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1. Introduction

The fundamental questions for the origin of the mass of hadrons (chiral symmetry breaking),
or the mechanism for confinement of quarks and gluons requireanswers from QCD as the funda-
mental quantum field theory of strong interactions in its non-perturbative domain. Despite progress
with lattice QCD simulations and systematic approaches such as Dyson-Schwinger equations and
renormalization-group equations, effective models for the strong interaction will remain indispens-
able for bridging the gap to phenomenological results accumulated in nuclear and particle physics
as well as in astrophysics.

A major challenge of experimental programs at large-scale facilities such as CERN Geneva,
BNL Brookhaven or GSI Darmstadt is to produce hadronic matter under extreme conditions of
temperature and density in ultrarelativistic heavy-ion collisions in order to investigate the phase
transition to a state of matter where the chiral symmetry andasymptotic freedom (deconfinement)
of the QCD Lagrangian are restored. Quite opposite to the exploration of these phase transitions
under terrestrial laboratory conditions, the strongly interacting matter in the heaven, namely in
compact stars, is not plagued by the limitations of small volumes, short timescales and strong
nonequilibrium and provides a unique view into the phase diagram at low temperatures and high
densities, see Fig. 1. In this region quark matter, being a cold and dense Fermi system with

Novae

AGS Brookhaven

CERN−SPS

Super−

Quark−Gluon−Plasma

1 3 

[T
  

 =
1

4
0

 M
eV

]
H

ο

1.5

0.1

DECONFINEMENT

Nuclear matter

Q
C

D
 −

 L
at

ti
ce

 G
au

g
e 

T
h

eo
ry

Neutron / Quark Stars

Baryon Density

T
em

p
er

at
u

re

Big Bang

Hea
vy Io

n C
olli

sio
ns

COLOR SUPERCONDUCTIVITY

Quark Matter

SIS Darmstadt

Nuclotron Dubna
Hadron  gas

C
O

N
F

IN
E

M
E

N
T

SIS 300 (FAIR Project)

CERN−LHC (construction)

RHIC Brookhaven

[n  =0.16 fm   ]
−3

Figure 1: The phase diagram fo strongly interacting matter is under exploration in Lattice gauge theory
simulations, heavy-ion collisions and astrophysics of compact stars.

attractive interactions, is expected to appear in a color-superconducting state due to the instabil-
ity against Cooper-pairing and formation of diquark Bose condensates. The present contribution
reviews recent investigations of the question whether observations of cooling compact stars can
provide constraints on the development of microscopic approaches to phase diagram, equation of
state (EoS) and transport properties of dense QCD matter, performed along the lines of the scheme
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given in Fig. 2. Starting from a hadronic baseline for the EoSand cooling regulators we introduce
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Figure 2: Scheme for the interplay between different aspects of compact star phenomenology and micro-
scopic theory of dense QCD matter. In the present contribution the focus is on aspects of the quark-hadron
phase transition and effects of color superconductivity.

the new, stringent observational constraints on the masses, cooling curves and population of com-
pact stars. We present state-of-the-art phase diagrams of three-flavor QCD matter under compact
star constraints for chiral quark models of the Nambu–Jona-Lasinio (NJL) type and examine pos-
sible hybrid star configurations regarding the questions (i) do strange quark matter phases occur?
and (ii) which patterns of color superconductivity are admissible?

2. EoS and Structure of Hadronic Stars

Hadronic matter in compact stars can reach densities above 1fm−3, so that systematic inves-
tigations shall be based on relativistic quantum field-theoretical approaches as reviewed, e.g. in
[1, 2]. Comparative studies often employ the representation of the energy per nucleon

E(n,β ) = E0(n)+ β 2Es(n) , (2.1)

wheren is the baryon number density,β = 1− 2x the asymmetry parameter depending on the
proton fractionx = np/n; E0(n) is the energy per nucleon in symmetric nuclear matter to which
in the case of pure neutron matter the asymmetry energyEs(n) has to be added. In a recent study
of constraints on the high-density behavior of the nuclear EoS [3], a set of relativistic mean-field
(RMF) EoS of the Walecka type (NLρ , NLρδ ) with density dependent coupling constants and
masses (DD, D3C, DD-F, KVR, KVOR) together with that of the Dirac BruecknerHartree-Fock
(DBHF) approach based on the Bonn-A nucleon-nucleon potential has been considered to which
we will refer here as a hadronic baseline, see Fig. 3. Note that all these EoS describe the properties
of symmetric nuclear matter at the saturation densityn0 ∼ 0.16 fm−3 but differ considereably in
the high-density behavior. An astrophysical constraint onthis behavior comes from the hydrostatic
equilibrium configurations of spherical stars obtained by solving the Tolman-Oppenheimer-Volkoff
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Figure 3: Energy per nucleon in symmetric nuclear matter (left), symmetry energy (middle) and energy per
nucleon in beta-equilibrated neutron star matter for the set of relativistic EoS investigated in [3].

equations. The maximum attainable mass is an important feature of the EoS to be tested against
observational constraints. Recentle the mass of the pulsarin the double system PSR J0751+1807
has been determined to 2.1 ±0.2 M� [4], see Fig. 5. From the analysis of RXTE data on quasi-
periodic oscillations in the low-mass X-ray binary 4U 1636-536 a measurement of the innermost
stable circular orbit frequencyνISCOcorresponding to a mass of 1.9−2.1 M� [5] has been reported
[6], see Fig. 4. These constraints favor a stiff high-density behavior of the EoS as displayed for
DD, D3C and DBHF. Note in Fig. 5 that for stiff EoS the maximum massesare at values above

6 8 10 12 14 16
R [km]

0

0.5

1

1.5

2

2.5

M
  [

M
so

l]

NLρ
NLρδ
DBHF (Bonn A)
DD
D

3
C

KVR
KVOR
DD-F

RX J1856

ca
usa

lity
 lim

it

4U 0614 +09

4U 1636 -536

Figure 4: Mass-radius constraints from compact stars compared to results for a set of relativistic EoS [3].

2.3 M� but at a lower central density than for soft EoS which allows larger star radii ofR∼ 12−13
km, see Fig. 4. The mass-radius constraint obtained from theobservation of the thermal emission
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of the isolated neutron star RX J1856.5-3754 seems to favor the stiff high-density behavior too [7],
see Fig. 4.
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Figure 5: Mass constraint from PSR J0751+1807 with 1σ and 2σ error ranges [4] compared to results for a
set of relativistic EoS [3]. Crosses denote maximum mass configurations and dots indicate the threshold for
the direct Urca process. The mass distribution of nearby neutron stars obtained from a population synthesis
model binned over eight intervals, Ref. [8] defines the rangeof “typical neutron stars”.

3. Cooling of Hadronic Stars

A detailed recent analysis of the regulators of the compact star cooling and their in-medium
effects (such as neutrino emissivities, specific heats and thermal conductivities of different compo-
nents) has revealed the decisive role of the direct Urca (DU)process [9]. Once this process gets
initiated at a proton fraction of∼ 14% (including muons), the cooling gets dramatically enhanced
in disagreement with for surface temperature versus age. InFig. 6 the sensitivity to minor changes
in the neutron star mass is demonstrated in such a case. This problem cannot be solved by a sup-
pression of cooling regulators due to superfluid pairing gaps since in this case very efficient pair
breaking and pair formation emissivities will lead to strongly enhanced cooling, again in disagree-
ment with the data [10]. This observation leads to the formulation of the DU constraint: Hadronic
DU processes should not occur for star masses below or withinthe region of typical neutron stars
1.0 M� ≤ Mtyp ≤ 1.5 M� following from a population synthesis, see Fig. 5, where theDU thresh-
olds are marked by fat dots. A detailed discussion of the modern astrophysical constraints on the
behavior of the EoS at high densities [3] shows that none of the purely hadronic EoS from the set
presented above could fulfill all constraints simultaneously. This result motivates the application of
this test scheme to hybrid EoS with a deconfinement phase transition to quark matter. First results
for a DBHF-NJL hybrid EoS indicate that indeed the problems with the DU and flow constraints
can be solved this way [11].
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Figure 6: Demonstration of the rather unlikely cooling evolution when the DU threshold would lie within
the interval of typical neutron star masses: all cooling neutron stars should have the same masses within less
than 1% above the DU threshold. Results for standard coolingof a nonlinear Walecka model (courtesy: H.
Grigorian), see also [9, 10].

4. QCD Phase Diagram and Stability of Hybrid Stars

For the discussion of the QCD phase diagram in the nonperturbative low-temperature/ high-
density domain (see Fig. 1) it is customary to use effective models of the NJL type [12] since
asymptotic QCD approaches [13] are limited to the region ofµ > 500 MeV and Lattice QCD
studies have principal problems with the sectorT < µ . DSE studies were still bound to rather
schematic interactions [14, 15], more realistic forms of the interaction are at present under con-
sideration and will become very interesting when the covariant momentum dependence of Lattice
QCD studies of the quark propagator [16] could be reproducedwithin, e.g., a nonlocal separable
quark model [17, 18]. Here we base our report on state-of-the-art results within a NJL model for
three-flavor quark matter inlcuding a selfconsistent determination of the strange quark mass [19],
see Fig. 7. Similar results have been obtained by [20, 21]. The striking result of these investiga-
tions is a sequential melting of the light and strange quark condensates due to the large difference in
the dynamically generated light and strange constituent quark masses which entails rather different
critical chemical potentials for the chiral transition in the light and the strange quark sector at low
temperatures and a dominance of two-flavor superconductivity (2SC phase) in the vicinity of the
deconfinement transition. Three-flavor phases, such as color-flavor-locking (CFL), occur only at
rather large chemical potentials only when the strange quarks appear and become light enough to
fulfill the approximate SU(3) flavor symmetry required for the CFL phase, see Fig. 7. We demon-
strate in that Figure that increasing the diquark coupling shifts the critical chemical potentials for
the onset of color superconducting quark matter phases to lower values. This leads to an early onset
of quark core formation in compact star configurations, i.e.to stable hybrid stars already for the
typical star masses, see Fig. 8. Note, however, that once a CFL phase occurs the corresponding
hybrid star configurations turn out to be unstable against collapse [11, 12]. Introducing a finite
neutrino chemical potential (for the discussion of neutrino trapping in the early, hot stages of pro-
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Figure 7: Phase diagrams for three-flavor quark matter within the NJL model for intermediate (left) and
strong (right) diquark coupling [19].
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Figure 8: Mass-central density relations for hybrid star configurations with a phase transition between
hadronic phase (HHJ: Heiselberg–Hjorth-Jensen fit to Akmal-Pandharipande-Ravenhall EoS) and quark
matter (SM: separable model). The occurrence of a two-flavorcolor superconducting phase lowers the
onset density of the phase transition, see Refs. [23] and [22].

toneutron star evolution) enlarges the domain of the 2SC in the phase diagram [24, 11]. Gapless
modes in the quark dispersion relations occur when the asymmetry in the chemical potentials of
the quark species forming the pair exceeds the size of the gap, δ µi j = |µi − µ j | > ∆i j [25]. Their
appearance is therefore tied to the lines of the critical temperatures for the vanishing of color su-
perconducting phases in theT −µ plane where gaps become small enough to fulfill this condition.
They occur here only at high temperatures, not relevant for the discussion of (late) compact star
evolution, in contrast to [26].
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5. Hybrid Star Cooling

For the 2SC phase stable hybrid star configurations with masses even below 1.3 M� have been
obtained [22]. This phase has one unpaired color of quarks (say blue) for which the very effective
quark DU process works and leads to a too fast cooling of the hybrid star in disagreement with the
data. For details of the cooling calculation see, e.g., Refs. [27, 28]. We have suggested to assume
a weak pairing channel which could lead to a small residual pairing of the hitherto unpaired blue
quarks [23, 29]. For the resulting gap∆X a density dependence following the ansatz

∆X(µ) = ∆c exp[−α(µ −µc)/µc] (5.1)

has been assumed withµc = 330 MeV being the critical chemical potential. The choice ofparam-
etersα = 25 and∆c = 5 MeV has been found to give an excellent cooling phenomenology, see left
panel of Fig. 9, fulfilling a new set of additional constraints [8]:
(i) the brightness constraint [30] given by the upper barredregion in that figure;
(ii) the expected number of objects within a mass bin from thepopulation synthesis (displayed in
Fig. 9 by the darkness of the strip in the T-t plane, cf. Fig. 5)is in accordance with actual number
of observed coolers.
(iii) the Log N - Log S test [31], see right panel of Fig. 10.
(iv) young coolers like Vela are explained within the mass region of typical stars,M < 1.5 M�.
The physical origin of the X-gap remains to be identified, onepossible hypothesis is the condensa-
tion of color neutral quark sextett complexes [32]. Such calculations have not yet been performed
using chiral quark models.

For sufficiently small diquark coupling, the 2SC pairing maybe inhibited at all [33]. In this
case, due to the absence of this competing spin-0 phase with large gaps, one may invoke a spin-
1 pairing channel in order to avoid the DU problem. In particular the color-spin-locking (CSL)
phase [34] may be in accordance with cooling phenomenology as all quark species are paired
and the smallest gap channel may have a behavior similar to Eq. (5.1), see [35]. A consistent
cooling calculation for this phase, however, still requires the evaluation of neutrino emissivities
and transport coefficients. Progress in this direction has recently been obtained [36, 37].

6. Conclusions

We have shown that the maximum and DU constraints allow for selective tests of EoS for QCD
matter at high densities. Strange quark matter phases in compact stars are not supported by present
selfconsistent microscopic approaches due to the instability of corresponding configurations.

Clearly, an improvement of the approaches towards QCD is desired. One possible path uses
the Dyson-Schwinger equation (DSE) approach to the QCD partition function [15], from which
covariant nonlocal models can be derived [17, 18] with interaction form factors to be fitted to Lat-
tice QCD. Our understanding of the confinement/deconfinement mechanism at finite temperatures
and densities needs to be developed [38]. A promising direction within the QCD DSE approach is
a generalization of the Kugo-Ojima criterion [39]. A less ambitious, but effective approach aug-
ments the chiral quark dynamics with the Polyakov loop potential fitted to Lattice data [40]. A
general main step is to go beyond the mean field approximationand to give a consistent description
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Figure 9: Left: Hybrid star cooling curves for model IV of Ref. [8]. Different lines correspond to compact
star mass values given in the legend in units ofM�. Right: LogN-LogS distribution for the same model

of the hadrons within the favored QCD model. First very simple steps within a RMF treatment
were presented in Ref. [41]. The Mott dissociation of hadronic bound states into the continuum
of unbound quark states at the chiral/ deconfinement transition will lead to a proper continuation
of hadronic correlations as resonant scattering states in the quark continuum. This concept has
been presented long ago within a nonrelativistic potentialmodel [42] and should be formulated in
a proper field theoretical manner to address the chiral transition properly. This way, an aspect of
the interrelation between chiral symmetry restoration anddeconfinement should be reveale which
need to be worked out.

A possible microscopic explanation of the yet unknown X-gapfor the 2SC+X pairing pattern
could come from condensation of bosonic multiquark correlations, e.g. quark sextett states in
analogy to the quartetting effect in nuclear matter [43]. Once baryonic states are consistently
included into the description it will be clarified whether the diquark coupling (yet considered as a
free parameter, then fixed by the decription of the baryon mass spectrum) will be strong enough
to allow pairing in the scalar diquark channel. The mismatchbetween up and down quark Fermi
levels underβ equilibrium conditions in neutron stars could easily destroy the 2SC phase. In this
case the spin-1 pairing channels with small gaps, such as theCSL phase would turn out as a viable
alternative. A prerequisite for them to play a role in the explanation of compact star cooling would
be, however, the absence of the otherwise dominant scalar diquark channel(s). For further reading
on the fascinating topic of strong matter in the heaven we recommend [44, 45, 46, 47].
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