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1. Introduction

In lattice simulations of QCD on a cubic volumé & L3) with periodic boundary conditions
imposed on the fields, hadronic momenfia,are quantized according 1§ = 2r/L x n;, where
i =1,2,3 and then; are integers. This implies that on currently available lattices the gaps between
neighbouring momenta are large, typically about 500 MeV or so, limiting thegrhenological
reach of the simulations. In ref. [1, 2]Bedaque proposed the usetaistedboundary conditions
on the quark fields((x)), e.g.

a(x; +L) = €%a(x), (1.1)
so that the momentum spectrum is
2 6
pi:nif—l—t. (12)

Thus by varying the twisting angles, tifis, arbitrary momenta can be reached. In refs. [3, 4] we
have investigated the use of twisted boundary conditions theoretically andrimally and in this
note we briefly report the conclusions of these studies.

2. Finite-Volume Effectswith Twisted Boundary Conditions

The three main results from ref. [3] are:

1. For physical quantities without final state interactions, such as massestiix elements
of local operators between states consisting of the vacuum or a singienhdlde flavour
symmetry breaking induced by the twist only affects the finite-volume correstiwhich
nevertheless remain exponentially small.

2. For physical quantities without final state interactions, one can alsparsially twisted
boundary conditiongn which the sea quarks satisfy periodic boundary conditions, but some
or all of the valence quarks satisfy twisted boundary conditions, withrexpital precision
in the volume. This implies that in unquenched simulations it is not necessary¢oage
new gluon configurations for every choice of twisting angle, making the ndethach more
practicable.

3. For amplitudes which do involve final state interactions (sucK as it decays), it is not
possible in general to extract the physical matrix elements using twisted éyuwwhditions
(at least without introducing new ideas)

We now briefly discuss each of these results in turn.

2.1 Result 1.

The choice of boundary conditions for the fields only affects the finiteraeliorrections
and when extracting physical quantities we need to establish that theeetimmrs are negligibly
small. Infrared effects dominated by the pseudo-Goldstone bosonemvraluated using Chiral
Perturbation Theory and in ref. [3] we derive the chiral Lagrangi@amesponding to the twisted
boundary conditions. Consid8tJ(N), x SU(N)g chiral symmetry and impose the twisted bound-
ary conditions on the quark fielagx, + L) = U;q(x) = exp(i62T?) q(x), where we take the),

1see also the references cited in [1, 2] for earlier related ideas.
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to be diagonaN x N unitary matrices and th&€®'s are the generators of the Cartan subalgebra
of the (light) flavourU (N),, group. In the chiral Lagrangian these boundary conditions imply
that>(x), the coset representative ®J(N), x SU(N)r/SU(N),, satisfies the boundary conditions
Z(x +L) =U;Z(x)UT. The Feynman rules for the Chiral Lagrangian are the usual onesptexce
that the momentum spectrum for the Pseudo-Goldstone bosons is thateekpka particle com-
posed of a quark-antiquark pair, each with a momentum given in terms of itdoynvésg). (1.2). The
effect of the twist is a change in the charged meson’s dispersion relation,

2\ 2
2mm— 6
2
Er(,p:m721,p+ < L ) ) (2.1)
wherem,,  is the meson mass aiffl= 6, — 6;;, the difference of the twists of theandd quarks.

As an example consider the finite-volume correctionggrthe leptonic decay constant of the
m-mesons. At — oo the leading corrections are found to be:

Af — Myl 3 Af —my.L 3
—m o, —Bﬁge—az 1 Zcos@i +1], =% —3ﬁge—32 2 Zcos@i (2.2)
f . f2 (2rm,L)3/2 \ 3.4 fo f2 (2mmgL)%/2 \ 3.4
whereA(X)/X = (X(L) — X(00))/X(00). The results in eq.(2.2) illustrate the point that whereas
the finite-volume corrections do depend on the boundary conditions astexlp they nevertheless

remain exponentially small (see ref.[3] for further examples). The rdiffee of the correction
terms in eq.(2.2) is a manifestation of the violation of isospin by the boundarytmrd

2.2 Result 2.

The derivation of the Chiral Lagrangian and the corresponding Feymaias with Partially
Twisted boundary conditions follows similar steps to that for partially quesh€€D. As an illus-
tration of the results consider the finite-volume correctionftdhe leptonic decay constant of the
K-meson, with thel ands quarks satisfying periodic boundary conditions andulggiark with (a)
untwisted, (b) fully twisted (c) partially twisted boundary conditions:

m2 eMrk

9 My
T 47T2 (2mm,L)3/2 @
Af m —MyL
K
m2 —Mprl
— T G (3iicos6 - 3) ©

This example illustrates again that, in general, the finite-volume correctionsfianremt for the
three cases but they are always exponentially small.

2.3 Resault 3.

To illustrate the problem in using twisted boundary conditions for procesiRdinal state
interactions considdf — mrrdecays in thé = 0 channel. The twisted boundary conditions break
isospin symmetry which implies that energy eigenstates are no longer stateefinitedsospin.
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This is manifest even in the free theory. As an example consider the two pibagriehe centre-of-
mass frame and let theandd quark satisfy twisted and periodic boundary conditions respectively
so that the lowest momenta of the neutral and charged piong gre 0 and B = +6/L. The
corresponding energies of the two-pion states are Bygp = 2m; andE . = 2/mZ + 62/L2
making it explicit that the energy and isospin eigenstates are different.

The interacting theory contains' m~ — r°m° transitions which complicate the analysis very
significantly making it impossible to relate the finite-volume energy eigenstates tiofthite-
volume energy and isospin eigenstafes), _, and |, _,. Without new ideas, it not therefore
not possible to determine physidat 0 K — it amplitudes using twisted boundary conditions
with finite-volume corrections under control.

There is a further difficulty which we would like to exhibit. Even if we were ablevercome
or circumvent the problem above (for example, by using G-parity baynznditions proposed
by Christ and Kim [5]?). The finite-volume effects which decrease only slowly, i.e. as powers of
the volume, come from the propagation of two-pion states illustrated by theadiagr

p

= > 3 3 3]

The circles represent insertions which are two-particle irreducible in-th@snel. In evaluating
finite-volume corrections we replace the sums over the discrete momenta in avdilvitee by
integrals over continuous infinite-volume momenta using the Poisson summatiamdor

- d43n L
LY IO= 3 [ G Pim). .4
P lez3

For two-particles propagating with an energy above the two-pion thregkold 2my) there are
poles in f(P) (corresponding to the cut in infinite volume) and this implies that the terms with
| £ 0in eq. (2.4) are not exponentially small. Hoe 0 K — it decays, the sea quarks contribute
to the final-state interactions as illustrated for example, by the following diagram:

Therefore, unless the same boundary conditions are imposed for botlaldree and the sea
quarks, there is a breakdown of unitarity induced by the partially twisteddemy conditions
and the finite-volume corrections are not under control. This is analdgatihe inconsistencies
encountered in quenched and partially quenched QCIXfes it decays above the two-pion
threshold in refs. [6, 7].

3. Numerical study of partially twisted boundary conditions

This section describes the results of an exploratory numerical studytaljyawisted bound-
ary conditions, in which we investigate, whether the meson’s momentum follqw2.¥) and

2The twist angle is now fixed to beand so the benefit of using partial twisting are not so clear.
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whether the meson decay constafijsand f, and the matrix element, = (0|P|m) of the pseudo
scalar density are independent of the twisting angle.

The study has been carried out on 200 independent, non-pertetpatprovedN; = 2 Wil-
son gauge configurations with the following specificatiofs= 5.2, (L/a)® x T/a = 16 x 32,
a~ 0.1fm, K, = Ksea= 0.13500 and L3550 corresponding tm;/m, = 0.697(11) and 0566(16)

(see also [8, 9)).

We evaluated mesonic correlation functions (details in ref. [4]) for alsiixes pairs of valence
quark twisting angles, 4 € {0, (2,0,0), (0,,0) and(3,3,3)} at the Fourier momentg,,, = 0 and
(0,£271/L,0). In addition we also evaluated all quantities @t,| = v'2 x 2m/L and+/3 x 2r/L
for vanishing twist. The jack-knife analysis of the resulting correlatiorcfions focused on the
momentum dependence®f andE, and we also monitored the un-improved bare decay constants
frandf, and matrix elemerf, under the variation of the momentum.

Here we discuss only the data for the setmgym, = 0.697(11) and refer the reader to ref.
[4] for details and qualitatively equivalent results for the lighter data séte flots in figure 1
show our results as a function G8L)2. The positions of the discrete Fourier momejgigL| =0,
21, v/2 x 2mandy/3 x 2irwhich can be reached without twisting are indicated by dashed vertical
lines. In each plot the (blue) triangles correspond to points in which tirelation function was
evaluated withg,; = 0, but with all possible pairs df, and éd. The (red) diamonds and (green)
squares represent the results obtained With= (0, 2rt/L,0) andp,,, = — (0, 277/L,0) respectively,
combined with all possible pairs @, and 8,. The four points with6, = 6, = 0 but |p,,| =
0, 21r/L, v/2 x 2m/L andv/3 x 2mt/L are denoted by (black) circles. The three main results are:

1. The energies affandp-mesons (with masses below the two-pion threshold) satisfy eq. (2.1)
very well, particularly for small values of the momentum where lattice artifaetsiauall.

2. The values of the leptonic decay constahsand f, and of the matrix elemerd, are in-
dependent of the twisting angles for small values of the momentum. Deviatioterde
momenta are of the same magnitude when using twisted boundary conditiortg Boorier
transformation to induce momentum.

3. Twisted boundary conditions do not introduce additional noise in the ddta combined
statistical and systematic error on the meson masses and matrix elements ssneasthly
when increasing the meson’s momentum by varying the ar@!gs However, when com-
paring results obtained with twisted and periodic boundary conditions with simdarenta
(i.e. around 2r/L or v/2(2m/L)), the errors are found to be comparable.

4. Conclusions

The theoretical and numerical results presented in this note demonstratieetheste of partially
twisted boundary conditions does indeed improve the momentum resolution in dténemenol-
ogy at relatively little cost for physical quantities without final-state interasti®e now look for-
ward to applying these techniques to studies of weak matrix elements anchicegtracture. We
have also demonstrated that twisted and partially twisted boundary conditionstde applied in
general to physical quantities with final state interactions suéh-asrit decays with isospin O.
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Figure 1. Results for the cas®,;/m, = 0.70. The plots in the first line illustrate the results for thepersion
relation for therr and thep (empty and full symbols respectively) and the associatemt @r the case of the
rras a function of the momentum. The second line shows thetsdsultherr andp decay constant arig.
In each plot the horizontal lines represent the centralevalip,, = 6, = 8, = 0. Note also in all the four
plots the superimposed data point$f@i,| = O, 277/L, which correspond to the casés— éd =0.
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