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1. Introduction

Recently several studies of non-trivial (exotic or excited) hadrontestgppeared in the lattice
literature. For extracting such states one typically needs several ogeoften with complicated
spatial and internal structure and projection to states with the desired quawitmbers is not
straightforward. Although all information is implicitly contained in the group tlyelderature,
detailed discussions of these issues in lattice papers started to appeaeamtiylyr (See e.g.
Refs. [1,[2[B].) In the present paper we give an account of theatpe and projections used for
our pentaquark searcfj [4, 5].

For the proper analysis a large number of independent operatorsdeciewhich span a
large enough subspace containing the scattering states and a possitpipdostate. The typical
operators used in hadron spectroscopy contain quarks at only one fadtict with some Gaussian
smearing. These operators have zero orbital angular momentum and gerg limited set of
operators; e.g. the operator proposed by Jaffe and Wil¢zdl [6,nfotde implemented in this
way. Therefore we decided to use spatially non-trivial operators rongequark fields at different
lattice sites.

In Section[p we summarize how the energy of the lowest state can be extsap@ately in
the two parity channels. In Sectiph 3 we outline how a specific spin eigenatateeqrojected out
from a given lattice hadron operator. After summarizing the relevantpgtioeoretical principles
we discuss how our spin 1/2 pentaquark operators were constructed.

2. Parity projection

The basic objects one can compute on the lattice are Euclidean correlattve &rm
(Oa(x)0p(0)) corresponding to the amplitude of the process of creating a state at time itfero w
the operatori(0), evolving it to a later time and annihilating it withZy (x).

There are two complications when one wants to extract the lowest state iereygvity chan-
nel. Firstly, simple baryonic operators usually couple to both parities, trerehe has to project
out parity by hand. Secondly, the box has a finite time extewith (anti-)periodic boundary con-
dition. Therefore, a single source at time zero is in fact mathematically degnivta the sum of an
infinite number of identical sources located at0,£T,42T .... Due to the exponential fall-off of
correlations, only the two sources closest to the sink, i.e=ad, T give appreciable contributions
to the infinite sum. If we assume, as we shall always, that@ < T, then

[ee]

Y (Oa(%%0)0p(0,nT)) ~ (Oa(%,%0)6p(0,0)) + el Oa (X %0)Fp(0,T)),  (2.1)

N=—o00
wheregy is +1 for periodic and—-1 for anti-periodic boundary condition in the time direction.
The first term on the r.h.s. represents particles propagating from timeyQuioile the second term
represents antiparticles propagating from tixpéo T. Thus even after projecting to a given parity
channel the correlator has contributions not only from particles of taatyp but also from the
antiparticles of the opposite parity. Therefore, an additional “projecimni&eded to get rid of the
latter.

Due to the transformation properties@f, the most general form the correlator can have is

(Oa(x)0p(0)) = [ F()xuy" +9(x*) 1] 45 - (2.2)
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After projection to the zero momentum sector the terms proportionhk}é:l vanish due to their
antisymmetry and the resulting correlator is

Cap (%) = [AG0)Y0+ B(Xo)L]ag . where Alxo)= [dX (), Blo) = [dg0e). (2.3)

Parity projection. For ensuring that only states of a given parity propagate, it is enougério p
form parity projection either at the sink or the source. Projection in[eg. 2 1B sink yields

%(11 o) [A(X0) Yo +B(%0)1] = i% [A(X0) £nB(x)] 1 + % [AC0) £nB0)] Y, (2.4)

wheren = 1 is the internal parity of” and the plus and minus signs correspond to the positive and
negative parity correlators, respectively. All the matrix elements of thigygamojected correlator
have the same functional dependenc&(A+ nB), on x, therefore the exponential fit to this
function will yield the lowest state in the given parity channel.

“Particle” projection.  Now the full correlator, including the term that “comes back” through the
time boundary, has the form

C(x0) + &cC(X0—T) = [A(X0) — &ncA(T —X0)] Yo + [B(X0) +&0cB(T —X0)]1.  (2.5)
If we used the above prescription for parity projection, we would obtain

2 [AG0) + 1B00)] + ZE[-A(T —x0) + B(T —xo)] 26)

for the parity projected correlator, which, due to an extra minus sign, doebkave the simple
functional formf(xo) + f(T — X) that could be fitted with a cosh. This extra sign, however, can
be easily cancelled if we compute tAend theB components in eq[ (3.3) witbppositeboundary
conditions. In that case the parity projected correlator has the form

3 [AG) +1B0)] + 3 AT ) +1B(T )] @7)

If 1/2[A(x0) + NB(Xo)] is a sum of exponentials corresponding to the energies of the states in the
given channel,[(2]7) is a sum of cosh’s with the same exponents. This fisrttéonal form we
have to use for fitting when extracting masses.

3. Projection to a spin eigenstate

Due to the absence of fuBQ(3) rotational symmetry it is not straightforward to assign spin
to a lattice energy eigenstate. States on the lattice can be classified into irledepiesentations
of the cubic groupO or its double covefO, not SO3) or SU(2) as in the continuum. For the
character tables @ and?0, see e.qg.[]8].

Irreducible representations 8fJ(2), when restricted t80, usually do not remain irreducible.
The spin 0, 1/2, 1 and 3RU(2) representations are the exceptions, these restrict@lace equiv-
alent to the irreducible representatiohs G1, T andH, respectively. Also any state belonging to
an irreducible representation  has components belonging to several different spin representa-
tions of SU(2). For instance a state {8; has components of spiry2,7/2,9/2, ...
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This means e.g. that if on the lattice we find the lowest energy state & thepresentation of
20, we can identify that with a spin 1/2 state in the continuum, provided all the hgpierstates
contributing toGs, i.e.s=7/2,9/2,... can be assumed to have much higher energy. In this sense,
for practical purposes, the lowest few representatior®UgR) or 20 can be identified as follows:
0—A, 1/2-G1, 1< T, 3/2<H. (3.1)
The task we have at hand is thus to construct states belonging to spquiéisaetations of the
cubic group?O. This can be most easily done using the technique of projection operatirs.
be a finite groupDi(j') (9) be the matrix elements of its irreducible representatiohdimensiord; .
Let the transformation$ (g) form an arbitrary (not necessarily irreducible) unitary representation
of G. We would like to project a specific irreducible representationt of the carrier space of the
T(g)’s. Let us define the transformations

d N
R = Gl ;DS{’ (9) T(9). (3.2)
ge

If |@) is any vector belonging to the carrier spacd ¢§)’s then for a fixedj thed, vectors
@) =P W), i=1..d (3.3)

either transform as basis vectors of the irreducible representatiothey are all zero[]9]. Equa-
tions (3:2) and[(3]3) can be exploited to project out different reptatiens of?0O from a given
state and its rotated copies on the lattice.

In particular, we would like to construct pentaquark states belongi@g,tevhich corresponds
to spin 1/2. In general the five-particle wave function could be any funetfdhe locations of the
five quarks. However, since the correlation functions are built up fjoark propagators, we have
to restrict ourselves to wave functions, which are products of the indaviguark wave functions:

O(X1, X2, X3, X4, X5) = Q1 (X1)02(X2)03(X3) da(X4) A5 (Xs). (3.4)

Here, for simplicity we omitted the color and Dirac-structure. These are theealary operators
for which the correlators can be computed by single Dirac-matrix inversfogeneral five-quark
operator can be written as a linear combination of such elementary operators

Although more complicated cases can also be considered, here we msis@ives to the one
where the spin indices of all the quarks but one have been contractedgtalars and the total spin
of the pentaquark arises by combining the spin 132) (of the remaining quark with the orbital
angular momentum of all the constituents. Therefore we have to pGjeatit of G; ® s, wheres
is a representation of the cubic gro@gnot20!), corresponding to the orbital part.

In practices depends on the spatial arrangement of quark sources and this caplbiteex
to make things as simple as possible. Hg](3.2) implies that, in general, projectiosptecific
spin involves as many terms as the number of elements of the gf@upe. 48. The situation,
however, is much better if the projection formu[a]3.3) is applied to a state wittrkitalopart
having some degree of symmetry under cubic rotations. For the quarkfwastons we use
Gaussians centered on points of #axis only. Operators based on such wave-functions have axial
symmetry and therefore the spin-projection requires at most five extratope Let

452
qi (di,ri, %) = exp(—(x'r+z)> , (3.5)
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whereZis the unit vector along theaxis. We will usually omit theg argument.

The simplest case is when the five quark sources all have complete rotaifomaetry, i.e.
the orbital part is triviallys= A;. Then all the rotated copies of the quark sources are identical, the
sum in eq.[(3]2) can be explicitly computed and the projection reduces tatoojéo spin up or
spin down. The decomposition heretis® G; = G;. We used two operators of this type.

01 = €3 (0,4)Cys0b (0, 4)]{uc(0,4)%(0, 4) ye(0,4) + (U — d)} (3.6)

O = £2%29%"Mug (0,4)Cysde(0,4)][ug (0,4)Cch(0,4)]CS. (0,4) (3.7)

The first operator has color index contractions corresponding M-ai state [1p], whiled, has
a diquark—diquark—antiquark type color structJrg [11].

To explore the possibility of non-zero orbital angular momentum we havereider less

symmetric quark sources. One possibility is to put the nucleon at the origin wittaBonally

symmetric wave function and place the kaon along a coordinate axig)(&agping the arrange-
ment cylindrically symmetric with respect to thexis:

32T (0,4)Cysd(0,4)]{uc(0,4)Se(Ns/2, 4) y5de(Ns/2,4) + (u — d)}. (3.8)

The relative displacement of the nucleon and kaon is half of the spatial Isittieeso this operator

is spatially symmetric. Let us call such a stige It is easy to see that the rotated copies of this state
span a three dimensional space carrying the reducible represemiatiole of O. A possible set

of basis states is given by the kaon displaced along the three coordieatéxax|y) and|z). This
arrangement corresponds to projecting out the spinG{2 ¢omponent from the decomposition

G1®(ABE)=G1RA®GLRE =G aH. (3.9)

Let us chooséy) = | 1) ® |2) and computePl W’) The transformation3 (g) appearing in eq.
(B-2) are direct products @; transformations acting on the quark spin and transformations acting
on the orbital part. Performing the projection

Pline]=1me(x++2) (3.10)
we obtain our third operator
03 =PI 62T (0, 4)Cy60h(0,4)]{Uc(0,4)%(Ns/ 2. 4)y5k(Ns/2,4) + (u > d)} ], (3.11)

a shiftedN — K scattering operator with spin projection.

Another possibility is to put the antiquark at the origin with a rotationally symmetricewa
function and displace two pairs gbid) quarks along the axis. Inspired by the Jaffe-Wilczek
diquark—diquark—antiquark picturf [, 7], in anticipation of orbital dagmomentum 1, we con-
struct this state to be antisymmetric with respect to space reflection:

£20%24egP9N T (1, 2)Cyse(1, 2)][ug (—1,2)Cys0hn(—1,2)|CSL (0,4). (3.12)

Our other antisymmetric operator is constructed from a nucleon and a keaedat a distance of
Ns/4 from each other:

€2°ul (0,4)Cys0n(0,4)]{uc(0, 4)[Se(Ns/4, 4) ysde(Ns/4, 4)
—Se(—Ns/4,4)y5de(—Ns/4,4)] + (u—d)}. (3.13)
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Let us call such an antisymmetric statez). The rotated copies of this state span the three dimen-
sional representatiofy of O with basis vector$tx), |+y) and|+2z). Thus we have to project out
the spin 1/2 component from

Gi®Ti=GioH. (3.14)

The explicit form of the projection
P INe 2 | = 1o [l +i- 2| + e+, (3.15)

is identical to the spin 1/2 part of ttf#&J(2) Clebsch-Gordan decompositiof2o 1 =1/2@ 3/2.
This way for our fourth and fifth operators we obtain

Oy = PG [eabCeadesbgh[ug(l, 2)Cys0e(L,2)][ug (—1,2)Cysn(—1,2)]CS! (0,4)|, (3.16)
05 = P €] (0,4)Cy0b(0,4)] {Uo(0,4)[So(Ns/4,4) ysle(Ns /4. 4)

& (—Ns/4, 4) ysde(—Ns/4, 4)] + (U d)}} . (3.17)
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