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1. Introduction

Despite the considerable simplifications that occur when one takes the ’t Hooft limit of pure
SU(N) gauge theories, the resulting theory is complex enough to allow a very rich and interesting
physics. The phase structure of large N lattice gauge theory on the 4-torus is a good example
of this richness. Several transitions were identified and studied in the last few years, e.g. the
‘bulk’ transition [1], the finite temperature deconfining transition [2] and the recently discovered
transitions between phases with a different number of broken directions [3]; a recently conjectured
non-analyticity associated with the physical size of Wilson loops might also join this list [3].

The purpose of this paper is to present some preliminary results of a numerical study on the
phase structure of 4D Euclidian pure SU(∞) gauge theory.

2. TEK model

A very useful alternative to the usual approach of large N extrapolations in lattice gauge theory
[4] is the idea of space-time reduction [5]. Due to factorization, the Schwinger-Dyson (loop)
equations for infinite- and finite-volume lattice gauge theories coincide in the large N limit. This
means that space-time degrees of freedom become spurious at large N, so that the properties of the
SU(∞) gauge theory can be analyzed with very small lattices (in extremis with an one-point lattice),
as long as the gauge group is large enough. This trade between space-time and color degrees of
freedom allows us to analyze very large gauge groups without great computational effort.

The twisted Eguchi-Kawai (TEK) model is a particular case of a reduced model, consisting of
a SU(N) gauge theory defined on a twisted 14 lattice. It should reproduce a SU(N) gauge theory
defined on a periodic L4 lattice with the standard Wilson action up to O( 1

N2 ) corrections. The TEK
action is given by

STEK(U) = bN
4

∑
µ>ν

Tr(ZµνUµUνU†
µU†

ν +h.c.), (2.1)

where b = 1
g2N is the inverse ’t Hooft coupling, Zµν = exp

(

2πi
N nµν

)

is the twist, nµν is an anti-

symmetric tensor chosen to be nµν = L for all µ > ν , and L4 = N2 [6]. In addition to the usual
gauge symmetry, Uµ 7→ ΩUµΩ† (Ω∈ SU(N)), the TEK action (2.1) also has a global Z4

N symmetry,
Uµ 7→ zµUµ (zµ ∈ ZN), which is unbroken for all values of the coupling b. The observables of the
TEK model are obtained from the ones in the standard Wilson theory by making the substitution
Uµ(x) 7→ D(x)UµD(x)†, where D(x) = ∏4

µ=1 Γxµ
µ and Γµ are the vacuum matrices that extremize

eqn(2.1). In particular, the reduced Wilson and Polyakov loops are of the form, respectively,

W (I,J) =
1
N

TrZIJ
µνU I

µUJ
νU†

µ
I
U†

ν
J
, (2.2)

Pµ =
1
N

TrUL
µ . (2.3)

The equivalence between the standard Wilson theory and the TEK model states that the expectation
values of gauge-invariant observables in these models should coincide up to O( 1

N2 ) corrections:

〈O[U ]〉W = 〈O[DUD†]〉TEK +O

(

1
N2

)

. (2.4)
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Figure 1: Effect of the ‘bulk’ transition on the eigenvalue spectrum of the plaquette, simulated in the SU(36)
TEK model at fixed coupling b = 0.3540: a spectral gap forms in the ‘weak-coupling’ phase.

3. Wilson loop non-analyticity

The ‘bulk’ transition is a lattice artifact that affects 4D lattice gauge theories with gauge group
SU(N ≥ 5), occurring at a critical coupling bc ≈ 0.36 [1]. It is strongly first order and manifests
itself by a non-analytic change in the eigenvalue spectrum of the plaquette: in the ‘bulk’ phase
the eigenvalue spectrum is spread over the whole unit circle1, while in the ‘weak-coupling’ phase a
spectral gap forms around λ =−π (Fig.1). Recently [3], it was conjectured that a similar transition
might occur for larger Wilson loops that would affect their eigenvalue spectrum in a similar way:
at N = ∞ a spectral gap would form (non-analytically) around λ = −π , for a specific critical value
of the coupling that would scale with the physical size of the Wilson loop. We looked for this
transition in numerical simulations performed in both the standard Wilson theory and the TEK
model.

3.1 Method

The method used to detect the formation of a gap in the eigenvalue spectrum of Wilson loops
consisted in measuring the changes in the fluctuations of their individual eigenvalues, λi. For that
purpose we considered the following ratio of correlation functions:

R =
〈λ 2

1 〉−〈λ1〉2

〈λ 2
N
2

〉−〈λ N
2
〉2 (3.1)

This quantity is gauge-invariant, because it only depends on the eigenvalues of the Wilson loop.
It corresponds to the fluctuations of the eigenvalue closest to λ = −π , λ1, normalized by the fluc-
tuations of the one closest to λ = 0, λ N

2
. For small b the eigenvalue spectrum is spread over the

whole interval [−π,π], without gaps, which leaves enough room for the individual eigenvalues to
fluctuate; for large b there is a gap, so the eigenvalues are squeezed and have less room to fluctuate

1The eigenvalues of SU(N) matrices are just phases of the form eiλ
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Figure 2: Ratio of correlations R vs coupling b, in the SU(81) TEK model for Wilson loops of several sizes.
There is a clear first order ‘bulk’ transition for the plaquette, W (1,1), as expected. Transitions for larger
loops also exist, but they are very smooth.

(Fig.1). The fluctuations of the central eigenvalues like λ N
2

are in general more affected by this

squeezing (i.e. decrease faster) then the fluctuations of the outer ones, which results in an increas-
ing of the ratio R across the transition from a gapless to a gapped phase. Therefore, if the formation
of a gap in the eigenvalue spectrum of Wilson loops is to be a non-analytical process, we also
expect the ratio R to show a sudden jump at the same critical value of the coupling b.

3.2 Results

We performed Monte Carlo simulations to calculate the ratio R of eqn(3.1). We simulated
the TEK model with gauge groups N = 25,36,49,64,81 (which correspond to effective lattices of
size L = 5,6,7,8,9, respectively); we also simulated the standard Wilson theory with gauge groups
N = 6,12 on a 64 lattice. The graph in Fig.2 shows the change of R with the coupling b for Wilson
loops of several sizes and in the SU(81) TEK model.

The ‘bulk’ transition, at b ≈ 0.35, has a very clear non-analytic effect on R for all Wilson loops
(especially for the plaquette). For the transitions at larger values of b associated with the formation
of a gap in the eigenvalue spectra of large Wilson loops, however, the situation is different: the
transitions can be easily seen to exist (Fig.2), but they are very smooth. Justifications for this
smooth behavior could be 1) R is not a good candidate for an order parameter of the transition, 2)
the transition exists at N = ∞, but has large 1

N corrections, or 3) there isn’t a non-analyticity at all,
only a smooth crossover (or it might not even scale correctly with the physical size of the Wilson
loops). The answer to these questions is still unknown to us and are being checked. All we can say
from these results is that there are in fact transitions, but also that it is very hard to tell how they
evolve with N. If one compares how R changes with b for several gauge groups and for a Wilson
loop of fixed lattice size, W (3,3) for example, we notice a very slow evolution with increasing N
towards a sharper transition (Fig.3). This tendency could result in a non-analyticity at large N, but
the data doesn’t allow us to reach a definitive conclusion.
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Figure 3: Ratio of correlations R vs coupling b, for Wilson loops of fixed lattice size, W (3,3), and for
several gauge groups. The transition shows a slow evolution towards a sharper transition for increasing N,
but the data doesn’t allow us to reach a definitive conclusion.

4. Polyakov loop transitions

The Polyakov loop is a gauge-invariant observable that winds around a non-contractible loop
of the 4-torus. In the standard Wilson picture, its expectation value 〈Pµ〉W monitors the deconfining
transition in pure SU(N) gauge theories, serving as its order parameter. This transition is associated
with the spontaneous breaking of a global ZN symmetry.

The symmetry group, ZN , acts on Polyakov loops in the following way:

Pµ 7→ zPµ (z ∈ ZN). (4.1)

This action consists in multiplying all links in a given layer of the lattice, {Uµ(x)|µ=constant,
xµ=constant}, with an element z ∈ ZN ; consequently, all Polyakov loops in the µ-direction come
multiplied by z. In the confined phase the ZN symmetry is realized and 〈Pµ〉W is forced to be zero,
while in the deconfined phase that symmetry is spontaneously broken and there are N possible
deconfined phases, 〈Pµ〉W ∝ exp( 2πik

N ) ∈ ZN , k = 0, . . . ,N −1.
In the TEK model, however, the gauge fields live on a 14 lattice (there is only one layer of

links in each direction) and the reduced Polyakov loops are defined as the Lth power of the same
link variable, eqn(2.3). Therefore, the symmetry group that acts on the reduced Polyakov loops is
ZL and not ZN , due to the Z4

N symmetry of the TEK action:

Uµ 7→ zµ Uµ ⇒ Pµ 7→ zL
µ Pµ (zµ ∈ ZN ⇒ zL

µ ∈ ZL). (4.2)

This ZL symmetry of the reduced Polyakov loops breaks at a given critical coupling, which in
all the numerical simulations performed coincided with the ‘bulk’ transition. The corresponding
‘confined’ phase is characterized by 〈Pµ〉TEK = 0, just like in the standard Wilson theory, while
in the ‘deconfined’ phase (where the ZL symmetry is broken) there are only L =

√
N possible

deconfined phases, 〈Pµ〉TEK ∝ exp( 2πik
L ) ∈ ZL, k = 0, . . . ,L− 1. This property reveals an explicit

difference between the TEK reduced models and their equivalent standard Wilson theory: they
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haven’t the same number of Polyakov loop phases, contrary to what one might naïvely expect from
eqn(2.4). This observation might lead to the question of whether the usual argument of equivalence
between TEK models and standard Wilson theory using lattice Schwinger-Dyson equations at large
N also applies to non-contractible loops, and consequently if a study of the deconfining transition
using reduced Polyakov loops is valid.

5. Conclusions

We presented some preliminary results of a numerical study on the phase structure of large N
gauge theories on the 4-torus. We showed evidence of the existence of transitions associated with
a gap formation in the eigenvalue spectrum of large Wilson loops. These transitions, however, are
very smooth and their evolution with increasing N does not allow conclusions about their nature at
N = ∞. To conclusively infer from numerical calculations the existence (or not) of the Wilson loop
non-analyticity discussed in section 3 we might need to simulate larger gauge groups (N > 81), for
which the TEK model is the only relevant and practicable method.

We also checked the behavior of reduced Polyakov loops in the TEK model. It can be easily
seen from symmetry arguments that reduced Polyakov loops behave differently from their standard
Wilson theory equivalents, contrary to what one might naïvely expect from eqn(2.4). Therefore, the
transitions of reduced Polyakov loops might not be a good tool for studying the large N deconfining
transition.
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