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1. Introduction

Dielectronic Recombination (DR) plays a central role in astrophysics. It is the most impor-
tant electron-ion recombination process in photoionized cosmic plasmas. Moreover, DR rates are
used to model different astrophysical systems as stellar and solar coronae and the intergalactic
medium [1, 2]. Theoretical and experimental uncertainties in the low temperature DR rates can
dramatically change the values of parameters describing the properties of the cosmic plasmas and
the interpretation of data from satellites on cosmic systems.

Actually, the quality and accuracy of the laboratory experiments on DR processes with collid-
ing beams of electrons and ions are very high and atomic codes to evaluate transition amplitudes
rather sophisticated [3, 4]. The transfer of knowledge obtained from laboratory measurements of
the DR rates to astrophysical plasma modelling is based on the assumption that the electron beam
of the cooling device can be described with a Maxwellian distribution with energy spread as low
as about 10 meV (experimentally verified) and that the astrophysical plasma be in a state of global
thermodynamical equilibrium or in a LTE with a Maxwellian distribution over a wide range of
temperature from 10~3eV to 10%eV.

On the contrary, signals of deviations from LTE in astrophysical plasmas have been observed
and reported in the past [5, 6] and, as a very recent result, astrophysical X-ray sources active in
stellar coronae, active galactic nuclei, X-ray binaries, supernovae and after-glows from gamma-ray
bursts indicate the presence of a departure from Maxwellian distribution of the particles in many
different types of plasmas [7].

We have recently shown that, in electron cooling devices, generalized electron distributions
that differ from the Maxwellian one in the low energy part, due to subdiffusion of electrons and
ions, with depleted energy tails, may account for the observed enhancement in Radiative Recombi-
nation (RR) and that the existence of a cut-off in the momentum distribution (as the one introduced
in astrophysics by Spitzer in the past [8]) could have important consequences on the X-ray spectra
emitted during RR [9].

In this work we introduce a new expression of the plasma DR rate as a function of the tem-
perature, derived assuming a small deformation of the Maxwell distribution and containing factors
that modify the usual, well known exponential behaviour. Deviations are caused by presence of
correlations among particles in non ideal plasmas, of random electric microfields distribution and
of random forces whose effects are non linear [10, 11]. All these effects are taken into account by
means of an appropriate parameter g, which is the entropic parameter of the nonextensive Tsallis
thermostatistics [12, 13]. Among many generalised statistics, this is the one (together with Renyi
statistics) which introduces a cut-off in the energy distribution when particles sub-diffuse (q < 1) .

We apply this new DR rate to the study of the C3* case, as for carbon ions there exist ex-
perimental data and theoretical calculations we can use in our semi-phenomenological treatment
and may compare with our results. We want to show what is the effect of the deformation on the
plasma DR rate and calculate, in particular, the rate at low temperature. The same application will
be extended elsewhere to the DR of Fe ions exploiting the experimental and theoretical results of
Ref. [14].
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2. Thedidlectronic recombination rates

The general formula for a reaction rate with a Maxwell-Boltzmann statistics, by definition,

reads
a(ksT)=(ov) = 4n<2nﬁBT>3/2/o+wv30(v) exp ( 2k§|’> dv, (2.1)

where u is the ion-electron reduced mass, T is the temperature of the system, and o(v) is the
interaction cross section.

For a given DR resonance i located at Eesj and characterized by the width I'; and the strength
o;, the corresponding cross section can be written as

iErai ri/2

By using the Clayton-Tsallis distribution for small deformation, if the distribution has a cut-off
at E =kgT /(20) (for 6 > 0), with & = (1 —q)/2 [15], the reaction rate 2.1 transforms into

ai(E) =

zaDR (kaT), (2.2)

with
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Working out the integral in Eq. 2.3, the general expression of the rate 2.2 becomes
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and y = [jy/71/2, under the condition & < 2(kgT/y)?.

with
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With a pure Maxwellian distribution, for any kgT, the energy tail contains particles of high
energy. If the lowest resonance level contributing to the DR rate lies at Eresj > kgT, the factor
exp(—Eresi/kaT) that goes to zero for low kg T must balance with the factor (kgT)~%/2,

From the general expression 2.4, we can see that all resonances contribute to the rate when the
distribution is Maxwellian (recovered with & = 0).

If the distribution has a cut-off, the particles with E > kgT /(20) are absent and the factor

_ \2
(kg T)~%/2 must be balanced with exp [— ST (E“’f") :

ke T ke T
The Maxwellian and the slightly deformed distribution intersect at Ej; = 2kgT. Let us con-
sider a resonance at Eyesj With a negligible width I'j. If Eresj < Ejpy, the rate aiDR(kBT) of EQ. 2.3
corresponding to this resonance increases when ¢ > 0 and decreases when ¢ < 0. If on the contrary
Eresi > Eint, the rate aPR(kgT) of this resonance increases with respect to the Maxwellian rate if
0 < 0 and decreases if & > 0.
If we do not neglect the width I'; of the resonance, the factor exp [— i:i‘r‘ (1 — %)} can

have a significant role. If yi2 < 4Ees kgT the rate is depleted, otherwise when yiz > 4Eesi kg T the
rate is enhanced.

Using the non-Maxwellian g-distribution, only resonance levels below the cut-off contribute
to the rate. In this case the important corrective factor is exp [— iﬁi (1 + 5% — %kBT)] , and
the rate is less depleted with respect to the previous case as kg T increases.

An astrophysical plasma at 10° — 106K has a value of plasma parameter that strongly differs
from the value at T = 102 — 103K if the electron density does not diminish of the factor 10°. The
correlations among the particles are different in the two extreme cases and therefore the plasma
does not preserve its Maxwellian behaviour. We must consider at each value of the plasma param-
eter a given deviation from the ideal case and thus a different degree of non-extensivity described
by a suitable value of the parameter &. For instance, above 10°K, we assume & = 0, because the
system is Maxwellian, having a plasma parameter much smaller than one, while for T < 103K, we
could assume 8 = 0.2.

We chose to restrict ourselves to a temperature range between T =0.8-10°K and T = 10*K,
in order to work with a fixed value of & only. We report in Fig. 1 two plots (for 6 = 0.05 and
o = 0.15, corresponding to q = 0.9 and g = 0.7, respectively) of the DR plasma rate 2.2 for C3*
(curve 1); only the 21 resonance levels reported by Mannervik et al. [16] between 0.176eV (i.e.
2-10%K) and 0.586eV (i.e. 7-10°K) have been included. Resonance levels above 0.586eV were
not taken into account.

As a comparison, the curve 2 represents the experimental fit (Burgess DR rate) of Schippers et
al. [3], with five fitting levels distributed between 0.169eV and 7.969eV. In Ref. [3], while below
T =10%K experimental data are used, above T = 10*K the authors use theoretical calculations
from the AUTOSTRUCTURE code. The method for obtaining the fit curve 2 is based on converting
the laboratory experimental DR rate, as function of the relative energy, into a cross section and
convoluting it with an isotropic Maxwellian electron energy distribution.

In curve 3, we report the Maxwellian rate from Eq. 2.4, with d = 0 and y; # 0; again this
Maxwellian curve contains only the 21 levels of Mannervik et al. [16]. This curve is always higher
than the curve 2. a possible explanation could be that the strengths of the most important levels,
considered in Ref. [16], are too large.
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Figure 1: Plots of dielectronic recombination rates against the plasma temperature (6 = 0.05 left, and
0 = 0.15 right). The four curves refer to: 1) the non-Maxwellian recombination rate a(%f‘y) (ksT) with 21
resonances (thick dashed line); 2) the fit from Schippers et al. [3], used for comparison with our results (thin
solid line); 3) the Maxwellian recombination rate a%’?y)(kBT) with 21 resonances and o = 0 (thick solid

line); 4) the non-Maxwellian fit aPR (kg T) (thin dashed line).

The curve 4 is then a new fit that takes into account the deformation of the distribution (& # 0)
with yf = 0 and 0; Eres; proportional to the coefficients c; of Ref. [3]. We define it as

1 15\ 3 E E \?
oy (keT) = =5 <1+75) > Gexp [—@ -3 <m> ] : (2.5)

The aPR(kgT) lies inside the 20 per cent of uncertainty of the fit rate in the temperature region
considered.

As evident from Fig. 1, the effect of the deformation is to increase the value of the maximum,
with a small shift of its position towards higher temperatures, and to lower the rate of curve 1 below
the curve 2 for T < 0.8-103K. This is due to the fact that the resonance levels considered are all
above this low temperature.

3. Conclusions

In conclusion, with the correction introduced due to small deformations of the electron distri-
bution, the calculated corrected DR rate agrees with the experimental fit at low temperature, which
is given with an uncertainty of about 20 per cent.
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We remark that when using information obtained in laboratory DR experiments on the DR rate
to discuss properties of astrophysical plasmas, we must consider the different state of deformation
in the distribution function of the laboratory and the astrophysical plasmas, if both are not in the
Maxwellian equilibrium state.
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