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1. Introduction

According to Hagedorn, the hadronic mass spectrum (levaditig has the asymptotien(—
o) form

P (M) = exp(m/Ty), (1.1)

wherem s the mass of the hadron in question angd is the parameter (temperature) controlling
the exponential rise of the mass spectrum [1, 2]. The questithe mass range over which (1.1)
is valid is still under discussion [3].

The M.I.T. bag model [4] of partonic matter leads to the sapgeBum via a constant pressure
B of the containing “bag” [5, 6]. In the absence of conservedrgbs the bag pressuBsforces a
constant temperaturk and energy density from which it follows that the bag entropy is

S=¢V/Tg =m/Tg (1.2)

whereV andm are the volume and mass of the bag respectively. Thus the lbag spectrum
exp(9) is identical to Eq. (1.1) [5, 6]. This property implies thekeof any surface energy associ-
ated with the bag.

A variety of experiments with high energy/6 > 30— 50 GeV) elementary particle collisions
on very different systems indicate a constant temperatugeacterizing both chemical and physi-
cal equilibrium at vanishing baryonic densities [7, 8, QJislinteresting to explore the connection
of these empirical temperatures with the Hagedorn tempex@t,, on one hand and the bag tem-
peraturelg on the other [10].

We will show that the temperature of any sugff system is not affected by the extrinsic
injection of energy into the system but it is encoded andtbtrenforced by the fixed temperature
of the mass spectrum.

The insertion of an exponential spectrum such as Eq. (1 theipartition function

2 (T) = /pﬂ)(E)e‘%dE (1.3)
Emin
led to the incorrect conclusion that the entire range of enapires &< T < T, is accessible and
that T, is the limiting temperature of the system.

In order to see the origin of this erroneous conclusion, setansider the following illumi-
nating exercise. Consider a systéncomposed of ice and water at standard pressure (see Fig. 1).
For such a system the temperature (kelvin}is= 273 K. Because of coexistence, we can feed or
extract heat to/from the system without changiig This is a strict thermodynamic requirement:
we say that the systemis a thermostat.

If a quantityQ of heat is added to the sytem, the change in entropy is

AS=Q/Ta. (1.4)

The level density oA is then

P(Q) = ¥/ ™ ~ KeF/ T, (1.5)
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Can a “thermostat” have a temperature
other than its own?

T=T,=273K
.

0<T=<273K ©

Is T, just a “parameter”?

T s,

Z(T)= [dEp(E)e™" = i

According to this, a thermostat, can
have any temperature lower than its
own!

Figure 1: Example of ice and water at coexistence and the resultimgr{eous) partition function.

The level density, or spectrum, is exponentiaEirand depends only on the intrinsic “parameter”
Ta. Let us calculate the partition function Af

2(T) = /eE/TAe—E/TdE _ /e‘(%‘ﬁ>EdE _ AT (1.6)
TA-T
This seems to indicate th&t can assumany temperature & T < Ta. This violates thermody-
namics, which requires that the only temperature possililé fs Ta. What is the trouble?
Let us consider two systerds B with level densitiesop andpg. Let the systems be thermally
coupled to each other with total energy We now calculate the distribution in energies between
the two systems,

pr(X) = pa(E —X)ps(X) (1.7)
Let A be a “thermostat”, i.epa = €/™. Then

(X) = ex E X
pr(x) = exp( —-

)%wzémwﬂ%w. (1.8)
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Let us integrate ovex
[ pr(dx—e/™ [ e/ pg(x)dx— /M Zg(Th). (1.9)

This is the thermodynamic justification of the partition étion Zg(Ta) and the meaning of “im-
plicit” thermostat. By changing “thermostat” we can chamgand the temperature &

Thus, every time we construct a partition function, we imfilg gedanken experiment of
connecting the system to a thermostat, and that this expatim actually possible for the system
we are studying. Does this always work?

To see this, let us look for the most probable value of theibigion pr (x), which defines the
equilibrium partition, by taking the log and differentiad:

Inpr(X) = Inpa(E —X) +1Inpg(x) (1.10)
dInpr(X)/0x = —dInpa/oX|+ dInpg/dx| =0 < 1/Ta = 1/Ts. (1.11)

For this to be possible, it is necessary thatand pg admit thesamelogarithmic derivative some-
where in the allowed range of energysee Fig. 2).

Usually, and always for concave functior&x) = Inp(x) and T = (dS/dx)~?* is such that
0 < T <. Thus, for such systems it is possible to match derivatieesvhatever value oE.
Thermal equilibrium is achievable over a broad range of &napires.

However, ifSa(E) = Inpa(E) is linear inE, thenTa = (dS/JE) 1 is a constant, independent
of E. Inthis case, it is up t® to look for the value ok at which its logarithmic derivative matches
1/Ta. The systenf\is a “thermostat" al = T4 andB can only try to assume the vallie= Tg = Ta,
if it can do so.

Now suppose that als&(E) = Inpg(E) is linear inE with an inverse slopd@g. This means
that only if Ta = Tg is equilibrium possible, and the partition function Bf Zg is meaningfully
defined only forT = Tg and not for 0< T < Tg. We cannot force a temperatufe Tg on a
thermostat. It can only have its own intrinsic temperaflige These arguments are summarized
graphically in Fig. 2.

Placing system# andB into contact will lead to a continuous heat flow from one syste
the other. Thermal equilibrium is not achievable.

Summarizing: it is permissible to calculate a system’sipantfunction only if itsS(E) admits
as inverse derivatives values such as we want to imposeghiaur Laplace transform. Failing that,
the resulting partition function does not satisfy any thedgmamic criterion.

Carlitz noticed [11] that Eqg. (1.1) leads to a honequivaéebetween the (grand)canonical and
microcanonical descriptions. However, the striking cousaces of this fact were not appreciated.

We show here that the exponential form of the mass spectrugg.irfl.1) forces the unique
temperaturd ,» on both the chemical and physical equilibria associatet iwiBelow we explore
the consequences of this hitherto unappreciated fact.

To begin, we show that a systep#’ possessing a Hagedorn-like spectrum, characterized by
an entropy of the form (1.2), not only has a unique microcaariemperaturd ;-

Ty = (dS/dE) ' =Ts, (1.12)



The Hagedorn thermostat L. G. Moretto
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Figure 2: Consequences of placing systems A and B in thermal contaat waither (top), one (middle), or
both (bottom) are thermostats.

but also imparts this same temperature to any other systarith > is coupled. In the language
of thermodynamicsz# is a perfect thermostat with the constant temperafyse

Incidentally, it is worth noting that a perfect thermostatindifferent to the transfer of any
portion of its energy to any parcel within itself, no mattemhsmall. In other words, it is at the
limit of phase stability and the internal fluctuations ofétsergy density are maximal. Therefore it
does not matter whether this thermostat is one large bagsfréagmented in an arbitrary number
of smaller bags or, equivalently, it is a system of hadrorts @ispectrum given by Eqg. (1.1). This
has consequences on the propertiegfofis we shall see below.

2. Harmonic Oscillator Coupled to 7

In order to demonstrate the thermostatic behavior of a Hageslystem, let us begin by cou-
pling .7 to a one dimensional harmonic oscillator and use a micrauaabtreatment. The un-
normalized probabilityP(¢) for finding an excitation energy in the harmonic oscillator out of the
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system’s total energl is

P(€) ~ P (E - €)Posd €) = eXp<ET—;;> = px(E) exp<—%f> : (2.1)

Recall that for a one dimensional harmonic oscillgbgg. is a constant. As the above equation
shows, the energy spectrum of the oscillator is canonicaltZBrann factor!) up to the upper limit
Emax = E with an inverse slope (temperature) By independent oE. The mean value of the
energy of the oscillator is

. [1——E/T%” } .

exp(E/T»)—1

Thus in the limit thatE — o: € — T,,, Nno temperature other than, is admitted. This example
shows that a one dimensional harmonic oscillator can be asaa ideal thermometer.

(2.2)

3. Anideal vapor coupled to 57

For a physically more relevant example, let us consider @awvapN > 1 non-interacting
particles of massn coupled tosZ. The microcanonical level density of the vapor with kinetic
energye is

A me 3N
=—a|= 3.1
pVapor(E) NI (%N)I (27T> ’ ( )
whereV is the volume. The microcanonical partition of the totalteysis
A mey SN E-mn-e
= — =— (= T
Protal(E, €) = p#(E S)pvapor(g) NI (%N)! (27_[) < (3.2)

Again, the distribution of the vapor is exactly canonical topenax = E, if the particles are in-
dependently present, @rpax= E — mN, if the particles are generated b¥’. In either case, the
temperature of the vapor is alwaVs.

At fixed N the maximum opxiai(E, €) with respect t& gives the most probable kinetic energy

per particle as
) = - 0= _=1T, 3.3
de 2 Ty, N2 (3:3)
provided thaE > mN-+ %NT%). FormN< E < mN+ %NT%), the most probable kinetic energy per
particle value is§ = £ —m< 3T,,; for E <mN, § = 0. T« is the sole temperature characterizing
the distribution up to the microcanonical cut off, which mag above or below the maximum of
the distribution, since the form @hota(E, €) is E-independent.

The maximum ofptal(E, €) with respect taN at fixedV is given by

3
21n protal(E, €) m V /mTyy\?2
) R =0 3.4
N T, "IN\ 2n ! (3.4)
where Eq. (3.3) was used fer Thus the most probable particle density of the vapardependent
of V:
3
N /mTy\2 _m
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This most important result shows that not only# a perfect thermostat, but also a perfect particle
reservoir. Different particles of different masswill be automatically in chemical equilibrium with
each other. At equilibrium, particles emitted fro##f form a saturated vapor at coexistence with

at temperatur@ . This describes a first order phase transition (hadroniattwpic). Coexistence
occurs at a single temperature fixed by the bag pressure. er&iff arguments lead to a similar
conclusion concerning the existence of a phase transitibh [

These key results may explain the common value of: the hadtion temperatures obtained
within the statistical hadronization model at vanishingybaic densities [9]; the inverse slopes
of the transverse mass spectra of hadrons observed in heggyeelementary particle collisions
with the transverse momengg < 1 GeV [7, 8]; and the transition temperature from lattice QCD
calculations for low baryonic density [12]. For further dission see [13].

Let us consider the case in which the vapor particle masspart of a distribution of masses.
We want to determine the most probable mass respresentegivapor. The system’s level density
potal(E, €) is still given by Eq. (3.2). Using Egs. (3.3) and (3.5), onal$éirthe most probable
value of the system’s level density g§,,(E, €) =~ exp[S], where the entropy iS" = E/T,»+ N.
Differentiating p,(E, €) with respect tanand applying Eq. (3.5) gives

—a'nptgﬁl(E’E) =N [%—%} —0=m= ;T%, (3.6)
i.e. the last equality provides the maximum of level den&ityN # 0.

Substituting the most probable value ofindm into the most probable value df gives the

vapor concentration

3
N 3 \?2
vV <4ne> 2 (3.7)

If the mass given by Eqg. (3.6) does not exist among the availalasses, then the level den-
sity’s most probable valug;;,, (E, €) corresponds to the masg nearest t& T, andN(m*) given
by Eq. (3.5). The value afi* that maximizes the level densip,,(E, €) is the pion mass.

4. Hagedorn Thermostat M odel

Let us consider the microcanonical ensembléNgfBoltzmann point-like particles of mass
mg and degeneracygg, andNy hadronic point-like resonances of mass with a mass spectrum
gH (My) = expmy /Th ] (Mo/my )& for my > mg which obeys the inequalities, > Ty andm, > mg.

A recent analysis [14] suggests that the Hagedorn massrgpecan be established fom, < 2
GeV.

Inthe SBM [15] and the MIT bag model [5] it was found that faf — oo the parametea < 3.

For finite resonance masses the valua isfunknown, so it will be considered as a fixed parameter.

The microcanonical partition of the system, with volumMetotal energyd and zero total

momentum, can be written as follows
N d3
I—!g / P
A (2m)3

vH [|_|9H / 3Q)k

vhe
Ng!
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N N
5<U— &' — s->, (4.2)
250

where the quantite” = &(my, Q) (sjB: £(mg, p;) and £(M,P) = \/M2+P2> denotes the
energy of the Hagedorn (Boltzmann) particle with the 3-motm §; (Bj)- In order to simplify the
presentation of our idea, Eq. (4.1) accounts for energyereation only and neglects momentum
conservation.

The microcanonical partition (4.1) can be evaluated by thgldce transform in total energy
U [16]. Then the momentum integrals in (4.1) are factorized ean be performed analytically.
The inverse Laplace transform in the conjugate varidblean be done analytically for the non-

relativistic and ultrarelativistic approximations of thee-particle momentum distribution function
(Kz2(2) is the modified Bessel function)

00

d3p ef/\s(M.p) M?2
= K2(MA
/ (2m)3 212\ 2(MA)
MRgA) > 1,
s 4.2
{A—ilzew, MReA) < 1, 4.2)
where the auxiliary integral can be expressed in terms ofj#imema function as follows
[ dE L, s T(b+1)

I = O/(Zn)ZE et = o (4.3)

The actual Hagedorn spectrum conatins a pre-exponentitorfand becomes established
above a lower thresholdy. We are considering here the implications of these two facts
more formal way.

Since the formal steps of further evaluation are similarldoth cases, we discuss in detail
the nonrelativistic limit only, and later present the résdibr the other case. The nonrelativistic
approximation fMReA ) > 1) for Eq. (4.1) is as follows

[VgH(mH) [2mH]% I%] "

nr = Ny !
[Vgg[ZmB]% |%] EZ_(NH+NB)—1
5 kin , (44)
Ng! (E(NH —I—NB)—].)!

whereEyin = U — myNy — mgNg is the kinetic energy of the system.

As shown below, the most realistic case corresponds to theslativistic treatment of the
Hagedorn resonances because the resulting temperaturetssmaller than their masses. There-
fore, it is sufficient to consider the ultrarelativistic linfor the Boltzmann particles only. In this
case MR ) <« 1) the equation (4.1) can be approximated as

[VQH(mH)[:ZmH]% |%] h

ur = Ny !
3(Ny+2Ng)—1
Vg 21" EZ
[ OB 2] kin (45)

Ng!  (3(Nn+2Ng)—1)!’
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where the kinetic energy does not include the rest energheoBoltzmann particles, i.eExin, =
U —myNy.

Within our assumptions the above results are general andearsed for any number of
particles, providedy + Ng > 2. It is instructive to consider first the simplest cd§e= 1. This
oversimplified model, in which a Hagedorn thermostat is gbvaresent, allows us to study the
problem rigorously. FoNy = 1 andNg > 1 we treat the mass of Hagedorn thermostagtas a
free parameter and determine the value which maximizesrttnemy of the system. The solution
my; > 0 of

O My N
B G-ad - -0 @9

provides the maximum of the system’s entropy, if fa§ = my, the second derivative is negative
57

-G -5 - 3(2'\';%:) < 0. (4.7)

If the inequality (4.7) is satisfied, then the extremum ctiodi(4.6) defines the temperature of the
system of(Ng + 1) nonrelativistic particles
2 Exin T

T*(m*H)E3(NB+1):1+ (% —a),IE . (4.8)

Thus, asn; — o it follows that T*(mj;) — Ty, while for finite mj; > Ty anda > 3 (a < 3) the
temperature of the system is slightly larger (smaller) tthenHagedorn temperature, i % > Ty

(T* < Ty). Formally, the temperature of the system in equation @8y differ essentially frony

for a light thermostat, i.e. fomy;, < Ty. However, it is assumed that the Hagedorn mass spectrum
exists above the cut-off masg, > Ty, thusm® > Ty.

5. The Role of the M ass Cut-off

Now we study the effect of the mass cut-off of the Hagedorrspm on the inequality (4.7)
in more detail. Fon < %’ the condition (4.7) is satisfied. Far> %’ the inequality (4.7) is equivalent
to

my2
(a=3) T*(my)
which means that a Hagedorn thermostat should be massivgatecto the kinetic energy of the
system.
A more careful analysis shows that for a negative value ofiterminanDp, (N = Ng — 2a)

> g (Ne+1) T"(my), (5.1)

Dnr = (U —mgNg— 3 Tyy N)?—
4(a—3) Ty (U-—megNg) < O, (5.2)
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equation (4.6) has two complex solutions, while Byy = 0 there exists a single real solution of
(4.6). Solving (5.2) fofU — mgNg), shows that foN > %a— 1,i.e. forNg > %,a— 1 the inequality
(5.2) does not hold anB,,; > 0. Therefore, in what follows we will assume thdg > %a— 1and
only analyze the cade,; > 0. For this case equation (4.6) has two real solutions

mi=2[U-mgNg—3 Ty N £ /Dn] . (5.3)

Fora < % only my; solution is positive and corresponds to a maximum of the ac&monical
partition Qp.

Fora > % both solutions of (4.6) are positive, but onty; is @ maximum. From the two
limiting cases:

3 ~(§-a)7 for my=0, (5.4)
0INQnr(Nw=1)  3ngs1
o my ~ (ZIBEkin> for  Bin~ 0, (5.5)

and the fact thannﬁ obey the inequalities
0<my <m, <U-—mgNg, (5.6)

it is clear thatmy, = my, is a local minimum of the microcanonical partitiéh,, while my;, = my,
is a local maximum of the partitiof,.

Using Eq. (5.3) fomy}, it is clear that for any value af the constraintny; > m, is equivalent
to the inequality
U — [ —d T(m)

N < Nkinz
5 =8 Mg + 3 T+(Mo)

(5.7)

Thus, at fixed energy for all Ng < NK" at mj; = my; there is a local maximum of the micro-
canonical partitiorQp, with the temperaturd = T*(mﬁ). For Ng > N'é‘” the maximum of the
partition Q. cannot be reached due to the cut-off constraint and, coeséguthe most probable
state corresponds tmy = m, with T < T*(my) from Eq. (4.8). In other words, faxg > N'E‘.in
the amount of energy is insufficient for the mass of the Hagedorn thermostat tobmve the
cut-off my and simultaneously maintain the temperature of the Boltunyzarticles according to
Eqg. (4.8). By assumption there is a single Hagedorn theahdastthe system, therefore, aly
grows the temperature of the system decreases Tramm,) value. Thus, the equality (5.7) defines
the kinematical limit for reaching the maximum of the miciaonical partition.

To prove that the maximum of the microcanonical partitiomat= my, is global it is sufficient
to show that the constrairm; > M is not consistent with the conditiom; > m,. Fora < %
the maximum is global because for<0my < mﬁ (my > mﬁ ) the partitionQn (Ny = 1,my)
monotonically increases (decreases) wit. Fora > % it is clear that the maximum aty = my|
is local, if the state with massy = m, is more probable, i.€Qn (N4 = 1,mg) > Qnr(Ny = 1,my}).
Due to (5.6) this can occur, ifi; > m,. Substituting Eq. (5.3) into the last inequality, shows tha
this inequality reduces to the conditid > NK™. This contradicts the constraint; > my in the
form of Eq. (5.7). Thus, the maximum of the microcanonicatifian is global.

10
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Figure 3: A typical behavior of the system’s temperature as a funaifdhe number of Boltzmann particles
Ng for a= 3 anda = 0 for the same value of the total enetdy= 30mg. Due to the thermostatic properties
of a Hagedorn resonance, the system’s temperature is reardgant up to the kinematically allowed value
N&™ given by Eq. (5.7).

To complete our consideration of the nonrelativistic cataus express the partition (4.4) in
terms of the temperature (4.8). Applying the Stirling apiim@ation to the factoriaﬁ%(NB +1)—1)!
for N‘E§in > Ng > 1 and reversing the integral representations (4.2) andlf@r.a = 1/T*(my;), one
finds

Qor(Ny = 1) = V(M) / PQ T
ey T*(mm (2m)®
N
eT*(mH - T:ﬁ:sﬂ ’
€ " v / . (5.8)

This is just the grand canonical partition(®f + 1) Boltzmann particles with temperatufé (my,).
If Ng > N§™ > 1, thenT*(my,) in (5.8) should be replaced by

2(U — mBNB — mo)
3(Ns+1)

To(Ng) = (5.9)

11
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Fig. 3 shows that foa > % the system’s temperatufie= T*(my};) as a function oNg remains
almost constant foklg < N§™, reaches a maximum &l and rapidly decreases like = To(Ng)
for Ng > N§". Fora < 3 the temperature has a platedu= T*(my;) for Ng < N5, and rapidly
decreases fdNg > NK" according toTo(Ng).

The same results are valid for the ultrarelativistic treatbof Boltzmann particles. Comparing
the nonrelativistic and ultrarelativistics expressiomsthe microcanonical partition, i.e. equations
(4.4) and (4.5), respectively, one finds that the derivatibtine ultrarelativistic limit requires only
the substitutioNg — 2Ng andmg /Ty — 0 in equations (4.6 —5.8). Note that this substitution does
not alter the expression for the temperature of the systemthie right hand side of (4.8).

Finally, we show that for a heavy Hagedorn thermostaf > mp) these results remain valid
for a single Hagedorn thermostat split iflig pieces of the same mass. Substituting — myNy
in the nonrelativistic expressions (4.4) and minimizingitth respect tany, the temperature of the
system in the form of equation (4.8)1S (m{;Nn ), where the mass My Hagedorn thermostats;,
is related to the solutiomy; of equation (5.3) asy, = m; /Ny . Since the original single thermostat
of masam/; was assumed to be heavy, it follo®s(my; Ny ) = T*(my;) — Ty. A more careful study
using an exact expression for the microcanonical partitiddy Hagedorn thermostats of the same
massmy gives the same result, iy > m,. A generalization of these statements to the case of
Ny heavy Hagedorn thermostats of different masses also ledte same result. Thus, splitting a
single heavy Hagedorn thermostat into an arbitrary numbkeavy resonances (heavier thag)
does not change the temperature of the system.

6. 2 asaradiant bag

Do the emitted particles need to remain in the proximitys6f to insure equilibrium? Let
us assume that# is a bag thick enough to absorb any given particle of the vajriking it.
Then, detailed balance requires that on averjeadiates back the same particle. Under these
conditions particles can be considered to be effectivelittechfrom the surface af#’. Thus the
relevant fluxes do not depend in any way upon the inner streictfiu7#”, nor on the presence of the
outer vapor.

The results in equations (3.3) and (3.5) show that the datlinzapor concentration depends
only onmandT_, as long as” is present. A decreaseVhdoes not increase the vapor concentra-
tion, but induces a condensation of the corresponding atafienergy out of the vapor and into
2. An increase iV keeps the vapor concentration constant via evaporatidmeotdrresponding
amount of energy out of# and into the vapor. This is reminiscent of liquid-vapor diguum at
fixed temperature, except that here coexistence occurdragla gemperaturd -, rather than over
a range of temperatures as in ordinary fluids.

The bag wall is Janus faced: one side faces the partonic wamid, aside from conserved
charges, radiates a partonic black body radiation resplenir balancing the bag pressure; the
other side faces the hadronic world and radiates a hadrdaok fbody radiation, mostly pions.
Both sides of the bag wall are at temperatilirg. It is tempting to attribute most, if not all,
of the hadronic and partonic properties to the wall itsetfsgbly even the capability to enforce
conservation laws globally (quantum number conductivitiespite the fact that this wall is an

12
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insurmountable horizon, hadronic measurements such as4®mgnd total radiance can yield some
properties of the partonic world, e.g. the number of degoééiedom [7].

We can estimate an upper limit for the emission time usingthieard energy flux of particles
radiated from the bag. At equilibrium the in-going and oatrg fluxes must be the same. The
outward flux of particlesy,, together with the energy fluge,, and momentum fluxprag can be
found using the techniques of [17, 18] and in the nonreltiviapproximation using Eqg. (3.5) can
be cast as

n, m [T,
Pn,p = ij <m+ 2T;7’> 8nJrfn’ be, =~ (M+2T0)n, s Prad= N Tor /2. (6.1)

The pressurepaq exerted on the bag by its radiation can be compared to thiasittrbag
pressureB: for pions praq ~ 0.02B. The timer for the bag to dissolve into its radiation is

3nexp<%) Eo
OmREMRTZ, 7

Om is the particle degeneracy aRg andEg are the radius and total energy of the initial bag.

The fluxes written in Egs. (6.1) (particle or energy per uniface area) are integrated over
an assumed spherical bag to give the result in Eq. (6.2). Mervbecause of the lack of surface
tension, the bag’s maximum entropy corresponds to eithel@mgated (cylinder) or a flattened
shape (disc). Thus, Eg. (6.2) should be interpreted as a@r lipfit.

The decoupling between the vapor concentration mrehd T,» occurs whens# has com-
pletely evaporated (i.eE — Nm— %NT% = 0) at a volume oy ~ 1/n,E/(m+ %ij). The
disappearance of” allows the vapor concentration to decreas®ld¢ = n ,Vy/V.

ForV > V4 due to energy and particle number conservation the temperé fixed afT ,-.
This assumes the Hagedorn spectrum extendan $00. However, there may be a lower cut off
at mp which modifies the results as follows. For energies mN— ¢ > mp andV < Vg the
above results hold. F&f > Vg, the situation is different.7# evaporates until its mass igy. If
the entire mass of# is transformed into vapor particles as the volume increas#iser, then the
excess particles increases the concentration and destbagemperature. As the volume increases
further, the concentration varies gV = (n»Vy + T°)/V while the temperature remains constant
atT =nuVa/(nwVa + %)ij

The thresholdm is absolute regardless of bag multiplicity. Many bags inildzium have a
global Hagedorn thresholty so particle-particle collisions are identical to heavy ieactions.

T~ (6.2)

7. Fragmentation of 7

One last, but not least problem is the stability#f against fragmentation into lighte#’
particles (shown schematically in Fig. 4). In other wordsgeg the total mass of the initial?’
particle, we want to calculate the equilibrium mass distidn and concentrations of the system as
function of volume.

At the risk of stating the obvious, if we neglect the traristal phase space, th#” particle,
deprived as it is of surface terms, turns out to be totallyfiedknt to fragmentation.
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Stability of the Hagedorn bag against fragmentation

e If no translational or positional entropy, then the Hagedorn bag is indifferent to fragmentation.

py(m,) Pu(ms)
Py(ms)
Pr(m) " "o
H . ;mi Pu(m,) o pu(m,)
exp(i)ﬂ?xl) N Pu(my) py(mg)

Figure 4: Schematic representation of the fragmentatic’o

On the other hand, the translational degrees of freedom egordperly accounted for by

introducing the Hagedorn weight e ﬁ% in Eq. (3.2). Following exactly the same procedure we

arrive at the equivalent of Eq. (3.5) for each valuesfmassm:

3
N(m) MT.\ 2
— = . 7.1
\% ( 2n > (7.1)
This gives the equilibrium value of particle density f&f of massm. Energy/mass conservation
Mma; Mma; 3
dm 3 dm /mTy,\ 2 3

determines an upper cut afi,a« for the Hagedorn mass spectruM (s a normalization constant).
GivenE, the total mass/energy of the initig#” particle, Eq. (7.2) is an implicit equation for
mass VsSE. The physical implication of these results is interesting:
1) Since the Hagedorn is assumed to split only into other Hage at infinitum, a gas of Hage-
dorns must be at saturation with itself, i.e. the conceioinatof the various masses belon,ax
cannot change with volume, and, of course, the temperatmmains fixed at_»;
2) However, as the volume increases/decreases, the uppeff oy,ax decreases/increases accord-
ing to the conservation law expressed by (7.2).
In any case, the distribution is dominated by the largestedagh massn,ax We can also,
trivially, define the Hagedorn gas equation of state, wharhiy,i, = 0 acquires a simple form

NtotT%’ E
v 7V

- Nlw

P= = P+ yPE. (7.3)

Mm
dm 2 Mimax a5
Mot :/_ N(m) = ?I'\ﬂ/l v <mm2nf>

An example of the pressure is given in Fig. 5.
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Figure5: An example of the pressure as a function of energy densitivéndor the Hagedorn equation of
state. See Eq. (7.3)

Here the constantis defined as

_ > 2)V/5
V=772 [50m°M?]7”. (7.4)

From the equation of state (7.3) one can determine the sgesdiodcs (see Fig. 6) as

dP 3
c2 :VE =1/ {é + yPZ/ﬂ . (7.5)

The latter vanishes in the high pressure limit or at smalirmsV — 0 and fixecE.

8. TheBag Surface

The bag expressions reported above contain only volumeste@iven the finite size of the
bags that are interpreted as resonances, it may be of intereansider finite size effects and their
role in the description of the bags properties. The simgegseralization, assuming that the bags
are leptodermous (which is supported by the short range @rohahadron interaction) is that of
introducing a surface energy.

Thus, the pressure of a spherical bag can be written as

ET“— B_ as(T)

g 1
= _T4-B—ayT)V 3=
p as(T) 3 TR

3

(8.1)

whereas(T) is the temperature dependent surface energy coeffi¢giantthe bag radius and =
1
[4F] 3. Using the thermodynamic identities for the free endfgand entropys

oF oF
(), s (&), o2
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Figure6: The square of the speed of sound as a function of energy gensit

one can find all thermodynamic functions as follows

_ _[Oqa_ 3 :
F— [BT B}v+2as(T)vS, (8.3)
S= S TV-S—7 V% (8.4)
3 das(T) ] ,,2
_ 4 = _
eV = [oT +B]v+2 [aS(T) 3T } A (8.5)

In evaluating the expression (8.3) we fixed the integratimmstant (an arbitrary function df) to
zero because for the bag of zero volume the free energy skanigh.

While theoretical input on the magnitudea{T) > O is needed the consequences associated
with the possible existence of this surface term are sungrisn Eq. (8.1) the surface term appears
as an additiongbressure to the bag pressure. Therefore, setting the tetsdyre to zerp = 0, we
obtain for the bag temperature

1
3 as(T)\|*
T=T(R=|—-(B+>2 ) 8.6
R=|2(+2D)] ©6)
WhenR is large we recover the previous bag temperature and theiatsb physics. WheR

becomes small, however, the bag temperature increasesimfitieations of his dependence are

strange indeed. The first is the peculiar behavior of thesbhgat capacity. The second is the
stability of the gas of bags (or lack thereof). The third is flignature of a bag’s decay.

9. Heat Capacity

In the standard bag model the heat capacity is infinite: ndemhbw much energy is fed to
the bag, its temperature remains constant [10, 13]. Theadfdgt is to make the bag larger. This is
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completely consistent with what we observe in isobaric ptieensitions in ordinary matter. Here
the isobaric condition is produced by the bag constant, laaghase transition is from hadronic to
partonic phase.

Surface effects, however, lead to an apparently non-théymamic behavior: the more we
feed the energy to the bag, the lower its temperature becorhéscan be stated by saying that the
bag’s heat capacity is negative.

10. Stability of a Gas of Bags

We have shown above that an ordinary bag (no surface energyarly indifferent to frag-
mentation into smaller bags. In fact, under rather genemadlitions it appears that there is a mild
tendency for a gas of bags to collapse into a single one. We sbw that the introduction of the
surface energy leads to an even stronger tendency for a ¢ageftoward collapse.

Let us assume an arbitrary mass distribution in a gas of laagkfor simplicity, let us assume
that the gas is confined in a fixed volume along with its decagyets (say pions). The gas cannot
be isothermal since the smaller bags have larger tempesatinan the big ones. Thus the smaller
bags evaporate first and their evaporation products arelaxbby the larger bags until only one
remains. It may be argued that isothermicity can be achibyeldaving all the bags to be of the
same size. But this situation is clearly unstable. Any srpatturbation in size will lead to a
catastrophic collapse of all bags into a single one.

11. Decay of a Bag

A bag, unless constrained by conserved quantities, muaydés it decays, the instantaneous
spectrum of the decay products will indicated the bag’saimstneous temperature. Without surface
effects the bag temperature is constant and the overalirspeand the instantaneous spectrum will
be the same.

With the surface effects, as the bag decays and becomesesgniiglitemperature increases.
Therefore the overall spectrum integrated over the ovdesdhy must differ from the instantaneous
spectrum associated with each temperature. The shapdidewathe overall spectrum from that
of an instantaneous spectrum at fixed temperature may baerasting observable to characterize
both the effect and the magnitude of the surface energy cimefti It is amusing to notice the
similarities with the decay of a black hole through Hawkiagdiation.

12. Conclusions

An 7 system is a perfect thermostat at fixed temperalygeand a perfect particle reser-
voir. Particles in equilibrium with or emitted hy? are in physical and chemical equilibrium with
themselves and witl#”. They constitute a saturated vapor. This defines a first qgudase tran-
sition and a phase coexistence completely controlled byo#itepressure. The hadronic side of
2 radiates particles in preexisting physical and chemicalliegium just as a black body radiates
photons in physical and “chemical” equilibrium. A# system is nearly indifferent to fragmen-
tation into smalletZ systems. This near indifference to fragmentation makeswibirk relevant
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to elementary particle and heavy ion collisions. The equatif state for a gas of Hagedorns has
been derived. A lower cut off in the mass spectrum does net alir results. The introduction of
surface energy makes the smaller bags hotter than the langst This completely destabilizes a
gas of bags, which would collapse into a single bag.
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