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1. Introduction

The statistical model is succesfull in describing the mean hadron multiplicities in both ele-
mentary and heavy ion collisions at high energy. In heavy ioncollisions, many groups have carried
out analysis of the available measurements for almost 10 years by now, reporting success in repro-
ducing the data with few parameters. The usual employed technique is aχ2 fit, where the data is
compared to the model prediction to determine the best values of those parameters (temperature,
baryon-chemical potentials, volume and, possibly, non-equilibrium parametersγS and γq). This
analysis technique was first used for heavy ion collision data in ref. [1] (I beg reader’s pardon
for self-quotation). The calculations performed by different groups agree to a very good degree
of accuracywith the same data input, showing that the implementations of the hadron gas model
are consistent. The main difference between the calculations and conclusions of those groups is
concerned with the used data input and the handling of statistical methods. The first difference is
related toa priori physical assumptions and can be settled after a careful study of the data. One
of the main controversies was related to the fitting of midrapidity or full phase space integrated
yields, for which we refer to the discussion in the paper [2].On the other hand, there should be
no difference in statistical methods, which are an established and universally accepted tool. Yet,
there is a misuse of fitting techniques which has led to biasedresults in the literature. Particularly,
I will show that forming particle ratios out ofexperimentally measuredyields and plugging them
in statistical model fits involves a significant bias and it isan essentially incorrect procedure.

2. Why not to form particle ratios

When trying to determine the best fit parameters of the statistical model, one is given particle
multiplicities or ratios of multiplicities, either at midrapity (i.e. dN/dy for y = 0 in the centre-of-
mass frame) or in full phase space. The experiments sometimes quote ratios because a cancellation
of some systematic error is implied, so that the effective error on the ratio is consistently smaller
than that one would get if the yields had uncorrelated errors. In most cases, though, instead of
ratios, experiments have been quoting yields, which were obtained by means of extrapolating fits
to bothpT and rapidity spectra. Unless some definite information is provided by the experimenters,
one is supposed to assume the errors on the yields to be fully uncorrelated, so that the no further
information can be obtained just by manipulating the yields.

Nevertheless, some authors have been forming ratios out of quoted experimental multiplicities
and plugged them in their statistical fit machinery to determine temperature and baryon-chemical
potential, even without taking into account relevant correlations between different ratios. In some
cases, this has been done for a full set of measurements, i.e.at centre-of-mass energies (typically
at AGS and SPS) where experiments only quoted multiplicities and no ratio, like in ref. [3]. This
procedure is meant to get rid of the volume parameter in the fit, which is an overall normalization
factor cancelling out in ratios, leaving only the intensiveparametersT, µB andγS. However, this
method would be incorrect even if correlations were taken into account and leads to a bias in the
determination of these parameters themselves. We will illustrate how this problem comes about by
first giving three simple examples and presenting a more realistic one in next section.
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2.1 Example 1

The simplest example is the weighted average. Consider fourindependent measurements of
the same quantityx with different normal errors, sayx1 = 1.2±0.2,

x2 = 0.8±0.2, x3 = 0.8±0.2, x4 = 0.8±0.2. It is well known that the problem of determining
the best estimate ofx through maximum likelihood method leads to the minimization of theχ2:

χ2 =
4

∑
i=1

xi −x0

σ2
i

(2.1)

and has the weighted average as solution, which is in this case 0.9± 0.1 with a χ2/do f = 1,
meaning a very good fit.

If, on the other hand, we want to assess the consistency of thefour measurements by taking
ratios of pairs, we soon face an ambiguity: how many ratios should one take? The naive answer is
taking as many as degrees of freedom in theχ2 minimization, that is 3 in our example. Yet, there
are 6 different triplets (N(N−1)/2 in general) which can be formed out of 4 objects, considering
as equivalent a ratioxi/x j and its inversex j/xi . Therefore, a choice has to be made; for instance, if
we tookx1/x2, x1/x3 andx1/x4, we would get three times 1.5, whereas if we tookx3/x2, x3/x4 and
x2/x1 we would get 1.0 twice and 0.66. The two triplets of ratios (1.5,1.5,1.5) and (1.0,1.0,0.66)
submitted to a consistency test yield different answers in terms of statistical significance, even
taking into account the correlations between them. The deepreason of this is an information
loss in using ratios of measurements instead of measurements themselves; by retaining only three
ratios out of six to avoid redundancy, one is forced to give upsome information and the statistical
significance happens to depend on the particular chosen subset of ratios.

2.2 Example 2

In this example we provide a concrete numerical example showing the awkwardness involved
in using ratios instead of measurement. Consider a simple linear modely = x+ c to be fitted to
the measurements(x,y) = (1,2.3±0.1),(2,2.8±0.13),(3,4.3±0.08). The correct fit procedure
to determine the best value ofc is the minization of:

χ2 =
3

∑
i=1

(yi −xi −c)2

σ2
i

(2.2)

If we adopted the ratio method, we should choose two ratios formed out of the three measurements,
e.g.y1/y3 andy2/y3 and minimize theχ2:

χ2 =
2

∑
i, j=1

(Ri −
xk(i) +c

xh(i) +c
)C−1

i j (Rj −
xk( j) +c

xh( j) +c
) (2.3)

wherek(i),h(i) are the indices of the measurements used to form theith ratio andC is the co-
variance matrix with non-vanishing off-diagonal elementsestimated by means of the usual error
propagation rules. For this example, theχ2 profiles as a function ofc are compared in fig. 1. One
can clearly see that both the minimum and the curvature of theχ2 around the minimum are differ-
ent for the two functions (2.2) and (2.3). This is reflected indifferent estimates of the best fit value
and its error. It is especially worth remarking that the error estimate related to (2.3) is much larger
than the correct error.
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Figure 1: χ2 profile for the example 2.

2.3 Example 3

We are now going to consider an example which is very close to the actual problem of fitting
multiplicities to the statistical model, which will make itclear, beyond any doubt, that replacing
N multiplicities with N−1 ratios is incorrect also for an exponential fit like the statistical-thermal
model. Consider a modely = aexp(bx) and three measurements(x,y) = (0,1.8±0.1),(1,2.71±
0.13),(2,6.5±0.08). Here, the parametera corresponds to a volume andb to an inverse tempera-
ture. The idea is to get rid of parametera and fitting justb by taking ratios of measurements. The
correctchi2 now reads:

χ2 =
3

∑
i=1

(yi −aexp(bxi)
2

σ2
i

(2.4)

whereas thechi2 for the ratiosR1 = y1/y3, R2 = y2/y3 reads:

χ2 =
2

∑
i, j=1

(Ri −exp[bxk(i) −xh(i)])C
−1
i j (Rj −exp[bxk( j) −xh( j)]) (2.5)

The parametera has disappeared from Eq. (2.5). If we have a look atχ2 profiles of (2.4) and (2.5)
as a function ofb, we can see that also in this case both minima and curvature around the minima
differ. The introduced bias, i.e. the difference between the correctb and that estimated with (2.5)
is 2% which is little but cannot be neglected if one aimes at reaching great accuracy.

3. An example at RHIC

We will now provide a realistic example of how the use of ratios instead of yields alters the
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Figure 2: χ2 profile for the example 3.

actual estimation of thermodynamical parameters. We will use data collected by STAR experiment
at RHIC, at

√
sNN = 130 GeV, shown in table 1. We stress that experimental numbers here serve

as an instrument to compare different fit procedures; for a more exhaustive discussion on how they
have been collected and other comments, see Jakko Manninen’s talk in this conference [4]. The
aim of this exercise is to show how dangerous the choice of a particular set of ratios can be in terms
of the fit outcome.

In this particular case, we have to pick 11 ratios out of 66 andwe then have much freedom.
Let us first perform a correct fit to the midrapidity yields, asquoted in table 1, and construct an
array of residuals, i.e. a set of differences between fitted values and actual measurements, scaled
by the experimental error. Indeed, it is fairly easy to realize that if we systematically choose ratios
of light particles with positive residual to heavy particles with negative residual, the ensuing value
of T from a new fit to the ratios will tend to be larger and, as a consequence, the best fit value will
be biased.

To show this, we have first performed a fit to midrapidity densities in table 1 by fixing the
strangeness suppression factorγS to 1. We then had a look at residuals of all particles and took
the heaviest particle with negative residual, i.e.Ξ̄−. We then chose a set of 11 ratios〈X〉/〈Ξ̄+〉, X
being any particle lighter thanΞ− in table 1, and added as last ratio in the data sample〈p〉/〈Ω+ Ω̄,
also showing a fluctuation in the same direction. As has been mentioned, the expectation for this
kind of analysis is to artificiallyenhancethe temperature in this fit, because all lighter particles had
a residual larger than̄Ξ’s. This is indeed what is found, as shown in table 2. If we do not include
correlations, as it is done e.g. in ref. [3], the difference between fit to ratios and correct fit to the
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Particle dN/dy|y=0

π+ 239±10.6
π− 239±10.6
K+ 45.8±6.7
K− 43.2±6.0
p 26.2±6.0
p̄ 18.9±4.3

Λ 17.2±1.8
Λ̄ 12.3±1.3
φ 6.09±0.85

Ξ− 2.13±0.27
Ξ̄+ 1.78±0.24

Ω+ Ω̄ 0.586±0.128

Table 1: List of midrapidity yields of different hadrons measured bySTAR in Au-Au collisions at
√

sNN =

130 GeV (see ref. [4]).

Parameters Fit to yields Fit to ratios w/o correlations Fit to ratios with correlations

T [MeV] 168.4±3.2 175.6±3.0 170.3±3.0
µB [MeV] 36.2±0.6 23.4±0.4 33.1±0.6

χ2/dof 6.3/10 6.6/10 7.6/10

Table 2: Results of statistical model fits to hadron midrapidity densities in table 1. The first column shows
the best fit parameter in a direct fit to the yields. The second column shows the results of a fit to the set of
ratios described in the text. The thirs column shows the results of a fit to the same set of ratios taking into
account correlations in theχ2.

yields is 8.2 MeV, i.e. about 2.6σ ; the situation is dramatically worse for the baryon-chemical
potential, with a difference of 21σ ! On the other hand, by including correlations, the situation
gets improved and one is left with a slight discrepancy from the main fit. Yet, the fit method is still
conceptually wrong and should be avoided.

4. Conclusions

We have shown that the use of hand-made particle ratios instead of measured yields in fits is
an incorrect method to determine the parameters of a model like, e.g. the statistical hadronization
model in heavy ion collisions. This has been done in several cases and it is especially relevant
for self-claimed “2nd generation analyses" [3] aiming at reaching the best accuracy but using this
incorrect method.

We stress that this does not mean that experiments should notquote ratios, if a smaller system-
atic error is involved: this is a perfectly correct and welcome procedure. What is wrong is taking
experimental yields and forming ratios out of thema posteriori. We have shown in a realistic ex-
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ample that the introduced bias may be as large asO(10) MeV for temperature and baryon-chemical
potential if correlations are not taken into account.
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