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Systems of coupled sine circle maps show regimes of spatiotemporally intermittent behaviour
with associated scaling exponents which belong to the DP class, as well as regimes of spatially
intermittent behaviour (with associated regular dynamical behaviour) which do not belong to the
DP class. Both types of behaviour are seen along the bifurcation boundaries of the synchronized
solutions, and contribute distinct signatures to the dynamical characterizers of the system, viz. the
distribution of eigenvalues of the one step stability matrix. Within the spatially intermittent (SI)
class, the temporal behaviour of the burst solutions can be quasi-periodic or travelling wave. The
usual characterizers of bifurcations, i.e. the eigenvalues of the stability matrix crossing the unit
circle, pick up the bifurcation from the synchronized solution to SI with quasi-periodic bursts but
are unable to pick up the bifurcation of the synchronized solution to SI with TW bursts. Other
characterizers, such as the Shannon entropy of the eigenvalue distribution, and the rate of change
of the largest eigenvalue with parameter are required to pick up this bifurcation. This feature has
also been seen for other bifurcations in this system, e.g. that from the synchronized solution to
kink solutions. We therefore conjecture that in the case of high dimensional systems, entropic

characterizers provide better signatures of bifurcations from one ordered solution to another.
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1. Introduction

Spatiotemporal intermittency, where regions of laminar or regular behaviour coexist with re-
gions of turbulent or burst behaviour is observed in a wide variety of theoretical and experimental
systems[1, 2]. In the case of CML-s, the conjecture that spatiotemporal intermittency falls in the
same class as directed percolation, has been the subject of extensive investigations [3, 4, 5, 6, 7].
Studies of the diffusively coupled sine circle map show regimes of spatiotemporal intermittency
(STI) with associated exponents which exhibit DP behaviour, as well as non-DP regimes of spatial
intermittency (SI) where the laminar regions are interspersed with burst regions whose temporal
behaviour is periodic or quasi-periodic [8].

The regimes of spatiotemporal intermittency, as well as those of spatial intermittency lie near
the bifurcation boundaries of the synchronized solutions. Each kind of intermittency contributes
its distinct signature to the dynamical characterizers of the system, viz. the eigenvalue spectrum
of the one step stability matrix. The eigenvalue spectrum is continuous in the case of the STI (DP
regime), whereas it shows the existence of gaps in the SI (non-DP) regime [9].

Both types of intermittency are seen in the neighbourhood of bifurcations from the synchro-
nized solution. In the case of bifurcations from the synchronized solutions to spatiotemporal inter-
mittency, usual stability analysis picks up the transition as the eigenvalues of the stability matrix
cross the unit circle. In the case of spatial intermittency, two types of burst states are seen. The
laminar states are synchronized in both cases, but the burst states are quasi-periodic in one case
and travelling wave states in the other. The transition from the synchronized state to the spatially
intermittent state with quasi-periodic bursts is signalled by the eigenvalues of the stability matrix
crossing one, but the transition from the synchronized state to spatial intermittency with the trav-
elling wave bursts is not signalled by the eigenvalues crossing the unit circle. Instead, we see the
signature of this bifurcation in other characterizers, such as the Shannon entropy of the eigenvalue
distribution, and the rate of change of the largest eigenvalue. This feature has also been seen for
other bifurcations in this system, e.g. that from the synchronized solution to kink solutions. We
therefore conjecture that in the case of high dimensional systems, entropic characterizers provide
better signatures of bifurcations from one ordered solution to another.

2. The Model and exponents

The coupled sine circle map lattice has been known to model the mode-locking behaviour
[10] seen commonly in coupled oscillators, Josephson Junction arrays, etc, and is also found to be
amenable to analytical studies [11]. The model is defined by the evolution equations

&
X =(1=8)f00) + [F041) + F(Xsp)] (mod 1) 2.1
where i and t are the discrete site and time indices respectively and € is the strength of the
coupling between the site i and its two nearest neighbours. The local on-site map, f(X) is the sine
circle map defined as

f(X) =x+Q— %Tsin(an) (2.2)

Here, K is the strength of the nonlinearity and Q is the winding number of the single sine circle map
in the absence of the nonlinearity. We study the system with periodic boundary conditions in the
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Figure 1: shows the phase diagram for the coupled sine circle map lattice using random initial conditions.
The spatiotemporally synchronized solutions are represented by dots. The points at which DP exponents
have been obtained are marked by diamonds (¢). At points marked by triangles (A), SI with quasiperiodic
bursts is seen. SI with TW bursts is seen at points marked by crosses (x). The cluster solutions are marked
as +. The space-time plots obtained at points marked a, b, and c are shown in Figure 2.

parameter regime 0 < Q < %T (where the single sine circle map has temporal period 1 solutions),
0 <e<1and K=1.0. The detailed phase diagram of this model evolved with random initial
conditions has been obtained [7, 8] and is shown in Fig 1. This phase diagram shows regimes of
spatiotemporal intermittency (Fig. 2(a)) with accompanying exponents of the directed percolation
type [9], as well as those of spatial intermittency where the burst regions show quasi-periodic or
periodic behaviour (Fig. 2(b) and Fig. 2(c)). We discuss behaviour seen at a generic point of
each kind (DP and non-DP) in the phase diagram. The generic point chosen for DP behaviour has
parameter values Q = 0.06, € = 0.7928 and K = 1. We choose two points with non-DP behaviour.
The SI with quasi-periodic bursts is seen at Q = 0.04, € = 0.4 and K = 1, and SI with periodic
bursts is seen at the values Q = (0.019, € =0.9616 and K = 1. To confirm that the point at Q = 0.06,
€ =0.7928 and K = 1 has DP behaviour, we list the values of the exponents seen in Table 1 (See
[12, 13] for the definition of the DP exponents). The laminar length distribution is plotted in
Fig. 3(a) and has scaling exponent, { = 1.68 characteristic of DP behaviour. The laminar length
distributions for SI with quasi-periodic bursts and periodic bursts is plotted in Figs. 3(b) and 3(c).
The length scaling exponent is { ~ 1.1 and clearly does not belong to the DP class.

Bulk exponents Spreading Exponents
z Bvz B v _n | n & =z

Q &(Q)

006 0.7928 | 1.59 0.17 029 1.1 151 1.68 |0315 0.16 1.26
DP 158 016 028 11 151 167 |0313 016 126

Table 1: The static and dynamic exponents obtained at the critical & are shown in the above table. The
universal DP exponents are listed in the last row.
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Figure 2: shows the space time plots of the different types of STI observed in the phase diagram. The
lattice index i is along the x-axis and the time index t is along the y-axis. The space time plots show (a) STI
with synchronized laminar state interspersed with turbulent bursts seen at Q = 0.06,& = 0.7928. (b) SI with
synchronized laminar state with quasi-periodic bursts seen at Q = 0.031,& = 0.42. (c) SI with synchronized
laminar state and TW bursts seen at Q = 0.019,& = 0.9616.

3. Dynamic characterizers

3.1 Differences between the DP and non-DP class

The linear stability matrix of the evolution equation 2.1 at one time-step about the solution of
interest is given by the N x N dimensional matrix, M{N, given below

&F0¢) &f' (%) 0 ... 0 &f'(d)

enf/(X) &f' (%) & f'(§) 0 0
MN = 0 &f'(X) &f'() ... 0 0

ef'x) 0 0 &f'(x ;) &f'(x)
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Figure 3: shows the log —log (base 10) plot of the laminar length distribution for (a) STI of the DP class
obtained at Q = 0.06,& =0.7928. The exponent  is 1.681. (b) SI with TW bursts obtained at Q =0.019, € =
0.9616. The exponent obtained is 1.05. (c) SI with quasi-periodic bursts obtained at Q = 0.04,& = 0.4. The
exponent { is 1.12.

where, &= 1—¢€, & = €/2, and f/(X) = 1 — Kcos(2mx). % is the state variable at site i at
time t, and a lattice of N sites is considered.

The diagonalisation of M{N gives the N eigenvalues of the stability matrix. The eigenvalues of
the stability matrix were calculated for spatiotemporally intermittent solutions which result from
bifurcations from the spatiotemporally synchronized solutions (frozen, homogenous solutions).
The eigenvalue distribution for all the cases was calculated by averaging over 50 initial conditions.

The eigenvalue distributions for STI belonging to the DP class can be seen in Fig. 4(a), and
that for spatial intermittency can be seen in Fig. 4(b) and Fig. 5. It is clear from the insets that
the eigenvalue spectrum of the SI case shows distinct gaps whereas no such gaps are seen in the
eigenvalue spectrum of the STI belonging to the DP class and the spectrum is continuous. Thus,
a form of level repulsion is seen in the eigenvalue distribution for parameter values which show
spatial intermittency. We note that such gaps are seen at all the parameter values studied where
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Figure 4: shows the eigenvalue distribution (binsize=0.005) for (a) STI belonging to the DP class at Q =
0.06,& = 0.7928 and (b) Spatial intermittency with quasi-periodic bursts at Q = 0.04,€ = 0.4. A section
of the eigenvalue distribution is magnified in the inset figures. Gaps are seen in the spatial intermittency
eigenvalue distributions whereas the eigenvalue distribution for STI does not show any such gaps.

spatial intermittency is seen, and that no gaps are seen for any of the parameter values where DP is
seen for binsizes of 0.005 and above.

3.2 Characterization of thetransition to spatial intermittency

In all the cases of spatiotemporal intermittency seen here, the synchronized solutions bifurcate
to the intermittent state. It is clear from Figs 4(a) and 4(b) that the spatiotemporally intermittent
solution and the spatially intermittent solution with quasi-periodic behaviour have bifurcated from
the synchronized solution via a tangent-tangent bifurcation, and several eigenvalues have crossed
the unit circle at +1. However, it is clear that Fig. 5 shows different behaviour. The gaps charac-
teristic of SI are seen, however, though the solution has changed from the synchronized solution to
spatially intermittent behaviour with travelling wave bursts, the eigenvalues have not crossed the
unit circle. Thus, of the two transitions to spatial intermittency, only one is picked up by the usual
stability criterion.

This feature has also been seen for other bifurcations in this system, e.g. that from the syn-
chronized solution to kink solutions [14], and that from synchronized solutions to frozen spatial
period two solutions [10]. It was seen that in these cases too, the bifurcation from the synchronized
solution was not picked up by the usual characterizers. It was seen in these cases that the rate of
change of the largest eigenvalue as well as the distribution of eigenvalues were better able to pick
up the bifurcation [14].

We study the behaviour of the rate of change of the largest eigenvalue A with the parameter
€ at fixed Q in Fig. 6(a). It is clear that the rate of change shows a clear jump at the transition,
and the bifurcation is clearly picked up. We also define the Shannon entropy, S= —%;p; log p; as
a characterizer of the bifurcation. Here, pj is the probability that the eigenvalue takes the value
corresponding to the box i, and the sum is taken over all the occupied boxes. This quantity is
plotted as a function of € in Fig. 6(b). It is clear that the bifurcation is picked up by this quantity
as well.
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Figure 5: shows the eigenvalue distribution of Spatial intermittency with TW bursts at Q = 0.035,¢ =
0.9294 obtained for one initial condition. The modulus of the largest eigenvalue is less than one .
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Figure 6: (a) shows dA /d¢ plotted against € at Q = 0.035. A sharp jump is seen at € = 0.9294 where the
bifurcation has taken place. (b) shows the Shannon entropy, S plotted against £ at Q = 0.035. A jump is

seen at € = (0.9294.

Type of solution

Largest eigenvalues

Bifurcation Type

Synchronized, frozen

SI with QP bursts

0.4045
0.4044

0.032104, 0.032104
1.701346, 1.270010

Double Tangent

Synchronized, frozen

ST with TW bursts

0.9293
0.9294

0.024475, 0.024475
0.418326, 0.415696

Table 2: shows the largest eigenvalues obtained for SI with quasi-periodic bursts (QP) and SI with TW
bursts. (a) The bifurcation to SI with quasi-periodic bursts (at Q = 0.04,& = 0.4044) from synchronized
solutions (at € = 0.4045) has taken place through a tangent-tangent bifurcation. (b) Synchronized solutions
at Q = 0.035,& = 0.9293 bifurcate to SI with TW bursts at £ = 0.9294. The two largest eigenvalues have
modulus less than one even though the solution has changed.
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4. Discussion

We find that spatiotemporal intermittency in the case of the sine circle map lattice shows both
DP and non-DP behaviour depending on the parameter regime. Each type of behaviour contributes
its own characteristic exponent to the distribution of laminar lengths. Signatures of DP and non-DP
behaviour are found in the dynamic characterizers, viz. the eigenvalue distribution of the one step
stability matrix. Within the non-DP class, two types of spatial intermittency are seen, one where the
burst behaviour is quasi-periodic and the other where the burst behaviour is periodic. Transitions
from the synchronized state to the first type of SI are signalled by the usual stability criterion of
the eigenvalues of the stability matrix crossing one, but the other bifurcation, i.e that to the second
type of Sl is not picked up by the usual criterion. Entropic characterizers are useful for picking up
this kind of transition, and the Shannon entropy of the distribution of eigenvalues is sufficient to
pick up this bifurcation. Such characterizers may be useful in other contexts as well.
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