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We investigate the Yukawa model in whith fermions are coupled with a scalar fighthrough

a Yukawa interaction. The phase diagram is rather well gtded. If the fermions are massless,
there is a chiral transition &: for T < T chiral symmetry is spontaneously broken. Mt =

oo the transition is mean-field like, while, for any finitds, standard arguments predict Ising
behavior. This apparent contradiction has been explaigéthbut et al., who showed by scaling
arguments and Monte Carlo simulations that in the Iafigéimit the width of the Ising critical
region scales as a power ofN;, so that only mean-field behavior is observed Kgrstrictly
equal to infinity. We will show how the results of Kogut et ahnche recovered analytically in the
framework of a generalized/N; expansion. The method we use is a simple generalizatioreof th
method we have recently applied to a two-dimensional géimethHeisenberg model.
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Large-N behavior of the Yukawa model: analytic results Bortolo Matteo Mognetti

Finite-temperature transitions in quantum field theory models have been tlat objaany
theoretical studies. Here we investigate the transition in the 2+1 Yukawa rfimd¢he arguments
can be generalized to generittHl) models,d < 4) in which a scalar field is coupled td: de-
generate fermions by a Yukawa interaction. As discussed in Ref. [1] thiehsbows a peculiar
behavior folN; — oo, For finiteN¢, dimensional reduction predicts that the finite-temperature tran-
sition, if continuous, belongs to the two-dimensional Ising universality cl@ssthe other hand,
for Ny = o an explicit calculation gives mean-field behavidr [2]. These two applgreontradic-
tory results were explained ifif[1] in terms o€atical-region suppressianA similar behavior was
observed in a generalizéd(N) o model in [3] and an explanation was provided[ih [4]. The same
techniques developed ifi [4] can be applied here to obtain an analytidptiestof the crossover
from mean-field to Ising behavior in the lard&-limit.

We will investigate the Yukawa model with actidp [1]
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where the integral is ovéR? x [0,1/T] and we use periodic (antiperiodic) boundary conditions for
the boson (fermion) in the “temporal” direction. We imagine the theory to be somedgularized
with a cutoff that sets the energy scale. The chosen regularization isleent for the discussion,
and, for instance, the reader may imagine using the lattice action with stadgeredns studied
in [f].

In order to determine the behavior filf = c we integrate out the fermionic degrees of free-
dom. Starting from[{1) we obtain

N
e NiTenlg] _ /J—fl g dus e lowy )
=1
> 1 2 M Ay
Fenl@] = 5(00)°+5 ¢ + 70" —trlog (0+90+M). 3)

For Nt = o we can perform an expansion around a translation-invariant sadiiegpoThe sta-
tionarity condition gives the gap equation
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Here we have defineth= g, 1 = ug 2, andA = Ag—*. With this choice, the dependence gn
disappears. Note that the gap equation is symmetric under—m, andM — —M so that it is not
restrictive to considem > 0.

We first analyze the model far = 0. A simple analysis of the gap equation shows that there
are two possibilities foM = 0. There is a critical valugi, such that forfi < [i, the relevant
solution of the gap equation is such tmat~ O (chiral symmetry is broken), while in the opposite
case we haven = 0 (no chiral symmetry breaking). Fdfl # 0 the behavior is smooth in the
parameters. In the following we will only be interested in the case in which tfeeteenperature
theory shows chiral symmetry breaking. Thus, we shall assiimeli,. Parameterd andfi do
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not play any additional role in the model and thus in the following we will notsaber explicitly
the dependence on them.

Let us now consider the behavior fér£ 0. We restrict the discussion [0 > 0; in this case
symmetry is restored fof — o andM = 0 and therefore, there exists a valliesuch that for
T < Te, mis a nonvanishing function of (chiral symmetry is broken), while foF > T,, m= 0
(chiral symmetry is restored). Explicitly, by usir[d (4) we obtain the relation

o1 /" d%p 1 )
H= cngz (2m)2 p2+ (2n+1)2m2T2

If M = 0, the behavior is smooth ifi. Thus,T = Tc, M = 0 is a critical point (CP) for mode[](1).

Close to the CP one can define a thermal scaling fiedthd a magnetic scaling fielgl. Using
the gap equation it is easy to see that we can take (T — T¢)/T. andu, = M/T.. Then, for
Ut, Un — O at fixedx = uu, —2/3 , One obtains the mean-field equation of state

m/Te = upY 3£ (x) af(x)®+bxf(x)+1=0 (6)

with a > 0. From [B), ifu = 0, we obtainm ~ u,'/3, so thatd = éyr = 3; if u, = 0, we havem~
w2 so thatB = Bur = 1/2. Thus, forN; = o, the behavior is of mean-field type, in agreement
with previous result§]J2]. Note that the condensate (@) is proportional taM +m~ up/3f (x)
in the scaling limit. A completely analogous discussion holds for the staggeree latidel.

In order to perform the AN; calculation, we expand actiof] (3) around the saddle-point solu-
tion, writing ¢ = ¢+ @//Nf. We obtain the expansion
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where the neglected terms are of ord¢Ni/2. Here gn(p) is the Fourier transform of(x,r)
(xe[0,T7Y,r,pcR?):

~ . " de .

o(x.r) = 3 ™ / @(p)e"". (8)
ngZ (2m)2

In the standard approach/N; expansions are obtained by performing a perturbative expansion of

theory [T) in powers of AN¢. This is possible here only far from the CP, since at the CP thegield

is massless and the expansion is plagued by infrared divergencesd|rafarting from the explicit

expression

A d2q 4 (2n+1)2PT? — (M4 M)?
2 [g2+ (2n+1)212T2 + (m+M)?)2
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and using|(5), we find that close to the CP
Dy (0) ~ P, (m+M)? (10)

No singularity arises for the other modgs sinceA;(p = 0) = (2rmT)? at the CP. The infrared
singularity ofAg(p) is of course expecteds,!(p) is proportional to the square of the mass of the
boson field that should vanish at the CP (at the CP the correlation lengttyes).

In order to deal with this singularity we use the technique we have receniliedpn [4] to
a generalized Heisenberg model in two dimensions. We first integrate oniatssive modes and
obtain an effective action for the zero mode:

g Teld] _ d(pne—»‘ieﬁ[ | (11)
n
The effective actione[¢] has an expansion in powers ofN; of the form
Ferld] = HO(0)+ 5 [K() +118 (P)8 ()
+§ /p /q V®(p,q,~p—a)¢(p)$(a)¢(—p—aq)
[ [VOmas-p-a-9sme@oes-p-a-s. (12

where¢ = ag + b, u= c/Nt, anda, b, c are functions off andM fixed by the following normal-
ization conditions:

K(p) = p>+0O(p*) forp — 0

v#(0,0,0,0) =1 (13)

v(©(0,0,00=0
for any T andM close to the CP. The last condition is not trivial and can be imposed bettaise
same property holds at the CP 1‘65?3)(0,0;0,0;0, 0). Again, in (I2) we have neglected higher-
order terms in INs.

At this point, the origin of the mean-field—to—Ising crossover is quite cleamF= c (u= 0)
the zero mode is a free field and thus the model shows mean-field behavidghe®@ther hand,
for finite N¢, one must consider the full theory [12), which is nothing but a genechfiZetheory
whose critical behavior belongs to the Ising universality class. Note ttafljrwe have discarded
higher-order verticeg" that are multiplied by higher powers of Mls: one can show that they do
not play any role in the crossover limit we shall describe be[dw [4].

We wish now to compute the crossover behavior. Formally, the momentumakpznof the
vertices is irrelevant (one may think of the formal continuum limit in lattice thepead thus we
can simply consider (this relation becomes exact in the infrared limit, in whicloolyeconsiders
the long-distance behavior; for a proof in a lattice framework, [dee [4])

Front) = [ r [HO+3(00)%+ ro>+ jug?]. 14

Then, we defing((r) = ¢(r /1/u) and note that we can rewrite the action as

_ 2. | H 1 2 T 2. 14
ycont[X]—/dr[UX"‘é(aX) +EX "‘IX . (15)
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In terms ofx, the action is a function afl /u andr /u. Then, consider the zero-momentum con-
nected correlation functiog,. We have

Xn = /d2r2---d2rn<¢(0)¢(r2)...¢(rn)>C°””

_ unfl/d2r2__.dzrn<X(O)X(r2),__X(rn)>C0nn: u" L0 (H /u,r/u), (16)

i.e. ul"x, is a scaling function oH /u andr /u. Unfortunately, the derivation is not correct, since
we have not taken into account the presence of the cutoff that brealsisvariance. However,
in two dimensions (and, in general, fdr< 4) only a mass renormalization (a redefinition of the
parameter) is needed in order to take care of divergencies. By a proper treafffiemne can
show that there is a function(u) (in two dimensions the determination of this function requires
only a one-loop computation since the only diverging diagram is the tadpaodd) that, fort =
r—re¢(u) — O (infrared limit),H — 0, andu — 0 (weak-coupling limit), the correlation functigg
satisfies the scaling relatigg = u"*f,(H/u,t/u). These results extend to theofy](12) although
the presence of odd powers ¢frequires also a renormalization f In [A] we showed that one
can find functions¢(u) andHc(u), such that, fot =r —re(u) — 0,h=H —H¢(u) — 0,u— 0 at
fixed h/u andt/u, the correlation functiorx, scales as

Xn ~ Ut ", (h/u,t/u). (17)

Functionsf,(x,y) are universal: they do not depend on the explict form of the vertice @8 (p)
and can be computed directly in the continuum theory. They are the cesdsoetions that relate
mean-field and Ising behavior. Consider, for instance, the lsas®. Fort fixed andu — 0 we
obtain the standard perturbative expansion; thlis;— c corresponds to the mean-field limit. On
the other hand, far— 0 atu fixed, Ising behavior is obtainetl,u = 0 is the nonclassical limit. By
varyingt/u between 0 and one obtains the full universal crossover behavior. The universaility
the crossover implies that these functions can be computed in completelgiiffettings: one can
use field theory[]5[]6], generalized Heisenberg models such as thosiéeced in[[4], or medium-
range models (se¢|[f] 7] and references therein). For instanssoess curves for the effective
exponents foM = 0 can be found in[]6] (field theory) and ifj [8] (in this case the corredpane
is R% = bN;, where the constarit can be computed by matching the corresponding perturbative
expansions at one loop).

The analysis ofJ4] can be simplified in the present model since chiral symisgireserved
by regularization. In this case the relations

H=0 V& (p,q,r) =0 (18)

hold at the CP. They implif(u) = 0.

In theory [IR)r, H, rc(u), andu are functions ofl, M, Ns. Thus, the next step consists in
determining how these quantities should scale close to the CP in order tekedf (r —rc(N¢))
andx, = Nf (H — Hc(Ny)) fixed. A calculation gives[4]

a+ blogN¢

Te(Nf) — Te(Nf = o) N;

(19)
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wherea andb can be explicitly computed. Moreover, we have

T—TC(Nf)Nﬁ M X
Te(N¢) Nt Te(Nf)  N¢3/2°

(20)

Ising behavior is observed fog,x, <« 1. This confirms the critical-region suppression predicted

in [[]: The width of the Ising critical region scales N$1 in the thermal direction and & /2 in

the magnetic one. Favl = 0 one can also characterize the crossover in terms of the bosonic mass
Mpos INndeed, similar arguments (ség [6]) allow us to predict

Mbos 1 _
T, ~ W fmX =N¢(T —Te)/Te], (21)

where fiy (X) is a crossover function that behavesxa®r x < 1 (v = 1 in the Ising theory) and
as/xfor x> 1 (v = 1/2 for a Gaussian field). This relation shows that fixids essentially
equivalent to fixinggy = Nfl/szos/TC: Ising behavior is observed faf < 1, mean-field behavior
in the opposite case. This is exactly the scaling condition discussfd in [1].
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