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Lattice and renormalons in heavy quark physics

Antonio Pineda∗†

Dept. d’Estructura i Constituents de la Matèria,
U. Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia, Spain
E-mail: pineda@ecm.ub.es

Perturbative expansions of QCD observables in powers of αs are believed to be asymptotic and
non-Borel summable due to the existence of singularities in the Borel plane (renormalons). This
fact is connected with the factorization of scales (which is inherent to QCD and asymptotic free-
dom) and jeopardizes the convergence of the perturbative expansion and the accurate determina-
tion of power-suppressed corrections. This problem is more acute for physical systems composed
by one or more heavy quarks. In lattice regulations, it reflects on the appearance of power-like
divergences in the inverse of the lattice spacing for a series of quantities (Λ̄, gluelump masses,
the singlet and hybrid potentials, ...) making that the continuum limit can not be reached for
them. Nevertheless, all these problems are solved within the framework of effective field theo-
ries with renormalon substraction. This allows us to obtain convergent perturbative series and to
unambiguously define power corrections. In particular, one can connect with lattice results. Re-
markably enough the dependence on the lattice spacing can be predicted by perturbation theory.
This framework has been applied to the prediction of the gluelump masses and the singlet and
octet (hybrid) potentials at short distances, as well as to their comparison with lattice simulations.
Overall, very good agreement with data is obtained.
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1. Introduction

The perturbative series relating the pole and the MS mass:

mOS = mMS +
∞

∑
n=0

rn(ν)αn+1
s (ν) , (1.1)

suffers from renormalon ambiguities, which makes this series asymptotic and non-Borel summable.
The behavior of the perturbative expansion at large orders is dictated by the closest singularity to
the origin of its Borel transform:

B[mOS](t(u)) = Nmν
1

(1−2u)1+b

(

1+ c1(1−2u)c2(1−2u)2 + · · ·
)

+(analytic term), (1.2)

where (u = β0t
4π )

mOS = mMS +

∞
∫

0

dt e−t/αs B[mOS](t) , B[mOS](t) ≡
∞

∑
n=0

rn
tn

n!
. (1.3)

The asymptotic behavior of the coefficients of the perturbative series then reads

ras
n

n→∞
= Nm ν

(

β0

2π

)n Γ(n+1+b)

Γ(1+b)

(

1+
b

(n+b)
c1 +

b(b−1)

(n+b)(n+b−1)
c2 + · · ·

)

. (1.4)

Quite remarkable, it is possible to obtain:
a) the coefficients b, c1, c2,.., exactly through the use of the renormalization group [1, 2] (actually
they will depend on the coefficients of the beta function: β0, β1, ...).
b) approximate determinations of the normalization constant, Nm, [2] by defining new functions
with improved analitical properties in the Borel plane [3], such that for those it is possible to
perform an analytic expansion in the Borel parameter u. The determination of Nm is quite solid and
survives a series of checks, see [2, 4]:

• Good convergence of the perturbative series in u that determines Nm.

• Mild scale dependence of Nm.

• Consistency with the determination of NVs , the normalization constant of the infrared renor-
malon of static singlet potential Vs. 2Nm +NVs ' 0.

• Agreement of the absolute value and scale dependence of the exact and asymptotic estimates
of the coefficients of the perturbative series. See Fig. 1.

2. Applications

As we can see in Fig. 1, in heavy quark physics the asymptotic behavior sets in at quite low
orders in perturbation theory, and the powers of ln[ν/m] effectively exponentiate, becoming a linear
power-like divergence in the factorization scale1:

rn
n→∞
∼ mMS

(

β0

2π

)n

n!Nm

n

∑
s=0

lns[ν/mMS]

s!
. (2.1)

1At this stage the similitude with a 1/a power-like divergence one would find in lattice computations is evident.
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Figure 1: Plots of the exact (rex
n ) and asymptotic (ras

n ) value of rn(ν) at different orders in perturbation theory
as a function of ν/mMS. The scale dependence of rex

3 is known exactly. The constant term has been fixed
using renormalon dominance.

The associated lack of convergence of the perturbative series at low orders in perturbation theory
becomes a problem in applications to heavy quark physics. The solution proposed in Ref. [2] was
to shift the n! factorial behavior from the perturbative series to the low energy matrix elements,
where it properly belongs, since this behavior is associated to low energy dynamics. For the heavy
quark mass, this implies to work with the RS mass:

mRS(ν f ) = mOS −δmRS = mOS −
∞

∑
n=0

Nm ν f

(

β0

2π

)n

αn+1
s (ν f )

∞

∑
k=0

ck
Γ(n+1+b− k)

Γ(1+b− k)
. (2.2)

This framework of renormalon subtraction can be applied to any effective theory with heavy quarks:
HQET, NRQCD, pNRQCD, ... (see [5, 6] for reviews). In this scheme some parameters become
dependent on the scale, ν f , and scheme of renormalon subtraction. Here we will focus on a series
of (quasi-) observables that can be studied in the static limit:

〈MB/D〉 = mb/c,RS(ν f )+ Λ̄RS(ν f )+O(1/mb/c,RS) , (2.3)

Es(r) = 2mRS(ν f )+Vs,RS(r;ν f )+O(r2) Vs = −CFαs/r + · · · , (2.4)

EH(r) = 2mRS(ν f )+Vo,RS(r;ν f )+ΛRS
H (ν f )+O(r2) Vo = 1/(2Nc)αs/r + · · · , (2.5)
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where H labels the hybrid/gluelump state at short distances, and the label RS for Vs/o, Λ̄, ΛH means
that the leading infrared renormalon has been subtracted (added) from the perturbative series. The
use of this scheme significantly improves the convergence of the perturbative series and the agree-
ment with experiment and lattice simulations, when available, see [2, 4, 7]. Examples include the
determination of the 1S bottomonium mass and the agreement with the singlet and hybrid poten-
tials computed in the lattice at short distances. Another nice example is the accurate description of
the dependence on the lattice spacing of the static singlet and hybrid potential, Λ̄ and ΛH using per-
turbation theory. This is possible because one may also consider to do the renormalon subtraction
in a scheme different from the one presented here (as far as the subtracted quantity has the same
non-analytic behavior in the Borel plane this would be legitimate). Here we would like to connect
with the lattice scheme. In practice, this means to perform the replacements: {RS → L,ν f → 1/a}.
The relation between both schemes is renormalon free and governed by a convergent series as we
shall next see.

3. Perturbative running of 1/a and scheme dependence

Due to the existence of renormalon ambiguities (1/a divergences in the lattice language), it is
not possible to get the continuum limit of the static singlet and octet potential, gluelump masses,
ΛH and Λ̄. Nevertheless, their dependence on 1/a is free of renormalons and can be predicted by
perturbation theory:

2(Λ̄L(1/a)− Λ̄L(1/a′)) = Vs,L(r;1/a)−Vs,L(r;1/a′) = CF

(

1
a
−

1
a′

)

v1αs + · · · . (3.1)

The coefficients v1, v2, v3 are known in pure gauge theory with Wilson action [8, 9]. A similar
renormalon-free equality can be constructed for the octet potential and gluelump masses.

ΛL
H(1/a)−ΛL

H(1/a′) = [Vo,L(r;1/a)−Vs,L(r;1/a)]−
[

Vo,L(r;1/a′)−Vs,L(r;1/a′)
]

=
CA

2

(

1
a
−

1
a′

)

v′1αs + · · · , (3.2)

where v′1, v′2 are exactly known and v′3 in the large Nc limit.
We show the plot corresponding to Eq. (3.1) in Fig. 2, where the static potential data has been

normalized to agree with Λ̄ at one specific value of the lattice spacing

ΛL
pot(a) =

1
2

V L
s (r0;a)+∆. (3.3)

We can see how nicely the perturbative prediction in the lattice scheme (continuous green line in the
first plot in Fig. 2) agrees with the lattice data [10, 8, 11]. Significantly, only for one collaboration
the slope of the lattice data points slightly differs from the prediction of perturbation theory [8]. We
can also see the convergence of the perturbative series relating the lattice and the RS scheme, since
it is also renormalon free. The final value for Λ̄RS, Λ̄RS(ν f = 2.5r−1

0 ) = 1.17r−1
0 , agrees within

errors with the result obtained directly from experiment using a combined analysis of the ϒ(1S)

and the B meson mass [2, 7], Λ̄RS(ν f = 2.5r−1
0 ) = 0.92r−1

0 .
A similar analysis can be performed for the octet potential and gluelump masses [7]. In this

case there is less statistics but the slope predicted by perturbation theory nicely agrees with the
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Figure 2: The first figure shows the binding energy ΛL
pot (full diamonds [10]), in comparison with ΛL

(open diamonds [8, 11]). NLO, NNLO and NNNLO refer to transformations of ΛL
pot into the RS scheme to

different orders in perturbation theory. The solid line corresponds to the NNNLO evaluation in the lattice
scheme with the central value ΛRS

(ν f = 9.76r−1
0 ) = 1.70r−1

0 . The second figures shows ΛL
pot translated into

the RS scheme at NLO (squares), NNLO (pentagons) and NNNLO (circles). The solid line corresponds to
the principal value running in the RS scheme. The error band corresponds to the prediction ΛRS

(9.76r−1
0 ) =

(1.70±0.04)r−1
0 , and includes the uncertainty due to ΛMS = (0.602±0.048)r−1

0 . For details see [7].
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one obtained from the gluelump mass ΛL
B measured at different lattice spacings [12]. Moreover,

the perturbative series governing the change to the RS scheme converges well. Finally, it is quite
comforting that the same value, within errors, is obtained for ΛB from either the hybrid potential,
ΛRS

B (ν f = 2.5r−1
0 )= 2.25r−1

0 , or from the direct lattice determination, ΛRS
B (ν f = 2.5r−1

0 ) = 2.31r−1
0 .

All these findings can be found summarized in Fig. 14 in [7].
In brief, we can relate processes computed with different scales/schemes using well-behaved

(renormalon free) perurbative series:

Λ̄L(1/a) ⇐⇒ Λ̄L(1/a′)
m (ν f = 1/a) m (ν ′

f = 1/a′)
Λ̄RS(ν f ) ⇐⇒ Λ̄RS(ν ′

f )











The circle can be closed using perturbation theory

and a similar circle applies for V L
s (r;1/a), V L

o (r;1/a) and ΛL
H(1/a).

4. Conclusions

We have accumulated a lot of evidence in favour of the renormalon dominance in heavy quark
physics. A proper handle of these effects appears to be crucial to accurately describe either lattice
or experiment. We point out that the dependence on the lattice spacing can be obtained from
perturbation theory with good accuracy and well controlled errors. Therefore, lattice simulations
in heavy quark physics can be peformed with quite coarse lattices and yet obtain accurate results.
This may have important consequences to diminish errors in lattice simulations.
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