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We investigate the Yukawa model in whichNf fermions are coupled with a scalar fieldφ through

a Yukawa interaction. The phase diagram is rather well understood. If the fermions are massless,

there is a chiral transition atTc: for T < Tc chiral symmetry is spontaneously broken. AtNf =

∞ the transition is mean-field like, while, for any finiteNf , standard arguments predict Ising

behavior. This apparent contradiction has been explained by Kogut et al., who showed by scaling

arguments and Monte Carlo simulations that in the large-Nf limit the width of the Ising critical

region scales as a power of 1/Nf , so that only mean-field behavior is observed forNf strictly

equal to infinity. We will show how the results of Kogut et al. can be recovered analytically in the

framework of a generalized 1/Nf expansion. The method we use is a simple generalization of the

method we have recently applied to a two-dimensional generalized Heisenberg model.
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Finite-temperature transitions in quantum field theory models have been the object of many
theoretical studies. Here we investigate the transition in the 2+1 Yukawa model(but the arguments
can be generalized to generic (d+1) models,d ≤ 4) in which a scalar field is coupled toNf de-
generate fermions by a Yukawa interaction. As discussed in Ref. [1] this model shows a peculiar
behavior forNf → ∞. For finiteNf , dimensional reduction predicts that the finite-temperature tran-
sition, if continuous, belongs to the two-dimensional Ising universality class. On the other hand,
for Nf = ∞ an explicit calculation gives mean-field behavior [2]. These two apparently contradic-
tory results were explained in [1] in terms of acritical-region suppression. A similar behavior was
observed in a generalizedO(N) σ model in [3] and an explanation was provided in [4]. The same
techniques developed in [4] can be applied here to obtain an analytic description of the crossover
from mean-field to Ising behavior in the large-Nf limit.

We will investigate the Yukawa model with action [1]

S [φ ,ψ,ψ ] =
∫

d3r

[
Nf

2

(
∂φ

)2
+Nf

µ
2

φ2 +Nf
λ
4!

φ4 +
Nf

∑
f=1

ψ f ( /∂ +gφ +M)ψ f

]
, (1)

where the integral is overR2× [0,1/T] and we use periodic (antiperiodic) boundary conditions for
the boson (fermion) in the “temporal" direction. We imagine the theory to be somehow regularized
with a cutoff that sets the energy scale. The chosen regularization is not relevant for the discussion,
and, for instance, the reader may imagine using the lattice action with staggeredfermions studied
in [1].

In order to determine the behavior forNf = ∞ we integrate out the fermionic degrees of free-
dom. Starting from (1) we obtain

e−Nf S̃eff[φ ] =
∫ Nf

∏
f=1

dψ f dψ f e−S [φ ,ψ,ψ] (2)

S̃eff[φ ] =
1
2

(
∂φ

)2
+

µ
2

φ2 +
λ
4!

φ4− tr log
(

/∂ +gφ +M
)

. (3)

For Nf = ∞ we can perform an expansion around a translation-invariant saddle point φ . The sta-
tionarity condition gives the gap equation

µm+ 1
6λm3 = (m+M)T ∑

n∈Z

∫ Λ d2p
(2π)2

1
p2 +(m+M)2 +(2n+1)2π2T2 . (4)

Here we have definedm≡ gφ , µ ≡ µg−2, andλ ≡ λg−4. With this choice, the dependence ong
disappears. Note that the gap equation is symmetric underm→−m, andM →−M so that it is not
restrictive to considerm≥ 0.

We first analyze the model forT = 0. A simple analysis of the gap equation shows that there
are two possibilities forM = 0. There is a critical valueµc such that forµ < µc the relevant
solution of the gap equation is such thatm 6= 0 (chiral symmetry is broken), while in the opposite
case we havem = 0 (no chiral symmetry breaking). ForM 6= 0 the behavior is smooth in the
parameters. In the following we will only be interested in the case in which the zero-temperature
theory shows chiral symmetry breaking. Thus, we shall assumeµ < µc. Parametersλ andµ do
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not play any additional role in the model and thus in the following we will not consider explicitly
the dependence on them.

Let us now consider the behavior forT 6= 0. We restrict the discussion toµ > 0; in this case
symmetry is restored forT → ∞ andM = 0 and therefore, there exists a valueTc such that for
T < Tc, m is a nonvanishing function ofT (chiral symmetry is broken), while forT ≥ Tc, m= 0
(chiral symmetry is restored). Explicitly, by using (4) we obtain the relation

µ = Tc ∑
n∈Z

∫ Λ d2p
(2π)2

1
p2 +(2n+1)2π2T2

c
. (5)

If M 6= 0, the behavior is smooth inT. Thus,T = Tc, M = 0 is a critical point (CP) for model (1).
Close to the CP one can define a thermal scaling fieldut and a magnetic scaling fielduh. Using

the gap equation it is easy to see that we can takeut = (T −Tc)/Tc anduh = M/Tc. Then, for
ut ,uh → 0 at fixedx≡ utu

−2/3
h , one obtains the mean-field equation of state

m/Tc = uh
1/3 f (x) a f(x)3 +bx f(x)+1 = 0 (6)

with a > 0. From (6), ifut = 0, we obtainm∼ uh
1/3, so thatδ = δMF = 3; if uh = 0, we havem∼

ut
1/2 so thatβ = βMF = 1/2. Thus, forNf = ∞, the behavior is of mean-field type, in agreement

with previous results [2]. Note that the condensateΣ = 〈ψψ〉 is proportional toM +m≈ uh
1/3 f (x)

in the scaling limit. A completely analogous discussion holds for the staggered lattice model.
In order to perform the 1/Nf calculation, we expand action (3) around the saddle-point solu-

tion, writing φ = φ + φ̂/
√

Nf . We obtain the expansion

S̃eff[φn] =
1
2 ∑

n

∫
d2p

(2π)2 φn(p)∆−1
n (p)φ−n(−p)

+
1

3!
√

Nf
∑
n,m

∫
d2p

(2π)2

d2q
(2π)2 Ṽ(3)(p,n;q,m;−p−q,−m−n)

φn(p)φm(q)φ−n−m(−p−q)

+
1

4!Nf
∑

n,m,t

∫
d2p

(2π)2

d2q
(2π)2

d2k
(2π)2 Ṽ(4)(p,n;q,m;k, t;−p−q−k,−m−n− t)

φn(p)φm(q)φt(k)φ−n−m−t(−p−q−k), (7)

where the neglected terms are of order 1/N3/2
f . Hereφn(p) is the Fourier transform of̂φ(x,r)

(x∈ [0,T−1], r,p ∈ R
2):

φ̂(x,r) = ∑
n∈Z

e2π ixnT
∫

d2p
(2π)2 φn(p)eip·r. (8)

In the standard approach, 1/Nf expansions are obtained by performing a perturbative expansion of
theory (7) in powers of 1/Nf . This is possible here only far from the CP, since at the CP the fieldφ0

is massless and the expansion is plagued by infrared divergences. Indeed, starting from the explicit
expression

g−2∆−1
0 (p = 0) = µ +

1
2

λm2−T ∑
n∈Z

∫ Λ d2q
(2π)2

q2 +(2n+1)2π2T2− (m+M)2

[q2 +(2n+1)2π2T2 +(m+M)2]2
(9)
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and using (5), we find that close to the CP

∆−1
0 (0) ∼ m2,(m+M)2 (10)

No singularity arises for the other modesφn, since∆−1
n (p = 0) = (2πnT)2 at the CP. The infrared

singularity of∆0(p) is of course expected:∆−1
n (p) is proportional to the square of the mass of the

boson field that should vanish at the CP (at the CP the correlation length diverges).
In order to deal with this singularity we use the technique we have recently applied in [4] to

a generalized Heisenberg model in two dimensions. We first integrate out themassive modes and
obtain an effective action for the zero mode:

e−Seff[ϕ] =
∫

∏
n6=0

dφne−S̃eff[φ ]. (11)

The effective actionSeff[ϕ] has an expansion in powers of 1/Nf of the form

Seff[ϕ] = Hϕ(0)+
1
2

∫

p
[K(p)+ r]ϕ(p)ϕ(−p)

+

√
u

3!

∫

p

∫

q
V(3)(p,q,−p−q)ϕ(p)ϕ(q)ϕ(−p−q)

+
u
4!

∫

p

∫

q

∫

s
V(4)(p,q,s,−p−q− s)ϕ(p)ϕ(q)ϕ(s)ϕ(−p−q− s), (12)

whereϕ = aφ0 +b, u = c/Nf , anda, b, c are functions ofT andM fixed by the following normal-
ization conditions:

K(p) = p2 +O(p4) for p → 0

V(4)(0,0,0,0) = 1

V(3)(0,0,0) = 0

(13)

for anyT andM close to the CP. The last condition is not trivial and can be imposed becausethe
same property holds at the CP forṼ(3)(0,0;0,0;0,0). Again, in (12) we have neglected higher-
order terms in 1/Nf .

At this point, the origin of the mean-field–to–Ising crossover is quite clear. For Nf = ∞ (u= 0)
the zero mode is a free field and thus the model shows mean-field behavior. On the other hand,
for finite Nf , one must consider the full theory (12), which is nothing but a generalized ϕ4 theory
whose critical behavior belongs to the Ising universality class. Note that in(12) we have discarded
higher-order verticesϕn that are multiplied by higher powers of 1/Nf : one can show that they do
not play any role in the crossover limit we shall describe below [4].

We wish now to compute the crossover behavior. Formally, the momentum dependence of the
vertices is irrelevant (one may think of the formal continuum limit in lattice theories) and thus we
can simply consider (this relation becomes exact in the infrared limit, in which oneonly considers
the long-distance behavior; for a proof in a lattice framework, see [4])

Scont[ϕ] =
∫

d2r
[
Hϕ + 1

2(∂ϕ)2 + 1
2rϕ2 + 1

4! uϕ4] . (14)

Then, we defineχ(r) = ϕ(r/
√

u) and note that we can rewrite the action as

Scont[χ] =
∫

d2r
[

H
u

χ +
1
2
(∂ χ)2 +

r
2u

χ2 +
1
4!

χ4
]
. (15)
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In terms ofχ, the action is a function ofH/u andr/u. Then, consider the zero-momentum con-
nected correlation functionχn. We have

χn =
∫

d2r2 . . .d2rn〈ϕ(0)ϕ(r2) . . .ϕ(rn)〉conn

= un−1
∫

d2r2 . . .d2rn〈χ(0)χ(r2) . . .χ(rn)〉conn= un−1 fn(H/u, r/u), (16)

i.e. u1−nχn is a scaling function ofH/u andr/u. Unfortunately, the derivation is not correct, since
we have not taken into account the presence of the cutoff that breaks scale invariance. However,
in two dimensions (and, in general, ford < 4) only a mass renormalization (a redefinition of the
parameterr) is needed in order to take care of divergencies. By a proper treatment[5] one can
show that there is a functionrc(u) (in two dimensions the determination of this function requires
only a one-loop computation since the only diverging diagram is the tadpole) such that, fort ≡
r − rc(u)→ 0 (infrared limit),H → 0, andu→ 0 (weak-coupling limit), the correlation functionχn

satisfies the scaling relationχn = un−1 fn(H/u, t/u). These results extend to theory (12) although
the presence of odd powers ofϕ requires also a renormalization ofH. In [4] we showed that one
can find functionsrc(u) andHc(u), such that, fort ≡ r − rc(u) → 0, h≡ H −Hc(u) → 0, u→ 0 at
fixedh/u andt/u, the correlation functionχn scales as

χn ∼ u1−n fn(h/u, t/u). (17)

Functionsfn(x,y) are universal: they do not depend on the explict form of the vertices and of K(p)

and can be computed directly in the continuum theory. They are the crossover functions that relate
mean-field and Ising behavior. Consider, for instance, the caseh = 0. For t fixed andu → 0 we
obtain the standard perturbative expansion; thus,t/u→ ∞ corresponds to the mean-field limit. On
the other hand, fort → 0 atu fixed, Ising behavior is obtained;t/u= 0 is the nonclassical limit. By
varyingt/u between 0 and∞ one obtains the full universal crossover behavior. The universalityof
the crossover implies that these functions can be computed in completely different settings: one can
use field theory [5, 6], generalized Heisenberg models such as those considered in [4], or medium-
range models (see [6, 7] and references therein). For instance, crossover curves for the effective
exponents forM = 0 can be found in [6] (field theory) and in [8] (in this case the correspondence
is R2 = bNf , where the constantb can be computed by matching the corresponding perturbative
expansions at one loop).

The analysis of [4] can be simplified in the present model since chiral symmetry is preserved
by regularization. In this case the relations

H = 0 V(3)(p,q,r) = 0 (18)

hold at the CP. They implyHc(u) = 0.
In theory (12)r, H, rc(u), andu are functions ofT, M, Nf . Thus, the next step consists in

determining how these quantities should scale close to the CP in order to keepxt ≡ Nf (r − rc(Nf ))

andxh ≡ Nf (H −Hc(Nf )) fixed. A calculation gives [4]

Tc(Nf )−Tc(Nf = ∞) ≈ a+blogNf

Nf
, (19)
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wherea andb can be explicitly computed. Moreover, we have

T −Tc(Nf )

Tc(Nf )
∼ xt

Nf

M
Tc(Nf )

∼ xh

Nf
3/2

. (20)

Ising behavior is observed forxt ,xh � 1. This confirms the critical-region suppression predicted
in [1]: The width of the Ising critical region scales asN−1

f in the thermal direction and asN−3/2
f in

the magnetic one. ForM = 0 one can also characterize the crossover in terms of the bosonic mass
Mbos. Indeed, similar arguments (see [6]) allow us to predict

Mbos

Tc
∼ 1

N1/2
f

fM[xt ≡ Nf (T −Tc)/Tc], (21)

where fM(x) is a crossover function that behaves asx for x � 1 (ν = 1 in the Ising theory) and
as

√
x for x � 1 (ν = 1/2 for a Gaussian field). This relation shows that fixingxt is essentially

equivalent to fixingxM = N1/2
f Mbos/Tc: Ising behavior is observed forxM � 1, mean-field behavior

in the opposite case. This is exactly the scaling condition discussed in [1].
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