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1. Introduction

Recently several studies of non-trivial (exotic or excited) hadronic states appeared in the lattice
literature. For extracting such states one typically needs several operators often with complicated
spatial and internal structure and projection to states with the desired quantum numbers is not
straightforward. Although all information is implicitly contained in the group theory literature,
detailed discussions of these issues in lattice papers started to appear only recently. (See e.g.
Refs. [1, 2, 3].) In the present paper we give an account of the operators and projections used for
our pentaquark search [4, 5].

For the proper analysis a large number of independent operators is needed, which span a
large enough subspace containing the scattering states and a possible pentaquark state. The typical
operators used in hadron spectroscopy contain quarks at only one lattice point with some Gaussian
smearing. These operators have zero orbital angular momentum and givea very limited set of
operators; e.g. the operator proposed by Jaffe and Wilczek [6, 7] cannot be implemented in this
way. Therefore we decided to use spatially non-trivial operators containing quark fields at different
lattice sites.

In Section 2 we summarize how the energy of the lowest state can be extractedseparately in
the two parity channels. In Section 3 we outline how a specific spin eigenstate can be projected out
from a given lattice hadron operator. After summarizing the relevant group theoretical principles
we discuss how our spin 1/2 pentaquark operators were constructed.

2. Parity projection

The basic objects one can compute on the lattice are Euclidean correlators ofthe form
〈Oα(x)Oβ (0)〉 corresponding to the amplitude of the process of creating a state at time zero with
the operatorOβ (0), evolving it to a later timex0 and annihilating it withOα(x).

There are two complications when one wants to extract the lowest state in a given parity chan-
nel. Firstly, simple baryonic operators usually couple to both parities, therefore one has to project
out parity by hand. Secondly, the box has a finite time extentT with (anti-)periodic boundary con-
dition. Therefore, a single source at time zero is in fact mathematically equivalent to the sum of an
infinite number of identical sources located att = 0,±T,±2T . . . . Due to the exponential fall-off of
correlations, only the two sources closest to the sink, i.e. att = 0,T give appreciable contributions
to the infinite sum. If we assume, as we shall always, that 0≤ x0 < T, then

∞

∑
n=−∞

〈Oα(~x,x0)Oβ (~0,nT)〉 ≈ 〈Oα(~x,x0)Oβ (~0,0)〉+ εbc〈Oα(~x,x0)Oβ (~0,T)〉, (2.1)

whereεbc is +1 for periodic and−1 for anti-periodic boundary condition in the time direction.
The first term on the r.h.s. represents particles propagating from time 0 tox0 while the second term
represents antiparticles propagating from timex0 to T. Thus even after projecting to a given parity
channel the correlator has contributions not only from particles of that parity, but also from the
antiparticles of the opposite parity. Therefore, an additional “projection”is needed to get rid of the
latter.

Due to the transformation properties ofOα , the most general form the correlator can have is

〈Oα(x)Oβ (0)〉 =
[

f (x2)xµγµ +g(x2)1
]

αβ . (2.2)
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After projection to the zero momentum sector the terms proportional to{γi}
3
i=1 vanish due to their

antisymmetry and the resulting correlator is

Cαβ (x0) = [A(x0)γ0 +B(x0)1]αβ , where A(x0) =
∫

d3x f(x2)x0, B(x0) =
∫

d3x g(x2). (2.3)

Parity projection. For ensuring that only states of a given parity propagate, it is enough to per-
form parity projection either at the sink or the source. Projection in eq. (2.3)at the sink yields

1
2

(1±ηγ0) [A(x0)γ0 +B(x0)1] = ±
η
2

[A(x0)±ηB(x0)]1 +
1
2

[A(x0)±ηB(x0)]γ0, (2.4)

whereη =±1 is the internal parity ofO and the plus and minus signs correspond to the positive and
negative parity correlators, respectively. All the matrix elements of the parity projected correlator
have the same functional dependence, 1/2(A± ηB), on x0, therefore the exponential fit to this
function will yield the lowest state in the given parity channel.

“Particle” projection. Now the full correlator, including the term that “comes back” through the
time boundary, has the form

C(x0)+ εbcC(x0−T) = [A(x0)− εbcA(T −x0)]γ0 + [B(x0)+ εbcB(T −x0)]1. (2.5)

If we used the above prescription for parity projection, we would obtain

1
2

[A(x0)+ηB(x0)] +
εbc

2
[−A(T −x0)+B(T −x0)] (2.6)

for the parity projected correlator, which, due to an extra minus sign, doesnot have the simple
functional form f (x0)+ f (T − x0) that could be fitted with a cosh. This extra sign, however, can
be easily cancelled if we compute theA and theB components in eq. (2.3) withoppositeboundary
conditions. In that case the parity projected correlator has the form

1
2

[A(x0)+ηB(x0)] +
1
2

[A(T −x0)+ηB(T −x0)] . (2.7)

If 1/2[A(x0)+ ηB(x0)] is a sum of exponentials corresponding to the energies of the states in the
given channel, (2.7) is a sum of cosh’s with the same exponents. This is thefunctional form we
have to use for fitting when extracting masses.

3. Projection to a spin eigenstate

Due to the absence of fullSO(3) rotational symmetry it is not straightforward to assign spin
to a lattice energy eigenstate. States on the lattice can be classified into irreducible representations
of the cubic groupO or its double cover2O, not SO(3) or SU(2) as in the continuum. For the
character tables ofO and2O, see e.g. [8].

Irreducible representations ofSU(2), when restricted to2O, usually do not remain irreducible.
The spin 0, 1/2, 1 and 3/2SU(2) representations are the exceptions, these restricted to2O are equiv-
alent to the irreducible representationsA1,G1,T1 andH, respectively. Also any state belonging to
an irreducible representation of2O has components belonging to several different spin representa-
tions ofSU(2). For instance a state inG1 has components of spin 1/2,7/2,9/2, . . . .
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This means e.g. that if on the lattice we find the lowest energy state in theG1 representation of
2O, we can identify that with a spin 1/2 state in the continuum, provided all the higherspin states
contributing toG1, i.e.s= 7/2,9/2, . . . can be assumed to have much higher energy. In this sense,
for practical purposes, the lowest few representations ofSU(2) or 2O can be identified as follows:

0↔ A1, 1/2↔ G1, 1↔ T1, 3/2↔ H. (3.1)
The task we have at hand is thus to construct states belonging to specific representations of the

cubic group2O. This can be most easily done using the technique of projection operators.Let G
be a finite group,D(r)

i j (g) be the matrix elements of its irreducible representationr of dimensiondr .
Let the transformationsT(g) form an arbitrary (not necessarily irreducible) unitary representation
of G. We would like to project a specific irreducible representationr out of the carrier space of the
T(g)’s. Let us define the transformations

P(r)
i j =

dr

|G| ∑
g∈G

D(r)?
i j (g) T(g). (3.2)

If |ψ〉 is any vector belonging to the carrier space ofT(g)’s then for a fixedj thedr vectors

|φi〉 = P(r)
i j |ψ〉, i = 1, . . . ,dr (3.3)

either transform as basis vectors of the irreducible representationr or they are all zero [9]. Equa-
tions (3.2) and (3.3) can be exploited to project out different representations of2O from a given
state and its rotated copies on the lattice.

In particular, we would like to construct pentaquark states belonging toG1, which corresponds
to spin 1/2. In general the five-particle wave function could be any function of the locations of the
five quarks. However, since the correlation functions are built up fromquark propagators, we have
to restrict ourselves to wave functions, which are products of the individual quark wave functions:

O(x1,x2,x3,x4,x5) = q1(x1)q2(x2)q3(x3)q4(x4)q5(x5). (3.4)

Here, for simplicity we omitted the color and Dirac-structure. These are the elementary operators
for which the correlators can be computed by single Dirac-matrix inversions.A general five-quark
operator can be written as a linear combination of such elementary operators.

Although more complicated cases can also be considered, here we restrictourselves to the one
where the spin indices of all the quarks but one have been contracted to be scalars and the total spin
of the pentaquark arises by combining the spin 1/2 (G1) of the remaining quark with the orbital
angular momentum of all the constituents. Therefore we have to projectG1 out of G1⊗s, wheres
is a representation of the cubic groupO (not 2O!), corresponding to the orbital part.

In practices depends on the spatial arrangement of quark sources and this can be exploited
to make things as simple as possible. Eq. (3.2) implies that, in general, projection toa specific
spin involves as many terms as the number of elements of the group2O, i.e. 48. The situation,
however, is much better if the projection formula (3.3) is applied to a state with an orbital part
having some degree of symmetry under cubic rotations. For the quark wave-functions we use
Gaussians centered on points of thezaxis only. Operators based on such wave-functions have axial
symmetry and therefore the spin-projection requires at most five extra operators. Let

qi(di , r i ,xi) = exp

(

−
(xi −di · ẑ)2

r2
i

)

, (3.5)
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whereẑ is the unit vector along thezaxis. We will usually omit thexi argument.
The simplest case is when the five quark sources all have complete rotational symmetry, i.e.

the orbital part is triviallys= A1. Then all the rotated copies of the quark sources are identical, the
sum in eq. (3.2) can be explicitly computed and the projection reduces to projection to spin up or
spin down. The decomposition here isA1⊗G1 = G1. We used two operators of this type.

O1 = εabc[uT
a (0,4)Cγ5db(0,4)]{uc(0,4)s̄e(0,4)γ5de(0,4)+(u↔ d)} (3.6)

O2 = εabcεadeεbgh[uT
d (0,4)Cγ5de(0,4)][uT

g (0,4)Cdh(0,4)]Cs̄T
c (0,4) (3.7)

The first operator has color index contractions corresponding to anN−K state [10], whileO2 has
a diquark–diquark–antiquark type color structure [11].

To explore the possibility of non-zero orbital angular momentum we have to consider less
symmetric quark sources. One possibility is to put the nucleon at the origin with arotationally
symmetric wave function and place the kaon along a coordinate axis (sayz) keeping the arrange-
ment cylindrically symmetric with respect to thezaxis:

εabc[uT
a (0,4)Cγ5db(0,4)]{uc(0,4)s̄e(Ns/2,4)γ5de(Ns/2,4)+(u↔ d)}. (3.8)

The relative displacement of the nucleon and kaon is half of the spatial latticesize, so this operator
is spatially symmetric. Let us call such a state|z〉. It is easy to see that the rotated copies of this state
span a three dimensional space carrying the reducible representationA1⊕E of O. A possible set
of basis states is given by the kaon displaced along the three coordinate axes: |x〉, |y〉 and|z〉. This
arrangement corresponds to projecting out the spin 1/2 (G1) component from the decomposition

G1⊗ (A1⊕E) = G1⊗A1⊕G1⊗E = G1⊕H. (3.9)

Let us choose|ψ〉 = | ↑〉⊗ |z〉 and computeP(G1)
11 |ψ〉. The transformationsT(g) appearing in eq.

(3.2) are direct products ofG1 transformations acting on the quark spin and transformations acting
on the orbital part. Performing the projection

P(G1)
11

[

|↑〉⊗ |z〉
]

= |↑〉⊗
(

|x〉 + |y〉 + |z〉
)

(3.10)

we obtain our third operator

O3 = P(G1)
[

εabc[uT
a (0,4)Cγ5db(0,4)]{uc(0,4)s̄e(Ns/2,4)γ5de(Ns/2,4)+(u↔ d)}

]

, (3.11)

a shiftedN−K scattering operator with spin projection.
Another possibility is to put the antiquark at the origin with a rotationally symmetric wave

function and displace two pairs of(ud) quarks along thez axis. Inspired by the Jaffe-Wilczek
diquark–diquark–antiquark picture [6, 7], in anticipation of orbital angular momentum 1, we con-
struct this state to be antisymmetric with respect to space reflection:

εabcεadeεbgh[uT
d (1,2)Cγ5de(1,2)][uT

g (−1,2)Cγ5dh(−1,2)]Cs̄T
c (0,4). (3.12)

Our other antisymmetric operator is constructed from a nucleon and a kaon placed at a distance of
Ns/4 from each other:

εabc[uT
a (0,4)Cγ5db(0,4)]

{

uc(0,4)[s̄e(Ns/4,4)γ5de(Ns/4,4)

− s̄e(−Ns/4,4)γ5de(−Ns/4,4)]+(u↔ d)
}

. (3.13)
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Let us call such an antisymmetric state|±z〉. The rotated copies of this state span the three dimen-
sional representationT1 of O with basis vectors|±x〉, |±y〉 and|±z〉. Thus we have to project out
the spin 1/2 component from

G1⊗T1 = G1⊕H. (3.14)

The explicit form of the projection

P(G1)
11

[

|↑〉⊗ |±z〉
]

= |↓〉⊗
[

|±x〉 + i · |±y〉
]

+ |↑〉⊗ |±z〉 , (3.15)

is identical to the spin 1/2 part of theSU(2) Clebsch-Gordan decomposition 1/2⊗1 = 1/2⊕3/2.
This way for our fourth and fifth operators we obtain

O4 = P(G1)
[

εabcεadeεbgh[uT
d (1,2)Cγ5de(1,2)][uT

g (−1,2)Cγ5dh(−1,2)]Cs̄T
c (0,4)

]

, (3.16)

O5 = P(G1)
[

εabc[uT
a (0,4)Cγ5db(0,4)]

{

uc(0,4)[s̄e(Ns/4,4)γ5de(Ns/4,4)

−s̄e(−Ns/4,4)γ5de(−Ns/4,4)]+(u↔ d)
}

]

. (3.17)
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