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Before studying the pentaquark system we examine the spectral weights of the two lowest scatter-

ing states in the two-pion system in the isospin I=2 channel on lattices of size 163 ×32, 243 ×32

and 323 ×64 at β = 6.0 in the quenched theory. We find that the spectral weights scale with the

volume for large time separations. Therefore very accurate data are necessary in order that the

spectral weights determined on different volumes yield a ratio that is precise enough to distin-

guish a scattering state from a single particle state. The pentaquark system is studied on the same

lattices and scaling of the spectral weights of the low lying state is investigated. The accuracy of

the results obtained for the scaling of spectral weights do not allow us to exclude a pentaquark

resonance.
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1. Introduction

Several experiments performed during the past couple of years (see e.g. [1]) to search for
the Θ+, an exotic baryon with an unusually narrow width, failed to confirm the signal that was
originally reported in various low energy experiments [2]. This has cast doubts on the existence of
this state and raised interesting questions regarding its production mechanism that add to the puzzle
as to what its structure might be to explain its narrow width.

During the same time several quenched lattice calculations reached different conclusions as
to the existence of a resonant five quark state. The main difficulty comes from the fact that the
Θ+ is not the lowest lying state but it is expected to be about 100 MeV above the KN threshold.
Identifying in an unambiguous way the resonance from the KN s-wave scattering state within lattice
QCD, given the small energy gap, is a difficult task. One approach employed in a number of studies
to distinguish them is to examine the volume dependence of local correlators [3]. Expanding the
correlator computed on a lattice of spatial size L in terms of eigenstates of the theory with the same
quantum numbers as the interpolating field one obtains [4]:

CL(t) =
∞

∑
n=1

wn
Le−En

Lt . (1.1)

For a single particle state the spectral weights wn
L are approximately volume independent, whereas

for a two particle scattering state well below resonance wn
L ∼ 1/L3. Besides the spectral weights

one can examine the volume dependence of the energy spectrum. For two non-interacting particles
h1 and h2 in the center of mass frame the energy is given by:

En
h1h2

=

√

m2
h1

+n

(

2π
L

)2

+

√

m2
h2

+n

(

2π
L

)2

n = 0,1,2, ... (1.2)

For n > 0 the energy is volume dependent and it can be distinguished from the energy of a reso-
nance, which is volume independent for large enough volumes. Before examining the pentaquark
system we study the scaling of spectral weights for a simpler system of two pions in the isospin
I = 2 channel where we expect no low lying resonance. We use lattices of size 163 ×32, 243 ×32
and 323×64 at β = 6.0 with Dirichlet boundary conditions in the temporal direction. For a two par-
ticle scattering state the expected ratio of spectral weights for our three volumes is w16/w24 = 3.4,
w24/w32 = 2.4 and w16/w32 = 8. All the results shown here are done taking κ = 0.153 for the u-
and d- quark propagators corresponding to a pion mass of about 830 MeV.

2. Two pion system

We use local I = 2 interpolating fields constructed by taking products of pion and rho fields:

J1(x) = Jπ
1 (x)Jπ

1 (x) J2(x) = Jπ
2 (x)Jπ

2 (x) J3(x) = Jρ
0 (x)Jρ

0 (x) J4(x) =
3

∑
i=1

Jρ
i (x)Jρ

i (x) (2.1)

where Jπ
1 (x) = d̄(x)γ5u(x),Jπ

2 (x) = d̄(x)γ5γ0u(x),Jρ
0
(x) = d̄(x)γ0 ∑3

i=1 γiu(x) and Jρ
i
(x) = d̄(x)γiu(x).

Using the fields defined in Eq. (2.1) we construct a 4×4 correlation matrix C jk(t) = ∑x 〈0|J j(x)J
+
k (0) |0〉.
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Figure 1: Upper left and middle graphs show effective masses using J1, J2, J3 and J4 on a lattice of size
163 × 32 and 323 × 64 respectively. Lower left and middle graphs show effective masses from J1 and the
two lowest eigenvalues. The graph on the right compares the effective mass for the two lowest eigenvalues
using the unprojected correlation matrix and the projected correlation matrix of Eq. (2.2) for the lattice of
size 163 ×32.

In addition we project to a state in which each of the two particles carries zero relative momentum
by evaluating the correlation matrix:

C j
s′

ks
(t) = ∑

x,y
〈0|Js′

j (x)Js′
j (y)Js+

k (0)Js+
k (0) |0〉 s,s′ = π, ρ (2.2)

Our variational methods of analysis are described in Ref. [5].
The effective masses for all interpolating fields are shown in Fig. 1 where one can see that

they converge to the same plateau yielding the same value for the mass. This value is the same
as that obtained from the lowest energy eigenvalue and very close to the mass of the s-wave two-
pion scattering state E0

2π , whereas the second eigenvalue yields E0
2ρ . The fact that the two lowest

eigenstates correspond to s-wave scattering states can be explicitly demonstrated by analyzing the
correlation matrix with projection to zero momentum for each particle as shown in the same figure
for the lattice of size 163×32. The masses extracted from the two lowest eigenvalues are shown as
a function of the spatial size of the lattice in Fig. 2. The energy of the second eigenvalue is volume
independent and can be clearly distinguished from E1

2π . Note that finite volume corrections due to
particle interactions are too small to be seen on the scale of this graph. The fact that for the lattice
of size 243 ×32 the masses are slightly above E0

2π and E0
2ρ is due to the fact that the time extent of

the lattice is too small to filter zero momentum pions and rho mesons. Also it is worth mentioning
that the two-rho scattering state, although higher than E1

2π on our largest lattice, is the dominant
state in the intermediate time range and only for very large times the effective mass of the second
lowest state becomes consistent with E1

2π .
In order to study the scaling of spectral weights wL we first look at the ratio of correlators

computed on lattices of spatial size L1 and L2 multiplied by the corresponding effective masses:

RL1:L2
=

CL1
(t)e

me f f ,L1
(t)

CL2
(t)e

me f f ,L2
(t)

. (2.3)
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Figure 2: The mass extracted from the lowest and
second lowest energy eigenvalue versus L in lattice
units.The dotted line is E1

2π .
Figure 3: The ratio R16:24(t) as a function of t.

Figure 4: The ratio of spectral weights for the pion and the
lowest state of the two-pion system. The dotted lines show
the expected value of the ratio for a single particle and for a
two particle scattering state. The results shown by the filled
triangles in the lower graph are obtained taking the upper fit
range for the large lattice to be 26 in lattice units.

Figure 5: Spectral weights on our three lat-
tices. Top for the two pion system and bot-
tom for the pentaquark in the negative par-
ity channel. In the pion system we show
results from fits to a single exponential and
a sum of two exponentials.

If a single state dominates then this ratio gives the ratio of spectral weights. We evaluate this ratio
for the lattices of spatial extension 16 and 24. As can be seen in Fig. 3, for the one pion state this
ratio is one as expected. For the two-pion state it increases but only approaches the expected value
of 3.4 for t/a > 25 when the ground state dominates. For the lattice of spatial size 32 this happens
for t/a > 30 and therefore this ratio is about one up to t/a = 30, which is the maximum time
separation that it can be constructed. A second option is to extract the spectral weights by fitting
the correlators to one or a sum of two exponentials. This allows to take into account information
from the full time extent of the lattice. We plot the ratio of spectral weights wL1

/wL2
for our three

lattices as a function of the lower time range ti/a used in the fit. The upper time range is fixed to
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26 for the lattices of time extent 32 and to 56 for the lattice of time extent 64. As can be seen in
Fig. 4 the ratio of weights deviates from one and approaches the expected ratio from below for large
values of ti/a. The individual spectral weights are shown in Fig. 5 and they are volume dependent.
The values obtained by fitting the correlator to a sum of two exponentials are consistent with those
obtained using a single exponential but converge at smaller values of ti/a on all lattices. However
if instead of an upper fit range of 56 we take 26 for the 323 ×64 lattice as we did for the other two
then the ratio of spectral weights stays very close to one as can be seen in Fig. 4. The same analysis
can be done for the second eigenstate but the errors are too large to reach a definite conclusion even
for this simple system.

3. Implications for the pentaquark system

We use interpolating fields motivated by the diquark-diquark [6] and KN structure:

JI=0
DD = εabc (

uT
a Cγ5db

)[

uT
c Cde −uT

e Cdc
]

Cs̄T
e γ5 , JI=0

KN = εabc (

uT
a Cγ5db

)

[

uc
(

s̄γ5d
)

−dc
(

s̄γ5u
)

]

.

(3.1)
We fix κs = 0.155 for the strange quark. This choice gives mK/mN = 0.5 and mφ/mN = 1.04 close

Figure 6: The effective mass for the pentaquark in the
negative parity channel. Top: for JDD and JKN . Bottom:
for the two lowest eigenvalues. The dotted lines show the
energies of the KN scattering states E0

KN and E1
KN .

Figure 7: The same as Fig. 8 put for the
positive parity channel. The dotted line is
E1

KN .

to the experimental ratios. The effective masses for the negative and positive parity channels are
shown in Figs. 6 and 7 for the 163 × 32 and 323 × 64 lattices. The plateau region is larger for the
negative parity than for the positive parity channel with both interpolating fields yielding consistent
results. For comparison we also show the effective mass for the nucleon and the kaon. We perform
the same variational analysis as in the two pion system to extract the two lowest energy eigenvalues
shown in Figs. 6 and 7. What we find is that in the negative parity channel the second energy is very
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poorly determined whereas the lowest state is consistent with that obtained from either interpolating
fields. Like in the two pion system the s-wave KN scattering state is obtained when t/a > 30 for
the large lattice. For the positive parity the two eigenvalues are very close together and cannot be
accurately resolved. We find a mass splitting of roughly 100 MeV at this quark mass. As in the
two pion system only the ratio R16:24 is useful. For the 323 ×64 lattice the ratio is not useful since
one has to go beyond t/a > 30 to see the scaling. Instead we extract the spectral weights by fitting
the correlators to a single exponential using the same upper fit ranges as those used in the two-pion
system. The results are shown in Fig. 5. In both the two-pion and pentaquark systems the values
of the spectral weights on the two smaller lattices stabilize as we increase the lower fit range ti/a
whereas on the large lattice convergence is slow. However within this variation the ratio of weights
clearly deviates from unity. For the pentaquark system fitting to two exponentials is very noisy and
only single exponential fits are performed. The values of the weights extracted on the three lattices
show a very different behavior as compared to that observed in the two-pion system. Within the
statistical errors they show no volume dependence for 10 < ti/a < 20 unlike in the two pion system
where for the same time range a clear volume dependence is seen.

4. Conclusions

The mass correlation matrix constructed from operators that have the quantum numbers of the
isospin I=2 two pion system yields two eigenvalues that correspond to the two-pion and two-rho
s-wave scattering states. Scaling of the spectral weights with the volume is verified but requires
large time separations and accurate data. Even though for this system the statistical errors on the
correlators for the first excited state are small the ratio of spectral weights for this state is still too
noisy obscuring the volume dependence. Carrying the same analysis for the pentaquark system
we find that, using the KN and the diquark-diquark interpolating fields, we obtain reliably only
the lowest energy eigenvalue in the negative parity channel which, for large time separations, is
consistent with E0

KN . The spectral weights can only be accurately determined in the negative parity
channel and for our three volumes they do not show strong volume dependence unlike what is
observed in the pion system. Thus, to the accuracy with which the scaling of the spectral weights is
determined, we cannot exclude a pentaquark resonance. In the positive parity channel we find that
the two eigenvalues are very close in energy with a gap of about 100 MeV at κ = 0.153. However
the mass of this state is too high to be identified as the Θ+(1540).
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