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Investigating Dark Energy with the CMB lensing
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The nature of dark energy has been tentatively described by several different models, from a Cos-
mological Constant to a dynamical quintessence field, to a modification of the Einstein-Hilbert
formulation of gravity. What we actually know about dark energy is that it gives raise to the
present cosmic acceleration and it cannot have been relevant before quite late redshifts, or equiv-
alently on very large scales. We chose to use the B modes of CMB polarization in order to
discriminate among models. In fact, while most astrophysical observations are only sensitive to
the local universe, the B modes signal is imprinted mainly by gravitational lensing at redshift z
1, allowing to set constraints on the dark energy dynamics at this epoch which would be difficult
to reach with photometric observations.
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Figure 1: LEFT: The superposition between the dark energy contribution to the energy balance of the
Universe and the lensing cross section. RIGHT: The equation of state of the dark energy for the SUGRA
(dashed line) and IPL (solid line) models.

1. Why CMB for dark energy?

Gravitational lensing is a useful tool for the determination of cosmological parameters for at
least two reasons: it correlates with the total mass distribution, with no regard for its interactions or
state, and its cross section is largest at intermediate redshifts, where the models are allowed to most
differ from each other. We show here a cartoon representation of how the lensing phenomenology
"picks up" the signal at the most important epoch in the history of dark energy: it peaks somewhere
in the middle between us and the last scattering surface, and this corresponds to a redshift window
around z = 1. From the Fig. 1 one can also infer how the capability of this method will depend on
the peculiar choice of the model: in fact, for earlier dark energy dominance the shaded area in the
figure will be enhanced, and better constraints can be expected.

2. CMB lensing phenomenology

In order to understand how the lensing acts on the Cosmic Microwave Background spectra one
needs to reconstruct how the observed lensed signal has been affected by its travelling through the
matter distribution in its trip from the last scattering surface towards us. In order to do so, we have
two groups of equations to solve: the Einstein equations, telling us how the matter (stress energy
tensor) influences the structure of spacetime, and the lensing equation, which is the geodesic equa-
tion of motion giving the trajectores of photons in this modified spacetime.Once these equations
have been solved, we find that that the lensed CMB fields can be expressed in the form of a Taylor
series in powers of the deflection angle, which is the angle measuring the deviation in the pho-
tons trajectory caused by the gravitational lensing. The solution of the lensing equations ensures
the reliability of this expansion, showing that the deflection angle is proportional to the (small)
gravitational potential Ψ. Therefore, the lensed fields are written as

Xlensed(n̂) = X(n̂+∇α) = X(n̂)+∇iα∇iX(n̂)+O((∇iα)2). (2.1)

The main implication of this equation is that lensing mixes power from different wavelengths, and,
in the case of the E and B classification of polarization modes, from different types of perturbations
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Figure 2: Lensing kernel (LEFT) and perturbation growth (RIGHT) at large scales for the SUGRA (dashed
line) and IPL (solid line) models.

(scalar and tensor). Thus, although we can infer from the above equation that the first lensing
correction is quadratic in the cosmological perturbations, where there is lack of primordial signal
the lensing can be the unbiased responsible for the observed power: this is the case of the B modes
for l > 100.

3. CMB spectra for Quintessence models

We present here the spectra for two popular quintessence models, characterized by different
potentials: one is an inverse power law (IPL), and the second is inspired by supergravity correc-
tions (SUGRA). The models have been set to have the same equation of state of dark energy at
present and the same amount of primordial perturbations, in order to highlight the difference in the
spectradue to the different behaviour of the dark energy at intermediate redshifts. The lensed CMB
spectra can be obtained through a convolution of the unlensed ones with a Gaussian function in the
multipoles space [1] and receives two kinds of contributions: one from the different background
evolution (“kernel”) and one from the different perturbation growth. The equation of state, lens-
ing kernel and growth function for a given wavenumber (notice we cannot separate any more the
transfer function as T 2(k,z) = T 2(k,0)g2(z)) are respectively shown in Figs. 1 (right panel) and
2. Finally, we can show the temperature and B polarization spectra for the two models 3. Notice
that since the models have been set to have the same primordial and present behaviour, the large
(almost 30%) difference in the peak is entirely due to its sensitivity to the dark energy equation of
state derivative. This is our most important result.

4. A Fisher matrix analysis

As a confirmation of the applicability of our method in view of the next generation of polar-
ization experiments, we chose a parametrization for the dark energy equation of state as w(z) =

w0 +(w∞ −w0)(1− a), using a standard set of other cosmological parameters. We performed [2]
a Fisher matrix analysis on four models, a ΛCDM, an IPL similar to the one above, and two (one
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Figure 3: Temperature (LEFT) and B-polarization (RIGHT) spectra for the SUGRA (dashed line) and IPL
(solid line) models.

“mild” and one “extreme”) SUGRA models. Our target experiment is a CMBpol-like one in a quite
conservative formulation.

ΛCDM IPL SUGRA1 SUGRA2
value σFisher value σFisher value σFisher value σFisher

w0 −1. 0.12 −0.9 9.7×10−2
−0.9 6.1×10−2

−0.82 3.5×10−2

w∞ −1. 0.27 −0.8 0.19 −0.4 6.9×10−2
−0.24 1.9×10−2

Ωbh2 0.022 5.7×10−5 0.022 6.0×10−5 0.022 5.7×10−5 0.022 5.9×10−5

ΩCh2 0.12 7.0×10−4 0.12 7.3×10−4 0.12 6.6×10−4 0.12 5.0×10−4

h 0.72 5.0×10−2 0.72 4.5×10−2 0.72 2.9×10−2 0.72 1.5×10−2

nS 0.96 2.1×10−3 0.96 2.2×10−3 0.96 2.1×10−3 0.96 2.0×10−3

τ 0.11 3.1×10−3 0.11 3.0×10−3 0.11 3.1×10−3 0.11 3.2×10−3

A 1.0 5.6×10−3 1.0 5.5×10−3 1.0 5.5×10−3 1.0 5.6×10−3

5. Conclusions

We have shown that our method of investigation through the B modes of polarization is
especially sensitive to the dark energy equation of state at high redshift. We have developed the
numerical procedure necessary to compute the lensed CMB spectra for a variety of dark energy
models and presented quantitative results for the fiducial ΛCDM model and three Quintessence
ones. The Fisher matrix analysis showed that the next generation of polarization-devoted
experiments will be capable of putting significant constraints, of the order between 10 and 20%,
on the dark energy equation of state derivative even for modestly dynamical models, and that the
precision of the measurements increases with increasing dynamics.
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