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The task of performing dynamical simulations at light quar&sses remains a challenge to
lattice QCD. Available computing power has and continuéadease, yet even at the current stage
of multi-Teraflop computing capabilities, algorithmic bBkthroughs are needed before the desired
guark masses can be realised. Hybrid Monte Carlo[1] is th@l most often used algorithm for
generating dynamical configurations. There are three n@airpatational bottlenecks that present
themselves when attempting to simulate lighter fermions.

The first is that of lattice volume. As the quark mass (and égricn mass) decreases, larger
spatial volumes are required to avoid finite size effectsr dtandard QCD simulations, this is
essentially unavoidable. The second bottleneck is theafastverting the fermion matrix. The
number of conjugate gradient iterations required to doitiiscases as the mass decreases. This
problem is more severe for Wilson-type fermions as they ddawe the protection of chiral sym-
metry to prevent standard “exceptional” configurationse Tke of chiral fermions can ameliorate
this problem in the sense that the condition number of thaifar matrix only goes like a single
inverse power of the quark mass, but other computationadresgs are introduced in the process.

The third bottleneck, and the one which is key to this workhesultraviolet slowing down of
the molecular dynamics integration. When performing HMCdgnamical fermions, as the quark
mass decreases the fluctuations induced by the pseudoferinicreases, requiring finer integra-
tion step sizes to be used to bring these under control,figignily increasing the computational
cost of generating dynamical configurations. One way ofidgakith this is to use a Sexton and
Weingarten[2] integration scheme with multiple scalepasating the ultraviolet and infrared dy-
namics. The key point in this case is that one must possesseapansive means of evaluating
the UV dynamics of the fermions. In this work we propose to his tising a polynomial filter,
following earlier work within the Schwinger model[5].

1. Multiple Time ScaleHMC

Given a configuratiord, the hybrid Monte Carlo algorithm generates the next elenrent
the Markov chain by first performing a Molecular Dynamics (Mbtegration to generate a new
configuratiorlJ’, and then performing a Metropolis accept/reject step ontbyegsed configuration
with a probabilityp(U — U’) = e 2. Here,

1
HPU)=Y ETrP“(x)2+S[U], (1.2)
X
is a Hamiltonian system in which the four dimensional latie embedded through the addition of
a fictitious “simulation” timer, andP is defined as the conjugate moment&Jto
By requiring that the Hamiltonian be conserved along theemubr dynamics trajectory one
obtains the discretised equations of motion,

Up(X, T+AT) =U(x,T)exp(iATP, (X, T)), (1.2)
Pu(X, T+AT1) =Py(x,7) —U (xr)i (1.3)
HA™N — P U\"™ HAN 5Uu (X, _[) . .
Define the corresponding time evolution operators,
Vr (A1) :{U(1),P(1)} — {U(T+A1),P(T)}, (1.4)
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Vs(AT) : {U(1),P(1)} — {U(T),P(T+AT)}. (1.5)

For sufficiently small finite step sizest the Hamiltonian is approximately conserved along the
trajectory, giving high acceptance probabilities. Diffier integration schemes give differing dis-
cretisation errors. The simplest (and most used) integratheme is the leapfrog

AT
5)-
Integration trajectories typically have unit length, arehbe as the step siz&r decreases, the

number of integration steps (and the computational costpases. Now, our actidB= §; + Sy,
consists of the gauge field and pseudo-fermion field comgenen

v (a1) = V(S v (Vs (16)

S=B Z :—%ReTr(l Upv (X)), (1.7)
X, U<V
ch x)(D{,Dw) *(X). (1.8)

Here, Dy, is the Wilson fermion matrix. Each time we act wilg(A1) we need to evaluate the
pseudofermion force term,

_ 05

This involves inverting the fermion matrix, and is by far timajor cost in standard HMC simula-
tions. However, for split actionS= S; + S, we can use a multiple time scale integration scheme[2],

V(aT) = V() [vl(Anf)] () (1.10)

where Ar Ar
Vi(ar) = Vs, (5 Ve (arvs, (5), (111)
Vs = Vg, (AT). (1.12)

In this schemey; is evaluatedm times more often thak’,. Such an integration scheme is only
effective if two conditions are satisfied. First, the foreemt F; due toS; must be computationally
inexpensive to evaluate compared to thagofSecondly, as the effective step size $iis mtimes
larger than that o%;, the force term due t&§ must correspondingly bamaller than that due t&;.

2. Polynomial Filtering

As the gauge forcgy is cheap to evaluate compared to the pseudofermion fgfcene might
chooseS, = §; andS, = Syr. However it is only at heavy quark masses that we Hgyve For. At
light quark masses the UV fluctuations in the pseudo fermiooef become too large for multiple
time scales to be effective. However, we can use a polynofifted P = P(D,) to separate the
ultraviolet and infrared physics in the pseudofermion &g,

Sy = X PP, (2.1)

S = @' (P'D,DwP) ‘0. 2.2)
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For short polynomialsG,oy is fast to evaluate compared$g so we split the action in the following
way,

S1= S+ Spolys (2.3)
S = S (2.4)

In order that the force terms satidfy,y > Fyr we need to choose a polynomial term which captures
the ultraviolet physics and filters it from the pseudofemnmierm.
An effective UV filter is ann'™™ order polynomial approximation to/z,

n

P(2) = an |_| (z—z) ~
k=1

. (2.5)

NI

In this work we test two different types of approximation[6[he first, a Hermitian Chebyshev

approximation, has the following roots (with = ﬁT"';),
zk:)\[%(lJrs)(l—cosGk)—i\/EsinGk]. (2.6)

The normalisation is defined tzy = %(1+ €), with ap = zmk,ll(zOfa()' The approximation is good

betweene, 1], so we rescale with = 1+ 8k. The second, a non-Hermitian Chebyshev approxi-
mation has the same normalisation, but slightly differeots,

z = d(1—cos6y) —iv/d?—c?siné. (2.7)

3. Resaults

All simulation results are for 8x 16 lattices using the Wilson gauge and fermion actions,
at B8 = 5.6 andk = 0.1575 Firstly, equilibrium configurations were generated usingtandard
HMC algorithm. In order to tune the available parametersftiiee terms due to the (filtered)
pseudofermion terrfys and the polynomial terrf,oy were measured. To compare the size of the
forces we used the norm

IFll=( S [Fuxdf)?. (3.1)
(TR

Figure 1 shows the results for the Hermitian Chebyshev poihyal. We see that the minimum
in ||Fof|| occurs neae = 0.3. We also observe that at this choicesofhat ||Fyary|| ONly increases
very slowly with the order of the polynomial indicated that even for very small polynomials most
of the ultraviolet physics is already being captured.

Figure 2 shows the results for the non-Hermitian Chebysladynpmial, withd = 1 fixed
(corresponding to the centre of the spectrurgj, varyingc. Itis clear that the minimum ifFy||
occurs at = 0, which is a degenerate case, corresponding a Hermitian Ghebyolynomial with
€ = 1. Hence we conclude that fdr= 1 there is no advantage to the non-Hermitian approximation.

The left-hand plot of Figure 3 shows the relative size of theualofermion force terms for the
unfiltered and filtered cases for different polynomial osd@hoosings = 0.3 andc = 0). We see
that the Hermitian Chebyshev filter achieves a reductionfattor of 3 forn = 4 compared to the
standard case, improving to a factor of Gat 16.
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The right hand plot of Figure 3 shows that the number of itenat required to invert the
(filtered) fermion matrix is also reduced by tuniagand we see that for= 16 the choicee = 0.3
is again optimal. Although for smallerthe choice ok < 0.3 reduces the number of CG iterations
slightly, this would be a poor choice due to being a less @ffedJV filter.

Finally, we performed HMC simulations using the HermitiaheByshev filter to gain a feel
for the effectiveness of the filter in an actual calculatiBesults are shown in Table 1. The results
show that with a polynomial filter one can significantly reelube step-size while maintaining a
high acceptance rate.

Action  nNpoy € AT Nmg M Paccept
Std. 0 0.0 0.02 50 2 0.87

Poly-H. 6 0.3 0.05 20 10 0.87

Poly-H. 6 03 005 20 5 0.84

Table 1: Simulation results using standard and polynomial filteré&diGd Shown are the order of the poly-
nomial nyely, choice ofe, step size for the pseudofermioAs, the number of pseudofermion integration
stepsnng, the number of inner integration steps per pseudofermigmratand finally the acceptance rate
Paccept

4. Conclusions

Dynamical light quark simulations are the next major hurfdleLattice QCD. The use of a
polynomial approximation to the inverse as a filter sucegdlgsteparates the UV and IR pseud-
ofermion dynamics. This enables the use of a multiple tinadesintegration to reduce the cost of
dynamical simulations. We tested both Hermitian and nomtitean Chebyshev approximations,
and saw the Hermitian version is the most effective. Prelami simulation results are promising,
and a detailed investigation will be the subject of futurakvo
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Figure 1. Size of the pseudofermion (left) and polynomial (right)derterms as a function of for a

Hermitian Chebyshev filter.
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Figure 2: Size of the pseudofermion (left) and polynomial (right)determs as a function affor a non-
Hermitian Chebyshev filter.
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Figure 3. (Left) Comparative size of the pseudofermion force termdiandard HMC and for different
ordersn of Hermitian and non-Hermitian Chebyshev filter (fo+= 0.3 andc = 0) (Right) Mean number of
CG iterations as a function affor a Hermitian Chebysheuv filter.
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