87, 89, 91] are rather
different while the initial conditions are quite similar. The initial field amplitudes are distributed
according to the Gaussian white noise and the momentum distribution of (hard) partons is strongly
anisotropic. For example, in the classical simulation [16] the initial parton momentum distribution
is chosen as

f (p) ∼ δ(px) e−
√

p2
y+p2

z
phard , (10.1)

with phard = 10 GeV. The results are actually insensitive to the specific form of the momentum
distribution. If the parton distribution function is written in the form (6.6), the results are shown [15,
13] to depend only on two parameters:ξ and the Debye massmD of the corresponding isotropic
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Figure 6: Temporal evolution of the functionals̄C and
φrms measured in GeV. The figure is taken from [16].

Figure 7: Temporal evolution of the (scaled) func-
tionalsC̄ and jrms. The figure is taken from [15].

systemi.e.

m2
D = − g2

4π2

∫ ∞

0
dp p2 ∂ fiso(p)

∂ p
.

In Fig. 4, taken from [15], the results of the Hard-Loop simulation performed in 1+1 dimen-
sions are shown. One observes exponential growth of the energy density stored in fields and the
energy density is dominated, as expected, by the magnetic field which is transverse to the direc-
tion of the momentum deficit. The growth rate of the energy density appears to be equal to the
growth rateγ∗ of the fastest unstable mode. Fig. 5, which is taken from [16], shows results of
the classical simulation on the 1+1 dimensional lattice of physical sizeL = 40 fm. As in Fig. 4,
the amount of field energy, which is initially much smaller than the kinetic energy of all particles,
grows exponentially and the magnetic contribution dominates.

The Abelian (U(1)) and non-Abelian (SU(2)) results of the 1+1 dimensional simulation pre-
sented in Fig. 5 are remarkably similar to each other. The abelianization, explained in Sec. 7,
appears to be very efficient in 1+1 dimensions, as shown in Figs. 6, 7, taken from [16] and [15],
respectively. The authors of [16] analysed the functionals

φrms≡
√

2
∫ L

0

dx
L

Tr[A2
y +A2

z] , C̄≡
∫ L

0

dx
L

√
Tr[(i[Ay,Az])2]
Tr[A2

y +A2
z]

, (10.2)

which were introduced in [74]. The quantitiesjrms andC̄, studied in [15] and shown in Fig. 7,
are fully analogous toφrms andC̄ defined by Eq. (10.2) but the components of chromodynamic
potential are replaced by the respective components of colour current. As seen in Figs. 6, 7, the
field (current) commutator decreases in time although the magnitude of field (current), as quantified
by φrms ( jrms), grows.

It is worth mentioning that the functionals (10.2) defined through the gauge potentials are
gauge invariant provided the potentials depend only of one time and one space variables and the
gauge transformations preserve this property. Thus, the functionals (10.2) are well suited for 1+1
dimensional simulations. However, the functionals (10.2) arenot gauge invariant under general
1+ 3 dimensional gauge transformations. When the potential components are replaced by the
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respective current components, as proposed in [15], the functionals are gauge invariant not only
under 1+1 but also under 1+3 dimensional transformations.

The results of the 1+3 dimensional simulations [85, 86] appear to be qualitatively different
from those of 1+1 dimensions. As seen in Figs. 8, 9, taken from [85] and [86], respectively, the
growth of the field energy density is exponential only for some time, and then the growth becomes
approximately linear. It appears that the regime changes when the field’s amplitude is of orderk/g
wherek is the characteristic field wave vector. Then, the non-Abelian effects start to be important.
Indeed, Fig. 10, which is taken from [85], demonstrates that the abelianization is efficient in the
1+3 dimensional simulations [85, 86] only for a finite interval of time. The commutatorC shown in
Fig. 10, which is a natural generalization of the 1+1 dimensional commutator defined by Eq. (10.2)
with the current components instead of the potential ones, first decreases but after some time it
starts to grow and returns to its initial value.

The regime of linear growth of the magnetic energy, shown in Figs. 8, 9 was studied numer-
ically in [87]. It was found that when the exponential growth of the magnetic energy ends, the
long-wavelength modes associated with the instability stop growing, but that they cascade energy
towards the ultraviolet in the form of plasmon excitations and a quasi-stationary state with the
power law distributionk−2 of the plasmon mode population appears. The phenomenon was ar-
gued [87] to be very similar to the Kolmogorov wave turbulence where the long-wavelength modes
transfer their energy without dissipation to the shorter and shorter ones.

A different picture of the nonAbelian regime emerges from the classical simulation [91] where
the system with strong momentum anisotropy was studied. When the field strength is high enough,
the energy drained by the Weibel-like plasma instability from the particles does not build up ex-
ponentially in magnetic fields but instead returns isotropically to the ultraviolet not via the quasi-
stationary process, as argued in [87], but via a rapid avalanche.
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The effect of isotropization due to the action of the Lorentz force is nicely seen in the 1+1 di-
mensional classical simulation [16]. In Fig. 11, which is taken from [16], there are shown diagonal
components of the energy-momentum tensor

Tµν =
∫

d3p
(2π)3

pµ pν

Ep
f (p) .

The initial momentum distribution is given by Eq. (10.1), and consequentlyTxx = 0 at t = 0. As
seen in Fig. 11,Txx exponentially grows. However, a full isotropy, which requiresTxx = (Tyy+
Tzz)/2, is not achieved.

The numerical studies discussed so far deal with the quark-gluon system of constant volume.
A very elegant formulation of the Hard Loop dynamics of the system, which experiences the boost
invariant expansion in one direction, is given in [92]. In agreement with the earlier expectations
[12, 14], the expansion is shown both numerically and analytically [92] to slow down growth of
instabilities even when the initial state is highly anisotropic. The field amplitude does not grow
exponentially with time but rather as the exponent of

√
t. The effect of expansion requires further

quantitative analysis, as the instabilities might occur irrelevant for heavy-ion collisions, if they are
not fast enough to cope with the system’s expansion.

An attempt to study an unstable parton system in the conditions close to those, which are real-
ized in relativistic heavy-ion collisions, was undertaken in [93, 94, 95]. The system was described
in terms of the Colour Glass Condensate approach [48] where smallx partons of large occupation
numbers, which dominate the wave functions of incoming nuclei, are treated as classical Yang-
Mills fields. Hard modes of the classical fields play the role of particles. The instabilities, identified
as the Weibel modes, appear to be generated when the system of Yang-Mills fields expands into
vacuum.

11. Outlook and Final Remarks

One wonders whether the presence of the instabilities at the early stage of relativistic heavy-ion
collisions is experimentally observable. The accelerated equilibration is obviously very important
though it is only an indirect signal. It has been suggested [96, 97] that strong chromomagnetic
fields generated by the instabilities can lead to a specific pattern of jet’s deflections. This promising
proposal, however, requires further studies.

Another idea has been formulated in [98]. The quark-gluon plasma, which is initially anisotro-
pic, is isotropized fast due to the magnetic instabilities. Such a non-equilibrium plasma manifests,
as recently observed [11], an approximate hydrodynamic behaviour even before the equilibrium
is reached. The point is that the structure of the ideal fluid energy-momentum tensori.e. Tµν =
(ε + p)uµuν − pgµν , whereε, p anduµ is the energy density, pressure and hydrodynamic velocity,
respectively, holds for an arbitrary but isotropic momentum distribution.ε and p are then not the
energy density and pressure but the moments of the distribution function which are equal the energy
density and pressure in the equilibrium limit. Since the tensorTµν always obeys the continuity
equation∂µTµν = 0, one gets an analogue of the Euler equation. However, due to the lack of
thermodynamic equilibrium there is no entropy conservation and the equation of state is missing.
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Figure 10: Temporal evolution of the field com-
mutator quantified byC. The figure is taken from
[85].
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The azimuthal fluctuations have been argued [98] to distinguish the approximate hydrody-
namics – characteristic for the instabilities driven isotropization – from the real hydrodynamics
describing a system which is in a local thermodynamic equilibrium, as advocated by proponents of
the strongly coupled plasma [5]. Non-equilibrium fluctuations are usually significantly larger than
the equilibrium fluctuations of the same quantity. A specific example of such a situation is given
in Sec. 4 where the current fluctuations in the anisotropic system are discussed. Thus, one expects
that the (computable) fluctuations ofv2 produced in the course of real hydrodynamic evolution
are significantly smaller than those generated in the non-equilibrium quark-gluon plasma which
is merely isotropic. It should be stressed here that the elliptic flow is generated in the collision
relatively early stage when there is a large configuration-space asymmetry of the colliding system.
Since a measurement ofv2 fluctuations is rather difficult, it was also argued [98] that an integral
measurement of the azimuthal fluctuations can help as well to distinguish the equilibrium from
non-equilibrium fluctuations. Further suggestions of detectable signals of the instabilities are very
much needed. However, an experimental verification will certainly require much better theoretical
understanding of the equilibration process.

Although an impressive progress has been achieved, the numerical simulations are still quite
far from a real situation met in relativistic heavy-ion collisions. Complete 1+3 dimensional sim-
ulations are needed, as the results of [85, 86] show that the dimensionality crucially matters. The
system expansion needs to be incorporated. The effect of back reaction of fields on the particles is
fully included only in the classical simulations [16, 91, 93, 94, 95]. The effect is difficult to study
in quantum field approaches as it goes beyond the Hard Loop physics which has appeared very rich
and complex [85, 86]. An attempt to go beyond the Hard Loop Approximation was been under-
taken in [99] where the higher order terms of the effective potential of the anisotropic system were
found. Since these terms can be negative, the instability is then driven not only by the negative
quadratic term but by the higher order terms as well.
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The parton-parton collisions is another physically important effect which goes beyond the
Hard Loop Approximation. Recently, the effect has been modelled [100] using the kinetic equa-
tions with the collision terms of the so-called BGK form (similar to the well-known Relaxation
Time Approximation). The collisions have been shown to slow down growth of the unstable modes,
and there is an upper limit on the collisional frequency beyond which no instabilities exist.

The coupling constant is assumed to be small in all studies of the unstable parton systems.
This is certainly a severe limitation as the phenomenology of heavy-ion collisions suggests that the
quark-gluon plasma manifests very small viscosity characteristic for strongly coupled systems [5].
However, it has been recently argued [101, 102] that an anomalously small viscosity of the quark-
gluon system can arise from interactions with turbulent colour fields dynamically generated by the
instabilities. Therefore, it might well be that the scenario of instabilities driven equilibration does
not only solve the problem of fast thermalization but other puzzling features of the quark-gluon
plasma as well.

In summary, the magnetic instabilities provide a plausible explanation of the surprisingly short
equilibration time observed in relativistic heavy-ion collisions. The explanation does not require a
strong coupling of the quark-gluon plasma. Fast isotropization of the system is a distinctive feature
of the instabilities driven equilibration. Two signals of the instabilities have been suggested but
quantitative predictions are lacking. New ideas are certainly needed. In spite of the impressive
progress, which has been achieved recently, a theoretical description of the unstable quark-gluon
plasma requires further improvements.
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[83] St. Mrówczýnski, Phys. Rev. D39 (1989) 1940.

[84] U. W. Heinz, Annals Phys.161 (1985) 48.

[85] P. Arnold, G. D. Moore and L. G. Yaffe, Phys. Rev. D72 (2005) 054003.

[86] A. Rebhan, P. Romatschke and M. Strickland, JHEP0509 (2005) 041.

[87] P. Arnold and G. D. Moore, Phys. Rev. D73 (2006) 025006.
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