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Localized eigenmodes of the covariant lattice Laplacian J. Greensite

1. Introduction

It is well-known from condensed-matter physics that electron propaygatia periodic po-
tential is described by Bloch waves, which are extended, plane-wavestbites. However, when
disorder is introduced into the potential, low-lying electron eigenstates beeppumentially lo-
calized, as shown long ago by Anderson. This is an interferenced effiecto multiple scattering,
rather than ordinary bound state formation in a single potential well. Whem#rgyof the highest
localized state (the “mobility edge”) exceeds the Fermi energy, the materialisalator.

Recently, localization in the lowest eigenmodes of the lattice Dirac operatbeleasntensely
studied, in the hope that it might shed light on properties and dimensionality ofiamt underly-
ing structures in the QCD vacuum. It was found that:

e Wilson—Dirac fermions have a low-lying spectrum of localized eigenmodestaia regions
of the phase diagran][1];

e low-lying modes of the Asqtad fermion operator, although extended, seeomtentrate on
lattice sub-volumes of dimensionality <[4 [2];

¢ low-lying modes of the overlap Dirac operator are localized on volumes wdfidhk as a
power of the lattice spacing[J].

Some questions naturally arise: If fermionic operators are picking uplsighkbower-dimen-
sional substructure, is there any relation to, e.g., center vortex sheatsopole worldlines? Can
one find indications of lattice-scale 2-brane structures, along the lingestegl by Zakharoy][4]?

In the present study we concentrate on the following questions:

e Is localization/concentration unique to Dirac operator eigenmodes, or isindfan other
lattice kinetic operators, e.g. the Faddeev—Popov and covariant Laptamésators?

e If so, is there any connection to confinement?
Here we sketch a subset of our results, other can be fourl[ih [5, 6].

2. Signals of localization

The covariant lattice Laplacian in theth representation of the SU(2) gauge group is

A;‘f,’ - % {Uﬁb(x) Oyt + U;Iab(X— [)dyx—p — 25ab5xy (2.1)

(color indicesa,b run from 1 to 3 + 1) and we are interested in the low-lying eigenmog@@&c)
satisfying the eigenvalue equatiom\Zqh (y) = Ang(%).

As probes of localization, we use two quantities:

e Thelnverse Participation Ratio (IPR) of then-th eigenmode, defined by

PR=V(3pE09).  where  pn(9 = 3 [0 (2.2)

INote that the covariant Laplacian is not the square of the Dirac opei@tois is only true for the free theory.)
That means that the eigenmodes of the covariant Laplacian need dioebty related to the eigenmodes of the Dirac
operator; they might have completely different localization properties.
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is the normalized eigenmode density. If the eigenmode is extended over the lattice,
p~1/V,andIPR= &(1). In contrast, for an eigenmode localized in a voluo(ee. p ~ 0
except in a region of volume), IPR~ 1/b.

e TheRemaining Norm (RN), defined in the following way: Sop(X) into a one-dimensional
arrayr(k),k=1,2,...,V, withr(k) > r(k+1). Then theRNis

RN(K)=1— S r(K). (2.3)

The RN is the amount of total norm={ 1) remaining after counting contributions from the
K <V subset of sites with largept(x).

3. Results for the fundamental ( = 1/2) representation

Evidence of localization. We calculated the averadPR of the lowest-lying eigenmode at
various3 values, and fit the data at each coupling®®R = A+ L4/b. Fig.[] (left part) shows
the data in a log-log plot. It is quite clear thdPR— A) is proportional to the lattice volume,
indicating that the eigenmode is localized in a 4-volume. In Big. 1 (right) we(bRR— A) vs
the lattice volume in physical unity, [fm4] = va*(B) = (La*(B)), wherea(B) denotes the lattice
spacing (in fm) at couplingd. The data fall roughly on a straight line, which implies that the
localization 4-volumeba®) is constant in physical units, abo(® 3 fm)*.

Locating/removing center vortices. The next question is whether the localization is due to
some confining disorder of the lattice configuration. Therefore we cordgheespectrum of the
covariant Laplacian in the center-projected and vortex-removed coafigns. We first fixed lat-
tice configurations into the (direct) maximal center gauge (MCG) and obtéioeigx-only” con-
figurations by center projectiofi] [7]. The “vortex-removed” configiorss were then obtained by
multiplying the lattice configuration in MCG by the center-projected dhe [8].té&oremoval is
quite a minimal change — only the action at P-vortex plaquettes (plaquettdd@euaafter center
projection) is changed, and the density of those plaquettes drops exiadigevith 3. How is
localization affected?

Covariant fundamental Laplacian, 18t eigenvector Covariant fundamental Laplacian, 18t eigenvector
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Figure 1: [Left] Log-log plot of IPR— A vs lattice length_, at variousf3. The lines show a fit tdPR =
A+L*/b. [Right] Log-log plot ofIPR— A vs physical volume&/ = (La)*.
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Figure 2: Log-log plot of IPR— A vs physical volume
removed configurations [right].

in vortex-only configurations [left] amdrtex-

Results are shown in Fifj. 2. We find a somewnhat greater localization (fefipaortex-only
configurations.bphys is reduced in this case to abaut5 fm)4. The situation drastically changes
in vortex-removed configurations, the eigenmodes turn out to be extéseledrig[R, right).

The same conclusion follows from examining the Remaining Norm (3$ee [6f)tHeé unmod-
ified configurations, the RN curve becomes slightly broader with increésitice volume, but the
RN data seem to converge to a limiting curve at the largest volumes. The cencergs clearer
in vortex-only configurations, where almost all data fall on essentially #meescurve. For the
vortex-removed data, the curve broadens as the volume increasies thiganeans no localization
without center vortices.

Mobility edges. Not all eigenmodes of the covariant Laplacian in the fundamental raprese
tation are localized, only the low- and high-lying mode$he bulk of states are extended. This
is shown in Fig[[B for full and vortex-only configurations. One could estngéy the eye”) the
mobility edge a8 = 2.1 to be around = 1.45 in the former, and about15 in the latter case.
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Figure 3: IPRs of the first 100 eigenmodes in full [left] and vortexypobnfigurations [right].

2If ¢(x) is an eigenmode, so & (x) = (—1)2#% @(x). One can then show th#PR, = IPR, . n.1. Localization
at the lower end of the spectrum implies localization at the upperﬂand [5].
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Figure 4: IPR of the lowest nontrivial eigenmode of the FP operator.

4. The Faddeev—-Popov Operator

We have argued that localization of the low-lying states of scalar particles srpligass gap,
i.e. the bare scalar mass cannot be adjusted to zero and scalar fieldtomsreannot be long-range
(see[¥]). A check of the logic of the argument is provided by the Faddeapov (FP) operator in
Coulomb gauge. On the one hand, it looks similar to the covariant LaplaciBn=i dimensions):
M =—0- @(A) [Z(A) is the covariant derivative]. One might therefore expect that the lavgly
eigenvalues are localized. On the other hand, the Coulomb energy draaiarge distribution is

ab

1
Hoou = 5 [ dxy pOK™(xy;Alp"(y),  where  K®(xy ) = [ (-0 ],

so if .#~' is short-range, the Coulomb potentiaK (x,y) is short range as well.

But in fact, we know that asymptoticall{][9K (X,Y,A)) ~ Ocoul|X — Y|, Where ocoy ~ 30,
so it must be that the low-lying eigenmodes of the FP operator are not latalizesIPR's for
the lowest nontrivial eigenmode of the FP operatoBat 2.1 are shown in Fig[]4. Despite the
similarity to the covariant Laplacian, we see no apparent localization — ireiangnet with Gribov—
Zwanziger Coulomb-gauge confinement scendrip [10] and the claim fateduat the beginning
of this section.

5. What feature of Laplacian eigenmodes is crucial to confineent?

If localization is not crucial to confinement, then what feature is? Let ppase we have
a dynamical scalar fielgp(x) in the Lagrangian. Consider the Euclidean propagator in Coulomb
gaugeD(t) = (¢(t)p(0)) = ¥ cke B¢, where theEy are the excitation energies of (non-singlet)
states with the quantum numbers of the scalar. These should be infinite, nfimirap theory.
Then, in the quenched approximation,

D)= <Q:jf+¢r’i?> =0,  wherem} is the bare mass. (5.1)

The natural implication is thaBn(t) = <qﬂa(t)cg§’(0)> = 0 for any eigenmode, localized or ex-
tended, and any time differente- 0.
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This we indeed find numerically in the confining phase,Gg(0,t) ~ 0, G,(X,0) # 0. When
center vortices are removed, or in the Higgs phase, therGaldbt) - 0. This is a consequence of
spontaneous breaking of the remnant global gauge symmetry that exisialon@® gauge[[11].

6. Conclusions

In the fundamentalj(= 1/2) representation of SU(2) we find that the low lying eigenmodes
of the covariant Laplacian operator are localized, and that

e ba' is B-independent: localization volume is fixed in physical units;
e the same is true for “vortex-only” configurations; localization volume is smaller
e |ocalization disappears when vortices are removed,;

there are no localized eigenmodes for the Faddeev—Popov operatmuasd in Coulomb-
gauge confinement scenarigs][10].

One might suppose that the situation will be much the same for higher grotgsespations. In
fact there are some surprises, which were discussed in Sergey Byritsi [B].
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