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Electron-positron Bhabha scattering plays a special role in particle phenomenology. It is cru-
cial for extracting physics from experiments at electron-positron colliders since it provides a very
efficient tool for luminosity determination. The small angle Bhabha scattering has been particu-
larly effective as a luminosity monitor in the LEP and SLC energy range because its cross section
is large and QED dominated [1]. At a future International Linear Collider the luminosity spectrum
is not monochromatic due to beam-beam effects. Therefore measuring the cross section of the
small angle Bhabha scattering alone is not sufficient, and the angular distribution of the large angle
Bhabha scattering has been suggested for disentangling the luminosity spectrum [2]. The large an-
gle Bhabha scattering is important also at colliders operating at a center of mass energy

√
s of a few

GeV, such as such as BABAR/PEP-II, BELLE/KEKB, BES/BEPC, KLOE/DAΦNE, and VEPP-
2M, where it is used to measure the integrated luminosity [3]. Since the accuracy of the theoretical
evaluation of the Bhabha cross section directly affects the luminosity determination, remarkable
efforts have been devoted to the study of the radiative corrections to this process (see [1] for an
extensive list of references). Pure QED contributions are particularly important because they dom-
inate the radiative corrections to the large angle scattering at intermediate energies 1-10 GeV and to
the small angle scattering also at higher energies. The calculation of the QED radiative corrections
to the Bhabha cross section is among the classical problems of perturbative quantum field theory
with a long history. The first order corrections are well known (see [4] and references therein).
To match the impressive experimental accuracy the complete second order QED effects have to be
included on the theoretical side. The evaluation of the two-loop virtual corrections constitutes the
main problem of the second order analysis. The complete two-loop virtual corrections to the scat-
tering amplitudes in the massless electron approximation have been computed in Ref. [5], where
dimensional regularization has been used for infrared divergences. However, this approximation
is not sufficient since one has to keep a nonvanishing electron mass to make the result compati-
ble with available Monte Carlo event generators [1]. Recently an important class of the two-loop
corrections, which include at least one closed fermion loop, has been obtained for a finite electron
mass [6] including the soft photon bremsstrahlung [7]. A similar evaluation of the purely photonic
two-loop corrections is a challenging problem at the limit of present computational techniques. On
the other hand in the energy range under consideration only the leading contribution in the small
ratio m2

e/s is of phenomenological relevance and should be retained in the theoretical estimates. For
arbitrary scattering angle even in this approximation only the two-loop corrections enhanced by a
power of the large logarithm ln(m2

e/s) have been known [8, 9]. In the limit of the small scattering
angle, however, the structure of the corrections is much simpler [10] that allowed for the evalua-
tion of the corrections up to the nonlogarithmic term [11, 12]. The result for the nonlogarithmic
contribution for arbitrary scattering angle has been recently obtained in Ref. [13] by employing
the general theory of infrared singularities in QED, which allows to reduce the calculation in the
small electron mass approximation to the analysis of a strictly massless scattering amplitude and
the massive vector form factor. Below we outline the method and the result of the calculation.

The leading asymptotics of the virtual corrections cannot be obtained simply by putting me = 0
because the electron mass regulates the collinear divergences. In addition the virtual corrections
are a subject of soft divergences, which can be regulated by giving the photon a small auxiliary
mass λ . The soft divergences are canceled out in the inclusive cross section when one adds the
contribution of the soft photon bremsstrahlung. Thus we have to compute the two-loop virtual cor-
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rections to the four-fermion amplitude A
(2)(me,λ ). To get the leading term in m2

e/s we develop
the method applied first in Ref. [14] to the analysis of the two-loop corrections to the fermion
form factor in an Abelian gauge model with mass gap. The main idea is to construct an auxil-
iary amplitude ˜A

(2)(me,λ ), which has the same structure of the infrared singularities but is sim-
pler to evaluate. Then the difference A

(2) − ˜A
(2) has a finite limit δA

(2) as me, λ → 0. This
quantity does not depend on the regularization scheme for A

(2) and ˜A
(2) and can be evaluated

in dimensional regularization in the limit of four space-time dimensions. In this way we obtain
A

(2)(me,λ ) = ˜A
(2)(me,λ )+ δA

(2) +O(me,λ ). The singular dependence of the virtual correc-
tions on infrared regulators obeys evolution equations, which imply factorization of the infrared
singularities [15]. One can use this property to construct the auxiliary amplitude ˜A

(2)(me,λ ). For
example, the collinear divergences are known to factorize into the external line corrections [16].
This means that the singular dependence of the corrections to the four-fermion amplitude on me

is the same as of the corrections to (the square of) the electromagnetic fermion form factor. The
remaining singular dependence of the amplitude on λ satisfies a linear differential equation [15]
and the corresponding soft divergences exponentiate. A careful analysis shows that for pure pho-
tonic corrections ˜A

(2)(me,λ ) can be constructed of the two-loop corrections to the form factor and
the products of the one-loop contributions. We have checked that in dimensional regularization the
structure of the infrared divergences of the auxiliary amplitude obtained in this way agrees with the
one given in Refs. [5, 17]. Thus in our method the infrared divergences, which induce the asymp-
totic dependence of the virtual corrections on the electron and photon masses, are absorbed into
the auxiliary factorized amplitude while the technically most nontrivial calculation of the matching
term δA

(2) is performed in the massless approximation. Note that the method does not require
a diagram-by-diagram subtraction of the infrared divergences since only a general information on
the infrared structure of the total two-loop correction is necessary to construct ˜A

(2)(me,λ ). For the
calculation of the matching term δA

(2) beside the one-loop result one needs the two-loop massless
corrections [5, 18]. For the calculation of ˜A

(2)(me,λ ) one needs also the two-loop correction to
the form factor for λ � me � s which can be found in Ref. [19]. Let us now present our result.
We define the perturbative expansion for the Bhabha cross section in the fine structure constant α
as follows: σ = ∑∞

n=0

(α
π
)n σ (n). The leading order differential cross section reads

dσ (0)

dΩ
=

α2

s

(

1− x+ x2

x

)2

, (1)

where x = (1− cosθ)/2 and θ is the scattering angle. Virtual corrections taken separately are
infrared divergent. To get a finite scheme independent result we include the contribution of the
soft photon bremsstrahlung into the cross section. Thus the second order corrections can be repre-
sented as a sum of three terms σ (2) = σ (2)

vv +σ (2)
sv +σ (2)

ss , which correspond to the two-loop virtual
correction including the interference of the one-loop corrections to the amplitude, one-loop virtual
correction to the single soft photon emission, and the double soft photon emission, respectively.
When the soft photon energy cut is much less than me, the result for the two last terms in the above
equation is known in analytical form and can be found e.g. in Ref. [8]. The second order correction
can be decomposed according to the asymptotic dependence on the electron mass

dσ (2)

dσ (0)
= δ (2)

2 ln2
(

s
m2

e

)

+δ (2)
1 ln

(

s
m2

e

)

+δ (2)
0 +O(m2

e/s) , (2)
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Figure 1: Logarithmically enhanced (dashed line) and nonlogarithmic (solid line) second order corrections
to the differential cross section of the Bhabha scattering as functions of the scattering angle for (a)

√
s =

100 GeV and (b)
√

s = 1 GeV, in units of 10−3.

where the coefficients δ ( j)
i are independent on me. The result for the logarithmically enhanced cor-

rections is known (see [8] and references therein). The analytical expression for the nonlogarithmic
term is rather lengthy and can be found in [13]. Numerical value of the second order correction to
the differential cross section (α/π)2dσ (2)/dσ (0) is plotted as the function of the scattering angle
for the small angle Bhabha scattering at

√
s = 100 GeV on Fig. (1a) and for the large angle Bhabha

scattering at
√

s = 1 GeV on Fig. (1b). We separate the logarithmically enhanced corrections given
by the first two terms of Eq. (2) and nonlogarithmic contribution given by the last term of this
equation. All the terms involving a power of the logarithm ln(εcut/ε) are excluded from the nu-
merical estimates because the corresponding contribution critically depends on the event selection
algorithm and cannot be unambiguously estimated without imposing specific cuts on the photon
bremsstrahlung.

Finally, we would like to mention that for the large angle scattering above the electroweak
scale the two-loop electroweak corrections could be important. In the case of e+e− → µ+µ−

annihilation the corrections enhanced in the high energy limit by a power of the large logarithm
ln(M2/s), where M stands for W or Z boson mass, have been computed in [20]. They dominate the
electroweak corrections for the energies

√
s>∼500 GeV characteristic to ILC. This analysis can be

generalized to the large angle Bhabha scattering by adding the t-channel contribution.

To conclude, we have derived the two-loop radiative photonic corrections to Bhabha scattering
in the leading order of the small electron mass expansion up to nonlogarithmic term. The nonlog-
arithmic contribution has been found numerically important for the practically interesting range
of scattering angles. Together with the result of Refs. [6, 7] for the corrections with the closed
fermion loop insertions our result gives a complete expression for the two-loop virtual corrections.
It should be incorporated into the Monte Carlo event generators to match the demands of the present
and future electron-positron colliders for the accuracy of the luminosity determination.
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