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The task of performing dynamical simulations at light quarkmasses remains a challenge to
lattice QCD. Available computing power has and continues toincrease, yet even at the current stage
of multi-Teraflop computing capabilities, algorithmic breakthroughs are needed before the desired
quark masses can be realised. Hybrid Monte Carlo[1] is stillthe most often used algorithm for
generating dynamical configurations. There are three main computational bottlenecks that present
themselves when attempting to simulate lighter fermions.

The first is that of lattice volume. As the quark mass (and hence pion mass) decreases, larger
spatial volumes are required to avoid finite size effects. For standard QCD simulations, this is
essentially unavoidable. The second bottleneck is the costof inverting the fermion matrix. The
number of conjugate gradient iterations required to do thisincreases as the mass decreases. This
problem is more severe for Wilson-type fermions as they do not have the protection of chiral sym-
metry to prevent standard “exceptional” configurations. The use of chiral fermions can ameliorate
this problem in the sense that the condition number of the fermion matrix only goes like a single
inverse power of the quark mass, but other computational expenses are introduced in the process.

The third bottleneck, and the one which is key to this work, isthe ultraviolet slowing down of
the molecular dynamics integration. When performing HMC for dynamical fermions, as the quark
mass decreases the fluctuations induced by the pseudofermions increases, requiring finer integra-
tion step sizes to be used to bring these under control, significantly increasing the computational
cost of generating dynamical configurations. One way of dealing with this is to use a Sexton and
Weingarten[2] integration scheme with multiple scales, separating the ultraviolet and infrared dy-
namics. The key point in this case is that one must possess an inexpensive means of evaluating
the UV dynamics of the fermions. In this work we propose to do this using a polynomial filter,
following earlier work within the Schwinger model[5].

1. Multiple Time Scale HMC

Given a configurationU, the hybrid Monte Carlo algorithm generates the next elementin
the Markov chain by first performing a Molecular Dynamics (MD) integration to generate a new
configurationU ′, and then performing a Metropolis accept/reject step on the proposed configuration
with a probabilityρ(U →U ′) = e−∆H . Here,

H (P,U) = ∑
x,µ

1
2

TrPµ(x)2 + S[U ], (1.1)

is a Hamiltonian system in which the four dimensional lattice is embedded through the addition of
a fictitious “simulation” timeτ , andP is defined as the conjugate momenta toU.

By requiring that the Hamiltonian be conserved along the molecular dynamics trajectory one
obtains the discretised equations of motion,

Uµ(x,τ + ∆τ) = Uµ(x,τ)exp
(

i∆τPµ(x,τ)
)

, (1.2)

Pµ(x,τ + ∆τ) = Pµ(x,τ)−Uµ(x,τ)
δS

δUµ (x,τ)
. (1.3)

Define the corresponding time evolution operators,

VT (∆τ) : {U(τ),P(τ)}→ {U(τ + ∆τ),P(τ)}, (1.4)
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VS(∆τ) : {U(τ),P(τ)} → {U(τ),P(τ + ∆τ)}. (1.5)

For sufficiently small finite step sizes∆τ the Hamiltonian is approximately conserved along the
trajectory, giving high acceptance probabilities. Different integration schemes give differing dis-
cretisation errors. The simplest (and most used) integration scheme is the leapfrog

V (∆τ) = VS(
∆τ
2

)VT (∆τ)VS(
∆τ
2

). (1.6)

Integration trajectories typically have unit length, and hence as the step size∆τ decreases, the
number of integration steps (and the computational cost) increases. Now, our actionS = Sg + Spf,

consists of the gauge field and pseudo-fermion field components,

Sg = β ∑
x,µ<ν

1
3

ReTr(1−Uµν(x)), (1.7)

Spf = ∑
x

φ†(x)(D†
wDw)−1φ(x). (1.8)

Here,Dw is the Wilson fermion matrix. Each time we act withVS(∆τ) we need to evaluate the
pseudofermion force term,

Fpf =
δSpf

δU
. (1.9)

This involves inverting the fermion matrix, and is by far themajor cost in standard HMC simula-
tions. However, for split actionsS = S1+S2 we can use a multiple time scale integration scheme[2],

V (∆τ) = V2(
∆τ
2

)

[

V1(
∆τ
m

)

]m

V2(
∆τ
2

), (1.10)

where

V1(∆τ) = VS1(
∆τ
2

)VT (∆τ)VS1(
∆τ
2

), (1.11)

V2 = VS2(∆τ). (1.12)

In this scheme,V1 is evaluatedm times more often thanV2. Such an integration scheme is only
effective if two conditions are satisfied. First, the force termF1 due toS1 must be computationally
inexpensive to evaluate compared to that ofS2. Secondly, as the effective step size forS2 is m times
larger than that ofS1, the force term due toS2 must correspondingly besmaller than that due toS1.

2. Polynomial Filtering

As the gauge forceFg is cheap to evaluate compared to the pseudofermion forceFpf, one might
chooseS1 = Sg andS2 = Spf. However it is only at heavy quark masses that we haveFg > Fpf. At
light quark masses the UV fluctuations in the pseudo fermion force become too large for multiple
time scales to be effective. However, we can use a polynomialfilter P = P(Dw) to separate the
ultraviolet and infrared physics in the pseudofermion force[5],

Spoly = χ†P†Pχ , (2.1)

Spf = φ†(P†D†
wDwP)−1φ . (2.2)
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For short polynomials,Spoly is fast to evaluate compared toSpf so we split the action in the following
way,

S1 = Sg + Spoly, (2.3)

S2 = Spf. (2.4)

In order that the force terms satisfyFpoly > Fpf we need to choose a polynomial term which captures
the ultraviolet physics and filters it from the pseudofermion term.

An effective UV filter is annth order polynomial approximation to 1/z,

Pn(z) = an

n

∏
k=1

(z− zk) ≈
1
z
. (2.5)

In this work we test two different types of approximation[6]. The first, a Hermitian Chebyshev
approximation, has the following roots (withθk = 2πk

n+1),

zk = λ [
1
2
(1+ ε)(1−cosθk)− i

√
ε sinθk]. (2.6)

The normalisation is defined byz0 = 1
2(1+ ε), with an = 1

z0 ∏n
k=1(z0−zk)

. The approximation is good
between[ε ,1], so we rescale withλ = 1+ 8κ . The second, a non-Hermitian Chebyshev approxi-
mation has the same normalisation, but slightly different roots,

zk = d(1−cosθk)− i
√

d2− c2 sinθk. (2.7)

3. Results

All simulation results are for 83 × 16 lattices using the Wilson gauge and fermion actions,
at β = 5.6 andκ = 0.1575. Firstly, equilibrium configurations were generated using astandard
HMC algorithm. In order to tune the available parameters theforce terms due to the (filtered)
pseudofermion termFpf and the polynomial termFpoly were measured. To compare the size of the
forces we used the norm

||F || = ( ∑
µ ,x,i, j

[Fµ ,x]
2
i j)

1
2 . (3.1)

Figure 1 shows the results for the Hermitian Chebyshev polynomial. We see that the minimum
in ||Fpf|| occurs nearε = 0.3. We also observe that at this choice ofε that ||Fpoly|| only increases
very slowly with the order of the polynomialn, indicated that even for very small polynomials most
of the ultraviolet physics is already being captured.

Figure 2 shows the results for the non-Hermitian Chebyshev polynomial, with d = 1 fixed
(corresponding to the centre of the spectrum ofDw), varyingc. It is clear that the minimum in||Fpf||
occurs atc = 0, which is a degenerate case, corresponding a Hermitian Chebyshev polynomial with
ε = 1. Hence we conclude that ford = 1 there is no advantage to the non-Hermitian approximation.

The left-hand plot of Figure 3 shows the relative size of the pseudofermion force terms for the
unfiltered and filtered cases for different polynomial orders (choosingε = 0.3 andc = 0). We see
that the Hermitian Chebyshev filter achieves a reduction of afactor of 3 forn = 4 compared to the
standard case, improving to a factor of 6 atn = 16.
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The right hand plot of Figure 3 shows that the number of iterations required to invert the
(filtered) fermion matrix is also reduced by tuningε , and we see that forn = 16 the choiceε = 0.3
is again optimal. Although for smallern the choice ofε < 0.3 reduces the number of CG iterations
slightly, this would be a poor choice due to being a less effective UV filter.

Finally, we performed HMC simulations using the Hermitian Chebyshev filter to gain a feel
for the effectiveness of the filter in an actual calculation.Results are shown in Table 1. The results
show that with a polynomial filter one can significantly reduce the step-size while maintaining a
high acceptance rate.

Action npoly ε ∆τ nmd m ρaccept

Std. 0 0.0 0.02 50 2 0.87
Poly-H. 6 0.3 0.05 20 10 0.87
Poly-H. 6 0.3 0.05 20 5 0.84

Table 1: Simulation results using standard and polynomial filtered HMC. Shown are the order of the poly-
nomial npoly, choice ofε, step size for the pseudofermions∆τ, the number of pseudofermion integration
stepsnmd, the number of inner integration steps per pseudofermion step m and finally the acceptance rate
ρaccept.

4. Conclusions

Dynamical light quark simulations are the next major hurdlefor Lattice QCD. The use of a
polynomial approximation to the inverse as a filter successfully separates the UV and IR pseud-
ofermion dynamics. This enables the use of a multiple time scale integration to reduce the cost of
dynamical simulations. We tested both Hermitian and non-Hermitian Chebyshev approximations,
and saw the Hermitian version is the most effective. Preliminary simulation results are promising,
and a detailed investigation will be the subject of future work.
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Figure 1: Size of the pseudofermion (left) and polynomial (right) force terms as a function ofε for a
Hermitian Chebyshev filter.

Figure 2: Size of the pseudofermion (left) and polynomial (right) force terms as a function ofc for a non-
Hermitian Chebyshev filter.

Figure 3: (Left) Comparative size of the pseudofermion force term forstandard HMC and for different
ordersn of Hermitian and non-Hermitian Chebyshev filter (forε = 0.3 andc = 0) (Right) Mean number of
CG iterations as a function ofε for a Hermitian Chebyshev filter.
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