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1. INTRODUCTION

The evolution of the Universe is determined, to large extent, by microscopic laws of physics
— the same laws that govern particle interactions at high energies. Hence, discoveries in parti-
cle physics are of direct relevance to the theory of the Universe. Conversely, cosmology provides
important insights for high energy physics. Amazingly, many fundamental aspects of cosmology
require dramatic extensions beyond known physics; it may even happen that some aspects of cos-
mology will be possible to understand only by invoking hints from string theory.

How well do we understand the present and early Universe? Why cosmologists are so con-
fident when inventing new physics, even though it has not been discovered yet by high energy
physics community? What lessons should high energy physicists learn from advances in cosmol-
ogy? These lectures are an attempt to address these issues, which are at the core of high energy
physicists’ interest in cosmology.

There are many excellent books and reviews on cosmology and astrophysics. Here we mention
a few [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. When discussing specific subjects in these lectures, we will mostly
refer to review papers; an interested reader may find references to original literature there.

2. EXPANDING UNIVERSE

2.1 Friedmann–Robertson–Walker metric

Two basic facts about the Universe are that it is homogeneous and isotropic at large spatial
scales, and that it expands.

There are three types of homogeneous and isotropic three-dimensional spaces, which are con-
ventionally labeled by a parameter κ = 0,+1,−1. These are1 three-sphere (κ = 1), flat space
(κ = 0) and three-hyperboloid (κ = −1). Accordingly, one speaks about closed, flat and open Uni-
verse (κ = +1,0 and −1, respectively); in the latter two cases the spatial size of the Universe is
infinite, whereas in the former the Universe is compact.

The homogeneity and isotropy of the Universe mean that its hypersurfaces of constant time
are either three-spheres or three-planes or three-hyperboloids. The distances between points may
(and in fact, do) depend on time, i.e., the interval has the form

ds2 = dt2 −a2(t)dx2 (2.1)

where dx2 is the distance on unit three-sphere/plane/hyperboloid. Metric (2.1) is usually called
Friedmann–Robertson–Walker (FRW) metric, and a(t) is called scale factor. In our Universe

ȧ ≡ da
dt

> 0

which means that the distance between points of fixed spatial coordinates x grows

dl2 = a2(t)dx2

1Strictly speaking, this statement is valid only locally: in principle, homogeneous and isotropic Universe may have
complex global properties. As an example, spatially flat Universe may have topology of three-torus. There is some
discussion of such a possibility in literature, and fairly strong limits have been obtained by the analyses of cosmic
microwave background [11].

003 / 3



P
o
S
(
R
T
N
2
0
0
5
)
0
0
3

Cosmology V. A. Rubakov

The Universe expands.
The coordinates x are often called comoving coordinates. It is straightforward to check that

x = const is a time-like geodesic, so a galaxy put at a certain x at zero velocity will stay at the same
x. Furthermore, as the Universe expands, non-relativistic objects loose their velocities ẋ, i.e., they
get frozen in the comoving coordinate frame.

2.2 Hubble law

Let us discuss the propagation of photons in expanding Universe. The action of free electro-
magnetic field in curved space-time is

S = −1
4

Z √−gd4x gµνgλρFµλFνρ (2.2)

While the time coordinate t is convenient because it coincides with proper time for a particle at
rest (i.e., a particle whose spatial coordinates x do not change in time), one can introduce another
convenient time coordinate η instead of t, such that

a(η)dη = dt

that is
η =

Z

dt
a(t)

(2.3)

In terms of this time coordinate, the FRW metric takes the form

ds2 = a2(η)(dη2 −dx2) (2.4)

If the three-dimensional space is flat, one has

ds2 = a2(η)ηµνdxµdxν (2.5)

The time coordinate η is called conformal time, because metric (2.5) differs from Minkowski metric
ηµν only by the conformal factor a2(η). The form (2.5) may be used for closed and open Universe
as well, as long as distances much shorter than the radius of spatial curvature are considered.

In terms of conformal time (and neglecting spatial curvature), one has gµν = a2(η)ηµν. Plug-
ging this into the action of electromagnetism, eq. (2.2), one finds that the action reduces to Minkowski
form,

S = −1
4

Z

d3xdη ηµνηλρFµλFνρ (2.6)

This means that in coordinates (η,x), photon propagates in exactly the same way as in Minkowski
space-time. However, the coordinates η and x do not correspond to physical time intervals and
physical distances, and photons get redshifted as they propagate through the Universe. Indeed, it
is clear from the form of the action (2.6) that solutions to the corresponding field equations are
superpositions of plane waves,

Aµ ∝ eikx−i|k|η (2.7)

where k is a constant coordinate momentum. The coordinate wavelength λx = 2π/|k| stays con-
stant, but the physical wavelength

λ = a(η)λx
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increases. The physical momentum and frequency

p(t) =
k

a(t)
, ω(t) =

|k|
a(t)

decrease in time, i.e., they get redshifted2.
We will always label the present values of time-dependent quantities by subscript 0: the present

physical wavelength of a photon is thus denoted by λ0, the present time is t0, the present value of
the scale factor is a0 ≡ a(t0), etc. If a photon was emitted at some moment of time te in the past,
and its physical wavelength at the moment of emission was λe (λe is fixed by physics of the source,
say, it is the wavelength of a photon emitted by an excited hydrogen atom), then we receive today
a photon whose physical wavelength is longer,

λ0
λe

≡ 1+ z =
a0

a(te)

Here we introduced the redshift z which, on the one hand, is directly measurable3, and, on the other
hand, is related to the time of emission, and hence to the distance to the source.

Let us consider a “nearby” source, for which

z � 1

This corresponds to relatively small (t0 − te). Expanding a(te), one writes

a(te) = a0 − ȧ(t0)(t0 − te) (2.8)

To the leading order in z, the difference between the present time and the emission time is equal to
the distance to the source r (the speed of light is set equal to 1). Let us define the Hubble parameter

H(t) =
ȧ(t)
a(t)

and denote its present value by H0. Then eq. (2.8) takes the form

a(te) = a0(1−H0r)

and we get for the redshift, again to the leading non-trivial order in z,

1+ z =
1

1−H0r
= 1+H0r

In this way we obtain the Hubble law,

z = H0r , z � 1 (2.9)
2Although in this derivation we made use of conformal invariance of electromagnetism, the results are valid for any

massless field, for waves with frequencies much greater than H. Indeed, WKB solutions of the wave equations always
have the form (2.7), possibly with slowly varying pre-exponential factors, see section 2.7.

3One identifies a series of emission or absorption lines, thus obtaining λe, and measures their actual wavelength λ0.
These spectroscopic measurements give very accurate values of z even for distant sources.
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Traditionally, one tends to interpret the expansion of the Universe as runaway of galaxies from each
other, and red shift as the Doppler effect. Then at small z one writes z = v, where v is the radial
velocity of the source with respect to the Earth, so H0 is traditionally measured in units “velocity
per distance”. Observational data, which we will discuss briefly in section 3, give

H0 ≈ 70 km
s ·Mpc (2.10)

Traditionally, the present value of the Hubble parameter is written as

H0 = h ·100 km
s ·Mpc (2.11)

(1 Mpc≈ 3 mln. light yrs.≈ 3 ·1024 cm). Thus

h ≈ 0.7

We will use this value in further estimates.
Let us point out that the interpretation of redshift in terms of the Doppler shift is actually not

adequate, at least for large enough z. In fact, there is no need in this interpretation at all: the “radial
velocity” enters neither theory nor observations, so this notion may be safely dropped. Physically
meaningful quantity is redshift z itself.

A final comment is that H−1
0 has dimension of time, or length. Clearly, this quantity sets

the cosmological scales of time and distance at the present epoch. We will discuss this point in
section 2.5.

2.3 Hot Universe

Our Universe is filled with cosmic microwave background. Cosmic microwave background as
observed today consists of photons with excellent black-body spectrum of temperature

T0 = 2.725±0.001 K (2.12)

The spectrum has been precisely measured by various instruments and does not show any deviation
from the Planck spectrum, as shown in fig. 1.

Thus, the present Universe is “warm”. Earlier Universe was warmer; it cooled down because
of the expansion. While the CMB photons freely propagate today, it was not so at early stage.
When the Universe was hot, the usual matter (electrons and protons with rather small admixture
of light nuclei) was in the plasma phase. At that time photons strongly interacted with electrons
and protons in the plasma, so all these particles were in thermal equilibrium. As the Universe
cooled down, electrons “recombined” with protons into neutral hydrogen atoms, and the Universe
became transparent to photons. The temperature scale of recombination is, very crudely speaking,
determined by the ionisation energy of hydrogen, which is of order 10 eV. In fact, recombination
occured at lower temperature4,

Trec ≈ 3000 K
4The reason is that the number density of electrons and protons was small compared to the number density of

photons, i.e., there was large entropy per electron/proton; thus, recombination at higher temperatures was not thermody-
namically favourable because of entropy considerations.
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Figure 1: Measured CMB spectrum, compilation from Ref. [19]. Dashed line shows the black body (Planck)
spectrum. Recent analysis has lead to the value of the temperature given in the text, rather than T = 2.726 ,
as indicated in this figure.

An important point is that recombination process lasted quite a bit less than the Hubble time at that
epoch; to a reasonable approximation, recombination occured instantaneously.

Another point is that even though after recombination photons no longer were in thermal
equilibrium with anything, the shape of the photon distribution function has not changed, except
for overall redshift. Indeed, the thermal distribution function for ultra-relativistic particles, the
Planck distribution, depends only on the ratio of frequency to temperature,

fPlanck(p,T ) = f
(ωp

T

)

, ωp = |p|

As the Universe expands, the frequency gets redshifted, ωp →ωp/(1+z), but the shape of the spec-
trum remains Planckian, with temperature T/(1 + z). Hence, the Planckian form of the observed
spectrum is no surprise. Generaly speaking, this property does not hold for massive particles5.

At even earlier times, the temperature of the universe was even higher. The earliest time which
has been oservationally probed to date is the Big Bang Nucleosynthesis epoch (see below), and
corresponds to temperature of order 1 MeV.

To summarize, the effective temperature of photons scales as

T (t) ∝
1

a(t)
(2.13)

5Similar property holds, however, for particles that decouple being non-relativistic (hydrogen, cold dark matter). At
the decoupling, they have Maxwell–Boltzmann distribution function, which is a function of the ratio p2/(2mT ). As the
momentum gets redchifted, p → p/(1 + z), the shape of this distribution function remains Maxwell–Boltzmann, with
effective temperature T/(1+ z)2.
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This behavious is characteristic to ultra-relativistic free spieces (at zero chemical potential) only.
The same formula is valid for ultra-relativistic particles (at zero chemical potential) which are in
thermal equilibrium. Thermal equilibrium means adiabatic expansion; during adiabatic expansion,
the temperature of ultra-relativistic gas scales as the inverse size of the system6, hence eq. (2.13).

Both for free photons, and for photons in thermal equilibrium, the number density behaves as
follows,

nγ = const ·T 3 ∝
1
a3

and the energy density is

ργ =
π2

30 ·2 ·T 4 ∝
1
a4 (2.14)

where the factor 2 accounts for two photon polarizations. Present number density of relic photons
is about

nγ,0 ≈ 410 cm−3 (2.15)

and their energy density is
ργ,0 = 2.7 ·10−10 GeV

cm3 (2.16)

Let us now turn to non-relativistic particles: baryons, massive neutrinos, possible exotic “dark
matter” spieces, etc. If they are not destroyed during the evolution of the Universe (that is, they are
stable and do not co-annihilate), their number density merely gets diluted,

n ∝
1
a3 (2.17)

This means, in particular, that the baryon-to-photon ratio stays constant,

η ≡ nB

nγ
= const (2.18)

The energy density of non-relativistic particles scales as

ρ(t) = m ·n(t) ∝
1

a3(t)
(2.19)

in contrast to more rapid fall off (2.14) characteristic to ultra-relativistic spieces.
As we will discuss later, there exists strong evidence for dark energy in the Universe, whose

density does not decrease in time as fast as in eqs. (2.14) or (2.19). For the moment it suffices
to mention that this property holds for vacuum, whose energy density stays constant (in locally
Lorentz frame),

ρvac = const (2.20)

while the vacuum energy-momentum tensor in arbitrary frame is, by general covariance,

T vac
µν = ρvacgµν

6This follows from usual thermodynamics. The energy density of ultra-relativistic gas scales as ρ ∝ T 4, and pressure
is p = ρ/3. During the adiabatic expansion, energy decreases as follows, dE ≡ d(ρV ) = −pdV , where V is the volume
of the system. The latter relation immediately gives dT/T = (1/3)(dV/V ).
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i.e., vacuum has negative pressure (see eq. (2.23)),

pvac = −ρvac (2.21)

In this context, the vacuum energy density is the same thing as the cosmological constant, or Λ-
term.

2.4 Friedmann equation

The basic equation governing the expansion rate of the Universe is the Friedmann equation,

H2 ≡
(

ȧ
a

)2
=

8π
3 Gρ− κ

a2 (2.22)

where dot denotes derivative with respect to time t, ρ is the total energy density in the Universe,
the parameter κ has been introduced in section 2.1 and distinguishes closed (κ = +1), flat (κ = 0)
and open (κ =−1) Universes, and G is Newton’s gravity constant. In natural units G = M−2

Pl where
MPl = 1.2 · 1019 GeV is the Planck mass. The first and second terms on the right hand side of
eq. (2.22) may be viewed as the contributions of matter and spatial curvature, respectively, to the
expansion rate.

The Friedmann equation (2.22) is nothing but one of the Einstein equations of General Rela-
tivity specialized to homogeneous and isotropic space. Other Einstein equations are satisfied auto-
matically for this simple geometry. The relations (2.14), (2.19) and (2.20) may in fact be viewed
as consequences of the covariant conservation of energy-momentum,

∇µT µν = 0

For energy-momentum tensor of a fluid,

T µ
ν = diag (ρ,−p,−p,−p) (2.23)

and FRW metric, the covariant conservation equation reduces to

dρ
ρ+ p

= −3da
a

(2.24)

whose solutions are (2.14), (2.19) and (2.20) for p = ρ/3 (ultra-relativistic matter), p = 0 (non-
relativistic matter) and p = −ρ (vacuum), respectively.

As we will discuss later, the Universe is spatially flat today to a good approximation. The
curvature term κ/a2 in eq. (2.22) today is less than about 2 per cent of the matter term. This can be
also phrased in the following way. One defines the critical density ρc according to

8π
3 Gρc = H2

0 (2.25)

The meaning of this quantity is as follows. If the actual energy density ρ of all forms of matter in
the Universe (including vacuum, quintessence, etc.) is larger than ρc, then κ > 0, and the Universe
is closed; if ρ < ρc, the Universe is open, and it is flat for ρ = ρc. Observationally,

ρ = (1±0.02)ρc (2.26)
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At earlier times, the curvature term was even less significant, so we will neglect it in the study of
the evolution of the Universe, and write the Friedmann equation as

(

ȧ
a

)2
=

8π
3 Gρ (2.27)

To get an idea of numerics, one plugs the present value of the Hubble parameter (2.11) into the
definition (2.25) and converts ρc into

ρc = h2 ·1 ·10−5 GeV
cm3 ≈ 5 ·10−6 GeV

cm3 (2.28)

where we use our fiducial value h = 0.7.

2.5 Sample solutions

Solutions to the Friedmann equation (2.27) are most easily obtained in cases when matter of
definite type gives dominant contribution into the energy density ρ. Let us present some solutions
of his sort.

Matter dominated Universe
If the dominant contribution to the energy density comes from non-relativistic particles, then

ρ = const ·a−3, and the Friedmann equation reads

ȧ
a

=
const
a3/2

The solution is
a = const · t2/3 (2.29)

Note that this solution describes decelerating Universe,

ä < 0

As t → 0, the scale factor tends to zero, and the energy density tends to infinity. This is a cosmo-
logical singularity, “beginning of the Universe” (“Big Bang”), and t is the lifetime of the Universe.
Note that the lifetime is related to the Hubble parameter, since

H ≡ ȧ
a

=
2
3t

Until fairly recently, our Universe was indeed matter dominated, so this relation may be used to
obtain a crude estimate of its present age,

t0 ∼
2
3H−1

0 ≈ 1 ·1010 yrs

(again with h = 0.7). In fact, the lifetime of 10 billion years was a bit of a problem at some point, as
independent estimates of lifetimes of old objects in our Universe suggested that their lifetimes were
close, and sometimes even larger than 10 billion years. This was one of the reasons for suggesting,
even before the observational evidence for accelerating Universe, that our Universe is not in the
matter dominated stage today — rather, it is in dark matter dominated stage.
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Let us make use of this solution to introduce another notion, the cosmological horizon. Sup-
pose that at t = 0, signals were emitted everywhere in space, and then propagate in the Universe
with the speed of light. We ask at what distance today are the sources of signals we receive now.
This sphere is precisely the cosmological horizon for the solution (2.29): interior of this sphere is
causally connected to us, while the part of the Universe outside this sphere is causally disconnected
from us. The world line of a signal propagating with the speed of light obeys ds = 0, which, in
view of eq. (2.4), implies that the coordinate distance to the horizon is

rH = η =
Z t

0

dt ′

a(t ′)

The physical distance to the horizon at the time t is thus

lH(t) = a(t)rH = a(t)
Z t

0

dt ′

a(t ′)
(2.30)

For the solution (2.29) this distance is finite,

lH(t) = 3t = 2H−1

Hence, the present size of the visible part of the Universe is estimated as

lH,0 ∼ 2H−1
0 ≈ 3 ·1028 cm ≈ 104 Mpc

Note that in matter dominated Universe, the integral in eq. (2.30) is saturated at large t ′, so the
relic photons, which were actually emitted somewhat after the Big Bang, traveled almost the same
distance as lH,0.

Let us stress that the above estimates for the present age and horizon size are not quite correct,
since during good part of the evolution, the expansion of the Universe was not dominated by non-
relativistic matter; rather, it is dark matter dominated.

Radiation dominated Universe
If dominant contribution to the energy density comes from ultra-relativistic particles, then

ρ = const ·a−4, and the solution to the Friedmann equation (2.27) is

a(t) = const · t1/2 (2.31)

Qualitative features of this solution are similar to matter dominated case: the Universe starts from
the singularity, its expansion decelerates, age and horizon size are finite at given t.

Vacuum dominated Universe
Qualitatively different solution occurs if the Universe is vacuum dominated. The vacuum

energy density ρvac is time-independent, so the solution to the Friedmann equation (2.27) is

a(t) = const · eHvact (2.32)

where the time-independent Hubble parameter is determined by the vacuum energy density,

Hvac =

√

8π
3 Gρvac
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One notices that the Universe accelerates, rather than decelerates,

ä > 0

We note in passing that spatially flat FRW metric with scale factor (2.32) describes (part of) the
de Sitter space-time. Unlike other cosmological solutions, de Sitter geometry does not have past
singularity.

Equation of state p = wρ
Let us now consider general case of a fluid with equation of state

p = wρ

where w is a constant. For definiteness, let us restrict to the case

w > −1

Then the solution to eq. (2.24) is

ρ =
const

a3(1+w)

With κ = 0 (spatially flat Universe) one finds from eq. (2.22)

a = const · tα (2.33)

where
α =

2
3

1
1+w

The behaviour of solutions is qualitatively different for w > −1/3 and w < −1/3, i.e., for α < 1
and α > 1:

w > −1
3 : ä < 0 , decelerated expansion

w < −1
3 : ä > 0 , accelerated expansion (2.34)

Thus, accelerated expansion of the Universe requires negative pressure.
It is worth noting that the two cases differ in another respect: in the former case there exists

cosmological horizon, while in the latter the entire Universe is causally connected. Indeed, we have
seen that the cosmological horizon exists, if the following integral converges (see eq. (2.30)),

Z t

0

dt ′

a(t ′)

This integral is convergent for α < 1, i.e. w > −1/3. Otherwise this integral diverges, so the
cosmological horizon is absent. Note that this observation has to do with early times, t → 0; it is
of relevance for inflation rather than for the present epoch.
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2.6 Changing regimes

As we will discuss in sections 4 and 5, the present expansion of the Universe is dark energy
dominated; to a reasonable approximation, the expansion of the Universe today follows the expo-
nential law (2.32). This was not so at earlier times. Indeed, the dark energy density is constant in
time (or almost constant), while the energy density of non-relativistic particles scales like a−3(t).
Hence, even though the present energy density of non-relativistic matter is smaller than dark energy,
non-relativistic matter dominated at earlier epoch, when the scale factor was smaller than today.
Even earlier, the expansion of the Universe was dominated by ultra-relativistic matter. Indeed, the
energy density of the latter scales as a−4(t), so at small enough a(t) it was higher than the energy
density of non-relativistic particles. The curvature term κ/a2 never dominated the expansion of the
Universe: at present it contributes much less than not only the dark energy density, but also the
matter energy density. Its contribution was even less significant at earlier times, as it scales as a−2,
whereas the matter energy density scales as a−3. This is why it is legitimate to neglect the curvature
term for describing the entire evolution of the Universe.

We will quantify this discussion later, when we have better idea of the composition of the
Universe.

2.7 Linear perturbations in the expanding Universe

The Universe is of course not exactly homogeneous and isotropic. Thus, it is important to
understand the basic properties of perturbations about homogeneous and isotropic background. At
early times, density perturbations were small (we will discuss their magnitude in section 3), so a
linearized theory is a good approximation. We will discuss qualitative features of perturbations
in the expanding Universe by making use of an example of a massless scalar field ϕ minimally
coupled to gravity; the analysis of density perturbations is more technically involved, so we are not
going to present it here, and only make comments in appropriate places. An interested reader may
consult, e.g., refs. [12, 13].

The action of the scalar field is

Sϕ =
Z

d4x
√−g

1
2gµν∂µϕ∂νϕ (2.35)

In spatially flat FRW background it has the form

Sϕ =
Z

d3xdt
1
2a3

[

(ϕ̇)2 − 1
a2 (∂iϕ)2

]

Hence, the field equation reads

ϕ̈+3H(t)ϕ̇− 1
a2 ∂i∂iϕ = 0 (2.36)

where H(t) = ȧ/a is still the Hubble parameter. Due to homogeneity and isotropy of space, it is
convenient to use the momentum representation, i.e., search for solutions in the form

eikxϕk(t)

where ϕk obeys

ϕ̈k +3H(t)ϕ̇k +
k2

a2 ϕ = 0 (2.37)
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Note that k is a coordinate momentum; the physical momentum at time t is

p =
k

a(t)

It depends on time and gets redshifted.
Now, the second term in eq. (2.37) acts as friction. Thus, there are two regimes with qualiti-

tively different properties:
— Subhorizon modes:

p ≡ k
a
� H

Modes obeying this property are called subhorizon modes, since their physical wavelength λ ∼
p−1 is much shorter than the Hubble distance H−1 (which is horizon size in matter dominated or
radiation dominated Universe). Subhorizon modes oscillate in time,

ϕk =
1
a

e±
R

dt ωk(t) ,
k
a
� H (2.38)

where
ωk = p ≡ k

a
This behaviour is nothing peculiar: modulo slowly varying prefactor, the solutions describe oscil-
lations with the frequency experiencing redshift.

— Superhorizon modes:
p ≡ k

a
� H

In this case, the last term in eq. (2.37) is negligible, and the solutions are
– constant mode

ϕk = const ,
k
a
� H (2.39)

– “growning” mode
ϕk = const ·

Z

dt
a3(t)

,
k
a
� H (2.40)

The traditional name for the “growing” mode is somewhat misleading: the mode actually decreases
with time. The point, though, is that the latter mode grows as t decreases; in the radiation dominated
(and matter dominated) Universe it blows up at small t.

The gravitational waves obey precisely the same equation (2.37), so they have exactly the
same behavior. The (adiabatic) density perturbations at the radiation dominated epoch also have
similar behavior; in particular, for given k, one of the superhorizon modes blows up at small t. The
whole picture of the FRW Universe with small pertubations is thus self-consistent only if this mode
vanishes (or almost vanishes, if the hot stage begins at large but finite temperature) at finite times.
Any mechanism producing small density perturbations is likely to have this property.

Now, we recall that for radiation dominated and matter dominated Universe H ∼ t−1, while the
scale factor behaves as given in eqs. (2.31) and (2.29), respectively. Thus, the ratio of the physical
momentum to H behaves as

p(t)
H(t)

∝ t1/2 , radiation dominated

∝ t1/3 , matter dominated (2.41)
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This means that all modes start off as superhorizon, and then enter the horizon. In the scalar field
example, the requirement that the “growing” mode vanishes determines the initial data for each k
up to overall amplitude. Thus the solution is

ϕk = ck ,
k
a
� H

= ck cos
(

Z t

0
dt ω(t)

)

,
k
a
� H (2.42)

For density perturbations, the oscillating behavior means that at late enough times, there are sound
waves in the primordial plasma, whose wavelengths are shorter than the horizon size at each mo-
ment of time (in fact, since the speed of sound in the cosmic plasma is different from the speed
of light, it is sound horizon that actualy matters here). The point of the whole analysis is that the
phase of these waves is fixed. This property holds for all types of density perturbations (and gravity
waves) and is very important for interpreting data on CMB.

Briefly speaking, the fate of the primordial density perturbations is as follows. They stay
constant until they enter the horizon at radiation dominated or matter dominated stage. After that
they make sound waves. The amplitudes of these waves grow during the matter dominated stage
due to the gravitational instability: overdense regions tend to gravitationally attract matter and
become even more overdense. This growth becomes non-linear when (δρ/ρ) becomes roughly of
order 1; the dense regions collapse and form gravitationally bound structures.

3. OVERVIEW OF COSMOLOGICAL DATA

In the last 10 to 15 years, cosmology has become qualitative science. Detailed data on the
present and earlier Universe are now available, and even more precise data are due to come. Before
going into furher theoretical discussion, let us briefly consider what kinds of data are there, and
what gross features of the Universe they show.

Distribution of luminous matter (galaxies, quasars) is obtained by deep surveys. The largest
surveys (2dF, SDSS) measure angular positions of, and distances (redshifts) to hundreds of thou-
sand galaxies, with depth of the order of 2000 Mpc (about 6 billion light years). This is a fairly
large portion of the present Universe. Even larger part of the Universe is sampled by quasars. Thus,
by now we have a “map” of our “neighbourhood”, and can discuss matter distribution on various
length scales.

At large scales, the Universe is homogeneous and isotropic, as illustrated in fig. 2.
At shorter scales, the Universe is of course inhomogeneous. The largest structures visible

(superclusters of galaxies, giant voids) extend to several dozens of Mpc. This is seen from fig. 3
taken from older Las Campanas survey.

The comparison of the observed structure to simulations, at scales ranging from a few kpc (size
of a galaxy) and smaller, to thousands Mpc, tells a lot about the primordial density perturbations in
the early Universe, the composition of the Universe and the rate of its expansion at relatively late
epoch.

Observation of “standard candles”, the objects whose absolute luminocity is believed to be
known. What is measured is the visible luminocity F and redshift z. At relatively short distances,
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Figure 2: Spatial distribution of galaxies (left panel) and quasars (right panel), according to SDSS sur-
vey [14]. Shown are samples of usual and brighter galaxies and quasars. The parameter h is defined in the
text.

the visible luminocity is related to the distance,

F =
L

4πr2 (3.1)

where L is the absolute luminocity. This relation becomes confusing for z ∼ 1, yet one often
defines the luminocity distance by eq. (3.1), and talks about redshift–distance relation (the notion
of velocity is usually not used for large z).

At z � 1, the relation between z and r follows linear Hubble law (2.9), as shown in fig. 4. The
present value of the Hubble parameter consistent with virtually all measurements is

H0 = (71±3)
km

s ·Mpc (3.2)

In terms of the parameter h in eq. (2.11) this means

h = 0.71±0.03

At large z, the linear relation (2.9) no longer holds. The relation between z and r tells about
the expansion rate of the Universe at relatively late epoch. Presently, the data for large z come
from the observations of type 1a supernovae (SNe 1a), figs. 5 and 6. Surprisingly, they show that
the Universe undergoes accelerated expansion today (and at relatively small z, i.e., at late times),
while at higher redshift the expansion was decelerating. We will discuss the significance of this
result shortly.

Cosmic microwave background radiation (CMB) is an extremely important source of infor-
mation about the properties of the earlier Universe.

The CMB photons were last scattered/emitted at the recombination epoch, when the Universe
was only about 3 ·105 years old; for comparison, the present age of the Universe is about 1.4 ·1010
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Figure 3: Distribution of galaxies in the south galactic cap [15]. Each point represents a galaxy. Radial
distances are measured in redshift cz; redshifts 20 · 103km/s, 40 · 103km/s and 60 · 103km/s correspond ap-
proximately to radial distances 300, 600 and 900 Mpc, respectively.
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Figure 4: Hubble diagram for Supernovae 1a as standard candles, see Refs. [5, 16]. Straight line corresponds
to the Hubble law.
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Figure 5: Upper panel: stellar magnitude (proportional to − log(visible luminocity)) of SNe 1a as function
of redshift, according to relatively old data [17]. The larger the magnitude, the dimmer the object. For
definition of Ω’s see the text. Lower panel: the same figure, with expectation from the model ΩM = 0.2,
ΩΛ = 0 subtracted.

years. The observations of CMB give the photographic picture (literally) of the “young” Universe,
which had quite different properties than it has today. One of these properties is much higher level
of homogeneity and isotropy: photons coming from different directions in the sky have almost
(but not exactly!) the same temperature. Crudely speaking, relative angular anisotropy of CMB
temperature, δT/T0, is of order 10−4 to 10−5. This means that the Universe was homogeneous and
isotropic at the level better than 10−4, when it was 300 thousand years old.

Yet the angular anisotropy of the CMB temperature exists, and has been measured at vari-
ous angular scales. In a wide range of angular scales this anisotropy was accurately measured by
WMAP satellite, see fig. 7, while at smaller angular scales some data are available from measure-
ments made by ground-based interferometers.

It is convenient to decompose the temperature, as function of the direction ~n, in spherical
harmonics Ylm(~n), which make a complete set of functions on a sphere. One writes7

δT (~n) ≡ T (~n)−T0 −δTdipole = ∑
l,m

ClmYlm(~n) ,

The angular momentum l corresponds to fluctuations with typical angluar scale π/l. Figure 8 shows
7The dipole component is due to the motion of the Earth with respect to the rest frame of the CMB photon gas.
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Constant Deceleration, q0=+, dq/dz=0 (j0=0)

Figure 6: Recent data [18] on SNe 1a; subtracted is the expectation from a model in which the Universe
expands at constant velocity, ȧ = const.

the measured anisotropy as function of l.
To understand what is shown, one notices that the data are mostly consistent8 with Gaussian

fluctuations, for which Clm are statistically independent. For isotropic Universe this means

〈ClmC∗
l′m′〉 = C2

l δll′δmm′ ,

The coefficients Cl determine the correlation function

〈δT (~n1)δT (~n2)〉 = ∑
l

2l +1
4π

C2
l Pl(cosθ) ,

where Pl are the Legendre polynomials, and θ is the angle between ~n1 and ~n2. In particular, for
mean fluctuation of the temperature one has

〈δT 2〉 = ∑
l

2l +1
4π

C2
l ≈

Z

l(l +1)

2π
C2

l d ln l .

Hence, the quantity

δT (l) ≡
√

l(l +1)

2π
Cl

is a measure of the contribution coming from angular momenta in a decimal interval of l. It is this
quantity that is shown in fig. 8.

8Recently, it has been argued that there is non-Gaussianity in WMAP data at large angular scales [23]. This feature
is still under debate.
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Figure 7: WMAP data [20]: temperature of photons coming from different directions in the sky. Darker
regions correspond to lower temperatures. Average temperature T0 and dipole component are subtracted.
The angular variation of the temperature is at the level of T ∼ 100 µK, i.e., δT/T0 ∼ 10−4 −10−5.

Figure 8: Measured angular anisotropy of cosmic microwave background [20, 21, 22].

It is clear from fig. 8 that the anisotropy as function of l has fairly complex behaviour. There
are peaks (at least two of them are clearly visible) and dips. The physics beyond these features is
roughly as follows. The CMB anisotropy has its origin in the density perturbations9, i.e., sound

9Another possible source is gravity waves; there effect is small, see section 8.3.
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waves of all possible wavelengths. Waves of longer wavelength are seen in the photographic pic-
ture at larger angles; this is small-l region in fig. 8. Conversely, the region of large l corresponds
to shorter wavelengths of the sound waves. The properties of these waves are different for modes
which are superhorizon and subhorizon at recombination. We saw in section 2.7 that the density
perturbations in plasma, whose wavelength exceeds (sound) horizon at recombination, did not os-
cillate in time by recombination. Their effect on temperature is mostly due to the gravitational
potential they produce (Sachs–Wolfe effect): roughly speaking, light from denser reginos with
stronger (negative) gravitational potentials has to climb the gravitational well, so it gets more red-
shifted as compared to light from less dense regions. This is the flat region of small l in fig. 8.
For shorter waves there is another effect: the waves oscillate, i.e. the particles in plasma move;
this causes the Doppler effect leading to the CMB anisotropy. The waves of “just right” frequency
(and hence wavelength) are in the phase of maximum motion at recombination (it is important here
that the phase of oscillations is fixed, see section 2.7). These are the waves seen at an angle of 0.7
degrees (l ∼ 200), where Cl has the first peak. Further peaks correspond to higher harmonics.

All physical processes involved — the expansion of the Universe during its first 300 thousand
years, the evolution of density perturbations and the recombination itself — are very well under-
stood, so the calculations of the CMB anisotropy are very reliable. The predictions depend, of
course, on a number of parameters characterising the early and present Universe, so the CMB data
are used for extracting these parameters.

Let us point out two results coming from the analysis of the CMB anisotropy. The first is
that our Universe is spatially flat to rather high precision. The positions of the peaks in Cl (in
particular, of the first peak measured with good accuracy) are sensitive to the spatial curvature:
the absolute wavelength of the corresponding sound waves is reliably calculable, while its angular
size strongly depends on whether space is a 3-sphere, 3-hyperboloid or 3-plane. Quantitatively, the
result is usually expressed in terms of the contribution of the curvature term to the right hand side
of the Friedmann equation (2.22): this contribution is less than about 2 per cent (we mentioned this
already, see (2.26)). In more physical terms, this means that the radius of the spatial curvature of
our Universe, a, is quite a bit greater than the length of the visible part (size of the cosmological
horizon) lH,0,

a > 4lH,0 (3.3)

Another way to phrase this is to say that if the Universe were 3-sphere, its volume would still be a
lot larger than the volume we can observe,

Vtot

Vobs
=

2π2a3

4
3 πl3

H,0
> 100

Hence, even if the Universe has finite volume, we know from observations that we are able to
observe not more than 1 per cent of it. It is worth stressing that eq. (3.3) is an observational bound;
it is likely that the actual radius of the spatial curvature of the Universe is much, much greater than
the horizon size.

The second result concerns the baryonic content of the Universe. The height of the second
peak in Cl is sensitive to the dissipation rate of the sound waves in primordial cosmic plasma. The
latter in turn depends on the number density of electrons, which is equal to the number density of

003 / 21



P
o
S
(
R
T
N
2
0
0
5
)
0
0
3

Cosmology V. A. Rubakov

protons by electric neutrality. The analysis gives for the present number density of baryons

nB,0 = 2.5 ·10−7 cm−3 (3.4)

with precision better than 10 per cent. In terms of time-independent parameter η defined in (2.18)
this corresponds to

η = 6 ·10−10 (3.5)

It is remarkable that the same value of this parameter comes from an entirely different set of obser-
vations, which we are about to discuss in brief.
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CMB

Figure 9: Big Bang Nucleosynthesis [24]: theoretical predictions (lines) versus observations (smaller boxes:
2σ errors, statistical only; larger boxes: 2σ with systematic uncertainties included). Vertical lines are the
results from CMB anisotropy (the widths of bands depend on priors on other cosmological parameters).

Theory of Big Bang Nucleosynthesis and observations of primordial abundances of light
elements probe the earliest epoch of the evolution of the Universe, accessible to observations today.
This epoch corresponds to temperatures ranging from 1 MeV to a few · 10 keV, and age of the
Universe from 1 to 200 s. At temperatures above 1 MeV, there is thermal equilibrium with respect
to reactions

p+ e− ↔ n+νe (3.6)

As the Universe cools down below T ≈ 1MeV , neutrons are no longer produced or destroyed; their
concentration (relative to protons) “freezes out”. At temperatures of 100 keV and somewhat lower,
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these neutrons combine with protons into light nuclei, mostly 4He, but also deuterium 2H, lithium
7Li and others. These elements remain in the Universe, so their primordial abundance is measurable
today. The calculations of the thermonuclear reactions are again based on well known physics, and
the results are sensitive to the only unknown parameter10, η. The results of the calculations and
data are shown in fig. 9.

It is worth pointing out that Big Bang Nucleosynthesis serves also as a source of constraints on
particle physics exotica. The very fact that the temperature of the Universe reached at least 1 MeV
or so, and that the expansion was described by known physics at that stage, constrain significantly
some extensions of the Standard Model, like models with large extra dimensions [25] (for a review
see Ref. [26]). More generally, constraints from BBN are important in models with stable or
long-living new particles: these are produced at earlier stages and may contribute too much to the
energy density at the nucleosynthesis epoch, modifying in this way the expansion rate, and hence
predictions of the BBN theory. Another example are particles that decay at the BBN epoch: these
may destroy thermal equilibrium and therefore affect BBN; an example of this sort is provided by
some theories with light gravitino. Any extension of the Standard Model has to be checked against
cosmology, in particular, Big Bang Nucleosynthesis.

There are other data of cosmological significance, notably, measurements of mass distributions
in galaxies and galactic clusters. We will briefly present them in appropriate places, and now
proceed to immediate consequences.

4. COMPOSITION OF THE PRESENT UNIVERSE

As we will see in this section, the cosmological data correspond to a very surprising composi-
tion of the Universe.

Before proceeding, let us introduce a notion traditional in the analysis of the composition of
the present Universe. For every type of matter i with the present energy density ρi,0, one defines a
parameter

Ωi =
ρi,0
ρc

(4.1)

Then eq. (2.26) tells that

∑
i

Ωi = 1±0.02 (4.2)

where the sum runs over all forms of energy. Let us now discuss contributions of different spieces
to this sum.

We begin with baryons. The result (3.4), together gives

ρB,0 = mB ·nB,0 ≈ 2.5 ·10−7 GeV
cm3 (4.3)

Comparing this result with the value of ρc given in (2.28), one finds

ΩB = 0.05 (4.4)
10Assuming the Standard Model particle content, see below.
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Thus, baryons constiute rather small fraction of the present energy density in the Universe. One
point to note is that most of the baryons in our Universe are dark: direct measurements of the mass
density of stars give an estimate

Ωstars ∼ 0.005

which is about an order of magnitude smaller than ΩB. There is nothing particularly dramatic about
this observation: baryons may hide in dust and neutral gas clouds, brown dwarfs, Jupiters, etc.

Photons contribute even smaller fraction, as is clear from (2.16):

Ωγ ≈ 6 ·10−4 (4.5)

From electric neutrality, the number density of electrons is about11 the same as that of baryons,
so electrons contribute negligible fraction to the total mass density. The remaining known stable
particles are neutrinos. Their number density is calculable in Hot Big Bang theory and these
calculations are nicely confirmed by Big Bang Nucleosynthesis. The number density of each type
of neutrinos is

nνα = 115 1
cm3

where να = νe,νµ,ντ. Direct limit on the mass of electron neutrino, mνe < 2.6 eV, together with
the observations of neutrino oscillations suggest that every type of neutrino has mass smaller than
2.6 eV (neutrinos with masses above 0.03 eV must be degenerate, according to neutrino oscillation
data). The energy density of all types of neutrinos is thus smaller than ρc:

ρν,total = ∑
α

mναnνα < 3 ·2.6 eV ·115 1
cm3 ∼ 8 ·10−7 GeV

cm3

which means
Ων,total < 0.16

This estimate does not make use of any cosmological data. In fact, cosmological observations give
stronger bound

Ων,total < 0.01 (4.6)

This bound is mostly due to the analysis of the structures at small length scales, and has to do with
streaming of neutrinos from the gravitational potential wells at early times when neutrinos were
ultra-relativistic. In terms of the neutrino masses the bound (4.6) reads [27]

∑mνα < 0.42 eV

so every neutrino must be lighter than 0.14 eV. On the other hand, atmospheric neutrino data and
K2K experiment tell that the mass of at least one neutrino must be larger than 0.02 eV. Compar-
ing these numbers, one sees that it may be feasible to measure neutrino masses by cosmological
observations (!) in the future.

Coming back to our main topic here, we conclude that most of the energy density in the
present Universe is not in the form of known particles; most energy in the present Universe must

11There are neutrons, whose number is somewhat smaller than he number of protons.

003 / 24



P
o
S
(
R
T
N
2
0
0
5
)
0
0
3

Cosmology V. A. Rubakov

be in “something unknown”. Furthermore, there is strong evidence that this “something unknown”
has two components: clustered (dark matter) and unclustered (dark energy).

Clustered dark matter consists presumably of new stable massive particles. These make
clumps of energy density which encounter for much of the mass of galaxies and most of the mass
of galactic clusters. There are a number of ways of estimating the contribution of non-baryonic
dark matter into the total energy density of the Universe (see Ref. [28] for details):

– Composition of the Universe affects the angular anisotropy of cosmic microwave back-
ground. Quite accurate measurements of the CMB anisotropy, available today, enable one to esti-
mate the total mass density of dark matter.

– Composition of the Universe, and especially the density of non-baryonic dark matter, is
crucial for structure formation of the Universe. Comparison of the results of numerical simulations
of structure formation with observational data gives reliable estimate of the mass density of non-
baryonic clustered dark matter.

The bottom line is that the non-relativistic component constitutes about 30 per cent of the total
present energy density, which means that non-baryonic “cold dark matter” has

ΩCDM ≈ 0.25 (4.7)

There is direct evidence that dark matter exist in the largest gravitationally bound objects –
clusters of galaxies. There are various methods to determine the gravitating mass of a cluster, and
even mass distribution in a cluster, which give consistent results. To name a few:

– One measures velocities of galaxies in galactic clusters, and makes use of the gravitational
virial theorem,

Kinetic energy of a galaxy =
1
2 Potential energy

In this way one obtains the gravitational potential, and thus the distribution of the total mass in a
cluster.

– Another measurement of masses of clusters makes use of intracluster gas. Its temperature
obtained from X-ray measurements is also related to the gravitational potential through the virial
theorem.

– Fairly accurate reconstruction of mass distributions in clusters is obtained from the observa-
tions of gravitational lensing of background galaxies by clusters.

These methods enable one to measure mass-to-light ratio in clusters of galaxies. Assuming
that this ratio applies to all matter in the Universe12, one arrives at the estimate for the mass density
of clumped matter in the present Universe. Remarkably, this estimate coincides with (4.7).

Finally, dark matter exists also in galaxies. Its distribution is measured by the observations of
rotation velocities of distant stars and gas clouds around a galaxy. An example is shown in fig. 10.

Thus, cosmologists are confident that much of the energy density in our Universe consists of
new stable particles. We will see that natural candidates are particles which participate in weak
interactions (or, more generally, particles whose annihilation cross section is determined by a scale
of the order of electroweak scale, MEW ∼ 100 GeV). Of course, this is only a hypothesis for the
time being, and there are many other candidates for dark matter spieces.

12This is a strong assumption, since only about 10 per cent of galaxies are in clusters.
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Figure 10: Rotation velocities of gas clouds for galaxy NGC 6503 [29]. Curves show contributions of
different components of the galaxy; “halo” is dark.

Unclustered dark energy

Non-baryonic clustered dark matter is not the whole story. Making use of the above estimates,
one obtains an estimate for the energy density of all particles,

Ωγ +ΩB +Ων,total +ΩCDM ≈ 0.3

We note in passing that the contribution of photons and possible massless neutrinos is very small
here, so the left hand side is the contribution of all non-relativistic matter, and it is often denoted
by ΩM . Thus, ΩM ≈ 0.3. Equation (4.2) implies then that 70 per cent of the energy density is
unclustered.

All this fits nicely to the observations of SNe 1a. Indeed, we have seen that neither relativistic,
nor non-relativistic matter can lead to the accelerated expansion of the Universe. So, the accelerated
expansion requires energy stored in something dramatically different from conventional particles.
Furthermore, we have seen that this “something” — dark energy — must have negative pressure.
In fact the analysis of the entire set of cosmological data [27] in terms of dark energy with the
phenomenological equation of state13

p = wρ , w = const

gives
ΩΛ = 0.72±0.02

13The data are consistent with time-independent w, although allow for slight time variation.
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(here subscript Λ traditionally refers to dark energy) and

−1.2 < w < −0.8

It is worth noting that the vacuum value, w = −1 is right in the middle of the allowed region.
To conclude, the composition of the present Universe is fairly complex. Most of the energy

density comes from spieces which particle physicists are unfamiliar with: vacuum or vacuum-like
dark energy and non-baryonic clumped dark matter (presumably, non-relativistic, weakly interact-
ing particles). This poses serious problems for both fundamental physics and cosmology:

What are the particles of non-baryonic dark matter? This appears to be a less difficult
problem, as compared to some others listed below. Currently, a popular option is the lightest su-
persymmetric particle, which is stable in many supersymmetric extensions of the Standard Model.
Indeed, we will estimate in what follows that the present mass density of such particles is natu-
rally predicted to be in the right ballpark. Of course there are many other options, such as axions,
gravitinos, Q-balls, to name a few. In any case, experimental discovery of the dark matter particle
would be a great achievement of both particle physics and cosmology. This discovery may come
either from experiments attempting to detect dark matter or from collider searches, or both.

Why there are baryons, and no anti-baryons in our Universe? In other words, what is
the origin of matter-antimatter asymmetry of the Universe? This also appears to be a less difficult
problem; we will discuss this issue later in these lectures. Here we notice only, that any solution of
this problem requires an extension of the Standard Model.

Why the mass density of the non-baryonic dark matter is so similar (within less than
an order of magnitude) to the mass density of baryons? Both these densities scale as a−3(t),
so their ratio stays constant during most of the evolution of the Universe. It is not inconceivable
that mechanisms which create baryons and dark matter particles in the early Universe are related
to each other, so that the approximate equality of the mass densities is not a mere coincidence. It
is, however, difficult to construct a corresponding particle physics model, and it is fair to say that
existing attempts are far from being compelling.

What is the origin of dark energy? If this is vacuum, why vacuum has non-zero en-
ergy density, which, however, is very small by particle physics standards? This is a very
fundamental problem of microscopic physics. In natural units, the vacuum energy density is about
ρc ∼ 10−46 GeV4 while on dimensional grounds one would expect values like 1 GeV4 (QCD scale)
or 108 GeV4 (electroweak scale). This enormous discrepancy cries for explanation, but despite
numerous attempts it remains essentially an open problem. It may very well be that the solution
of this “cosmological constant problem” will lead to entirely new concept of physics at ultra-large
distances.

Why now? The energy densities of non-relativistic dark matter and dark energy scale differ-
ently: the former scales like a−3(t) while the latter stays approximately constant. Hence, at small
a(t) (early Universe) the energy density of non-relativistic matter exceeded by far the dark energy
density. Conversely, future expansion of the Universe will be dominated by dark energy. Yet these
energy densities are of the same order of magnitude today. Why is this the case? What is special
about the present epoch of the evolution of the Universe?
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5. DARK ENERGY

It appears that by far the most difficult problem is the origin of dark energy. The most disap-
pointing possibility would be that the carrier of dark energy is vacuum; in that case we will hardly
ever be confident of a mechanism responsible for tiny, but non-zero vacuum energy density. As the
last resort, we will possibly have to rely upon anthropic considerations [30, 31], which are based on
the observation that if the vacuum energy density were substantially larger (in absolute value) than
observed, the Universe would not be suitable for the existence of observers like us. Indeed, large
negative cosmological constant would give rise to early recollapse of the Universe, while with large
positive value, the accelerated expansion would start much earlier. In either case there would not
be enough time for stars and galaxies to form, hence life would not develop. These considerations
in fact provide rather strong bounds on the vacuum energy density, within two orders of magnitude
of the observed value. The idea is then that there may be infinitely many regions in the Universe
(or even infinitely many universes) where fundamental parameters like vacuum energy density are
different, and span entire range (−∞,+∞). The observers like us can only find themselves in a
region where the values of these parameters are suitable for their existence. There have been var-
ious suggestions for how such a picture can occur, ranging from wormholes/branching universes
to “ethernal inflation” and, most recently, to string theory landscape [32]. The problem is that it
hardly will be possible to check this picture experimentally even in distant future.

Another option, more promising from observational viewpoint, is that dark energy is due to
some light field [33, 34, 35], dubbed quintessence. As an example, consider a homogeneous scalar
field φ(t) in an expanding Universe. The action of the scalar field is

S =
Z

d4x
√−g

(

1
2gµν∂µφ∂νφ−V (φ)

)

where V (φ) is a scalar potential. For homogeneous scalar field in the FRW metric this action
reduces to

S =
Z

dt a3
(

1
2 φ̇2 −V (φ)

)

so the scalar field equation is

φ̈+3 ȧ
a

φ̇ = −∂V
∂φ

Formally, this equation may be viewed as Newton’s equation of classical mechanics with potential
V and friction, where φ plays the role of particle coordinate and ȧ/a ≡ H is the time-dependent
friction coefficient. If the scalar potential is a slowly varying function of φ, the Hubble friction
makes the field slowly rolling in the potential, cf. section 7.3. For homogeneous field, the energy-
momentum tensor

Tµν = ∂µφ∂νφ−L

has the form of the energy-momentum tensor of a fluid, with the energy density and pressure equal
to

ρφ =
1
2 φ̇2 +V (φ)

pφ =
1
2 φ̇2 −V (φ)
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For slowly varying field, both are dominated by the scalar potential, which is assumed to be small.
In this way one has approximately vacuum equation of state,

pφ ≈−ρφ (5.1)

but the energy density ρφ slowly decreases in time (hence the equation of state (5.1) is only approx-
imate). Of course, this proposal raises several questions: why the genuine vacuum energy density
is zero, so that it does not contribute to dark energy density? what is the physics behind the field φ?
where does the small energy scale, giving V (φ) ∼ 10−46 GeV4 today, come from? why the present
value of φ is in the right place? While the first three questions remain unanswered, for certain
scalar potentials the fourth one has an elegant answer: irrespectively of the initial conditions, the
field rolls down to correct place just in time (tracking solutions [36]). An exapmple is the theory
with the scalar potential

V (φ) =
M4+α

φα

where α > 0, and M is adjusted as follows,

M4+α ∼ Mα
Plρc (5.2)

(where ρc is again the present critical density). This is precisely the adjustment needed to ensure
that the energy of the scalar field today is close to ρc, but the point is that the initial conditions for
the evolution of the field φ need not be adjusted. Furthermore, once the relation (5.2) is granted,
the transition from matter dominated to dark energy dominated regime occurs at z ∼ 1, which is
precisely what is required by observations (see Ref. [36] for details).

Yet another option for explaining the accelerated expansion of our Universe is that gravity
deviates from General Relativity at cosmological distances and time scales, so that the Friedmann
equation (2.22) merely is not valid at the present epoch. This option would probably have to address
similar questions as the quintessence proposal, but even before that one meets a serious problem
of constructing theoretically consistent and phenomenologically acceptable theory which would
reduce to General Relativity at distances from a fraction of a millimeter (down to which gravity
is experimentally known to obey Newton’s law) to at least tens Megaparsecs, and deviate from
General Relativity at cosmological scales. In known Lorentz-invariant examples of such a theory14,
there either exist ghosts (fields with negative energy unbounded from below) or gravity becomes
strongly coupled at quantum level (and hence not tractable) at an unacceptably low “ultraviolet”
energy scale corresponding to distance of order 1000 km. A consistent theory of this sort would
probably require “gravitational Higgs mechanism” and violation of Lorentz-invariance, but even
this, rather exotic idea, has not yet lead to a consistent model capable of explaining the accelerated
expansion of the Universe.

Quintessence models (and most likely models with infrared-modified gravity, if the latter ex-
ist) imply that the effective dark energy density is not constant in time. Needless to say, an ob-
servational evidence for the time-dependence of ρΛ would have enormous impact on fundamental
physics. On the other hand, it is hard to foresee any method to probe dark energy in a laboratory,
so we have to rely on cosmological observations when trying to reveal the origin of dark energy.

14See, however, Ref. [37].
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6. HOT BIG BANG

The usual matter and dark matter have their origin in the early Universe. Before discussing
plausible scenarios of their generation, let us give some details of the evolution of the Universe in
its hot stage.

One assumes that it makes sense to extrapolate the evolution of the Universe back in time
by making use of known microscopic physics (electrodynamics, nuclear physics, QCD and elec-
troweak physics) and General Relativity. This theory is called “Hot Big Bang theory”. According
to this theory, the Universe was hotter at earlier stages (i.e., at smaller values of the scale factor
a(t)), as the temperature scales as a−1(t). Also, the Universe was denser: the particle number den-
sities scale as a−3(t) both for relativistic and non-relativistic particles. At high enough temperature
the Universe was quite different from what we observe today: instead of almost empty space with
galaxies here and there, there was hot, dense and almost homogeneous plasma filling the Universe.
This is why the microscopic physics played a role in the early Universe: at temperatures of the
order of nuclear physics scale, roughly a few MeV, one has to deal with nuclear reactions; at tem-
peratures of the order of the strong interaction scale, (a few) · 100 MeV, the relevant microscopic
theory was largely QCD, etc.

6.1 Expansion of the Universe

We begin with the analysis of the evolution of the Universe, i.e., the behavior of the scale
factor a(t) as function of time. As we already discussed in section 2.5, at early times the Universe
was radiation dominated, then matter dominated, and presently dark energy dominated, while the
curvature term κ/a2 was never important.

Deceleration to acceleration
Due to the dark energy dominance, the Universe accelerates today. When matter was domi-

nating, the Universe was decelerating. To figure out when the change in the regime occurred, we
write down the Friedmann equation in the following form (assuming dark matter equation of state
p = −ρ, neglecting spatial curvature and also neglecting ultra-relativistic matter for the moment;
we will see that ultra-relativistic matter dominated the expansion at much earlier stage),

(

ȧ
a

)2
=

8πG
3ρc

(

ΩM
a3

0
a3 +ΩΛ

)

where a0, ΩM , ΩΛ and ρc are present values, thus time-independent constants. Therefore,

ȧ2 =
8πG
3ρc

(

ΩM
a3

0
a

+ΩΛa2
)

and ä is equal to zero when
a3

0
a3 ≡ (1+ z)3 =

2ΩΛ

ΩM

With ΩΛ = 0.7 and ΩM = 0.3, we have

deceleration → acceleration : z ≈ 0.7
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The Universe was decelerating until fairly recently. Before z ≈ 0.7, the expansion was dominated
by the non-relativistic matter.

Radiation domination to matter domination.
Since energy densities of non-relativistic and ultra-relativistic matter (“radiation”) scale as

a−3 and a−4, respectively, dominant contribution to the energy density of the Universe at very
small a, i.e., at very early epoch, came from ultra-relativistic matter. To estimate zeq at which the
equilibrium between matter and radiation occurred, i.e., at which the expansion regime changed
from the dominance of ultra-relativistic particles to the dominance of non-relativistic matter, we
write

ρM(t)
ρrad(t)

=

(

ρM

ρrad

)

0

a(t)
a0

where the subscript 0 still refers to the present values. Equilibrium occurs at

ρM(teq)

ρrad(teq)
≈ 1

which gives
a0

a(teq)
≡ 1+ zeq ≈

(

ρM

ρrad

)

0
=

ΩM

Ωrad

We already know the energy density of relic photons; massless neutrinos15 of all tree types have
ρν,0 ≈ 0.7ργ. Thus, Ωrad ≈ 10−4, see eq. (4.5). With ΩM = 0.3 we have

radiation domination → matter domination : zeq ≈ 3000

The corresponding temperature is

Teq = T0(1+ zeq) ≈ 104 K ≈ 1 eV (6.1)

At higher temperatures, the expansion of the Universe was dominated by ultra-relativistic matter.
It is important for the theory of structure formation that during much of its lifetime, the Uni-

verse was dominated by non-relativistic matter. The expansion rate at both radiation dominated
and vacuum dominated stages is such that gravitational perturbations grow slowly, and only during
matter dominated stage their growth is fast enough to account for the existing structures in the Uni-
verse. The bottom line is that the present composition of the Universe plus simple extrapolation
back to the past are consistent with the theory of structure formation. Various ingredients of the
standard cosmology nicely fit together.

6.2 Epochs in the early Universe

We have already mentioned two important epochs in the evolution of the Universe: recombi-
nation epoch (transition from plasma to neutral gas that occured at T ∼ 3000 K, t ∼ 3 ·105 yrs and
lasted much less than Hubble time) and nucleosynthesis epoch (T = 1 MeV to a few · 10 keV).
Another “event” is neutrino decoupling. At high temperatures, weakly interacting particles, in-
cluding neutrinos, were in thermal equilibrium with the rest of cosmic plasma. The plasma became

15Whether or not neutrinos are exactly massless is inessential for the estimate of zeq: the estimate remains valid if
every neutrino has mass smaller than 1 eV.
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effectively transparent for neutrinos at temperature of about 1 MeV. The temperature of decoupling
of neutrinos from cosmic plasma is of importance for nucleosynthesis, as it affects the neutron–
proton ratio just before nucleosynthesis (and hence the abundances of light elements, which need
neutrons for their formation), and also the expansion of the Universe at the nucleosynthesis epoch.
The fact that neutrinos decoupled much earlier than photons implies that the present neutrino-to-
photon ratio is less than one16.

As we move further back in time, the cosmic plasma has more and more components. At
temperatures above roughly 0.5 MeV (set by the mass of electron), there are lots of electrons and
positrons which frequently are pair created and annihilate; at T > 100 MeV the plasma contains
muons and pions, etc. Simple estimates given in the next subsection show that the plasma remains
in thermal equilibrium except possibly for phase transitions.

– QCD phase transition.
At temperatures well above 100 MeV (QCD scale), strongly interacting particles are dissolved

into quarks and gluons. This quark-gluon plasma converts into hadronic matter (mostly pions)
during the quark-hadron phase transition. Theoretical estimates and lattice simulations in QCD
suggest that the temperature of this phase transition is about 170 MeV.

– Electroweak transition.
Loosely speaking, at temperatures well above 100 GeV, electroweak symmetry is unbroken,

the Higgs expectation value vanishes, and W - and Z-bosons are massless. At T ∼ 100 GeV, the
phase transition of the electroweak symmetry breaking takes place. In fact, there is no local, gauge
invariant order parameter in the standard electroweak theory, and the electroweak transition is simi-
lar to vapor-liquid transition: for some values of parameters, there is the first order phase transition,
whereas for other values, a smooth cross-over takes place instead. With existing constraints on the
Higgs boson mass, the Standard Model predicts cross-over; what actually happened in the early
Universe depends on what exactly is the extension of the Standard Model. Uncovering physics
in 100 GeV – 1 TeV energy range will thus allow cosmologists to study quantitatively quite early
epoch of the evolution of the Universe.

– GUT transition.
Extrapolating further back is dangerous, but if we do so, we come to the Grand Unification

epoch, whose temperature is set by the GUT scale, TGUT ∼ 1016 GeV. At this temperature, one
expects Grand Unified phase transition to occur. However, many models of inflation suggest that
the Universe never had such a high temperature after inflation.

Even more interesting are the epoch of the generation of dark matter and epoch of the
generation of baryon asymmetry. We can only make guesses about these epochs, and some of
the guesses is the subject of these lectures. Before turning to them, it is convenient to consider the
expansion of the Universe at early times in little more detail.

6.3 Expansion rate and lifetime at radiation domination

Before proceeding further, let us consider in little more detail the expansion of the Universe at

16This is because photons are additionally heated, after neutrino decoupling, due to annihilations of e+ and e− which
were abundant at T ∼ 1MeV .
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the radiation dominated stage, assuming thermal equilibrium of all ultra-relativistic spieces17. The
energy density of all ultra-relativistic spieces, which enters the Friedmann equation, is

ρ =
π2

30g∗T 4

where g∗ is the effective number of massless degrees of freedom at temperature T . The contribution
of bosons into g∗ is equal to the number of spin states (e.g., for photons gγ = 2, while for W -bosons
at temperature above 100 GeV, gW = 6 because of two charges and three projections of spin), while
fermions contribute 7/8 of the number of spin states (electrons plus positrons contribute 4 · 7/8,
each type of left-handed neutrino plus its antineutrino gives 2 · 7/8, etc.). The parameter g∗ is the
sum of contributions of all ultra-relativistic spieces; it slightly depends on time because at higher
temperatures, more spieces are ultra-relativistic (say, electrons contribute at T > 0.5 MeV and do
not contribute at lower temperatures).

It is convenient to introduce the effective Planck mass

M∗
Pl =

MPl

1.66√g∗

This parameter slightly depends on temperature, and numerically is of order

M∗
Pl = (a few) ·1018 GeV

With this notation, the expansion rate is related to temperature in a simple way,

H(t) =
T 2(t)
M∗

Pl

One recalls that the expansion law at the radiation dominated stage (neglecting the dependence of
g∗ on temperature) is

a(t) = const ·
√

t

so the Hubble parameter is related to the lifetime as follows,

H ≡ ȧ
a

=
1
2t

We immediately deduce the relation between lifetime and temperature,

t =
M∗

Pl

2T 2

Let us make use of the latter formula to estimate the age of the Universe at different epochs:
– Nucleosynthesis
The temperatures relevant for BBN range from a few MeV to about 70 keV. From these we

obtain that the earliest time directly probed by observations is about

t ∼ 1018 GeV
10−6 GeV2 ∼ 1 s

17The assumption of thermal equilibrium is in fact not valid for neutrinos at temperatures below 1 MeV. The corre-
sponding modification of our discussion is straightforward, however.
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whereas BBN ends at t ∼ 200 s ∼ 3 min. We do have a handle on the Universe one second old!
– Earlier epochs:

QCD phase transition : T ∼ 200 MeV , t ∼ 3 ·10−5 s
Electroweak epoch : T ∼ 100 GeV , t ∼ 10−10 s (6.2)

One may wonder whether equilibrium thermodynamics, which we use throughout, is applicable at
these early times, when the Universe expands so rapidly. To see that this is indeed the case, let us
consider, as an example, electromagnetic scattering of light particles at T > 1 MeV. It is clear on
dimensional grounds that the mean free time of a charged particle at temperature T is

τ ∼ (α2T )−1

(the electromagnetic cross section is proportional to α2). For thermal equilibrium with respect to
the electromagnetic interactions be established, the interaction rate τ−1 must be smaller than the
expansion rate of the Universe, H, which gives

α2T � T 2

M∗
Pl

This inequality is indeed valid at T � α2M∗
Pl ∼ 1014 GeV, so electromagnetic (and many other)

microscopic processes are in thermal equilibrium at all temperatures of interest to us.
Thermal equilibrium is not a particularly interesting state of the Universe. What we are going

to discuss in the rest of this section are in fact inequilibrium phenomena. It is these phenomena
that may leave relics behind, and hence may have observable consequences.

6.4 Heavy relic: Best guess for cold dark matter

As we discussed above, the observational data strongly suggest that a good part of the energy
density in the present Universe comes from new stable (or practically stable) particles. At least in
some cases, the Hot Big Bang theory is capable of predicting the density of such particles in terms
of their interaction cross sections and masses. Here we present the corresponding estimate in the
simplest possible scenario; needless to say, this estimate can be (and has been) refined by more
careful calculations.

Let us assume that there exists a heavy stable particle Y and its anti-particle Ȳ . Let us assume
for definiteness that the dominant process in which these particles can be destroyed or created is
their pair-annihilation or creation, with annihilation products being the particles of the Standard
Model (the analysis for a neutral particle Y , which coincides with its own anti-particle, is very sim-
ilar, provided that these particles pair-annihilate). Let us further assume that there is no asymmetry
between Y and Ȳ in the early Universe, i.e., the densities of Y and Ȳ are equal to each other18. We
will see that the overall cosmological behaviour of these particles is as follows. At high tempera-
tures, T � MY , the Y -particles are in thermal equilibrium with the rest of cosmic plasma; there are

18This is actually a strong assumption. It is valid in many, but not all, realistic extensions of the Standard Model.
In fact, an alternative scenario with the generation of Y -asymmetry is appealing too, because it might relate the baryon
asymmetry to the density of dark matter [38].

003 / 34



P
o
S
(
R
T
N
2
0
0
5
)
0
0
3

Cosmology V. A. Rubakov

lots of Ȳ -Y pairs in the plasma, which are continuously created and annihilate. As the temperature
drops below MY , the equilibrium number density decreases. At some “freeze-out” temperature
Tf the number density becomes so small, that Y and Ȳ can no longer meet each other during the
Hubble time, and their annihilation terminates. After that the number density of survived Y and Ȳ
decreases like a−3, and these relic particles contribute to the mass density in the present Universe.
Our purpose is to estimate the range of properties of Y -particles, in which their present mass density
is of the order of the critical density ρc, so that Y -particles may serve as dark matter candidates.

Assuming thermal equilibrium, elementary considerations of mean free path of a particle in
gas give for the lifetime of a non-relativistic Y -particle in cosmic plasma, τann,

σann · v · τann ·nȲ ∼ 1

where v is the velocity of Y -particle, σann is the annihilation cross section at velocity v and nȲ = nY

is the equilibrium number density (Boltzmann law at zero chemical potential, i.e., at nȲ = nY )

nY = gY ·
(

mY T
2π

)3/2
e−

mY
T

Let us assume for definiteness that the annihilation occurs in s-wave (other cases give similar
results), so at non-relativistic velocities

σann =
σ0
v

where σ0 is a constant about which we will have to say more later. One should compare the lifetime
with the Hubble time, or annihilation rate Γann ≡ τ−1

ann with the expansion rate H = T 2/M∗
Pl . At

T ∼ mY , the equilibrium density is of order nY ∼ T 3, and Γann � H for not too small σ0. This
means that annihilation (and, by reciprocity, creation) of Ȳ -Y pairs is indeed rapid, and Y -particles
are indeed in thermal equilibrium with the plasma. At very low temperature, on the other hand,
the number density nY is exponentially small, and Γann � H. At low temperatures we cannot, of
course, make use of equilibrium formulas: Y -particles no longer annihilate (and, by reciprocity, are
no longer created), there is no thermal equilibrium with respect to creation–annihilation processes,
and the number density nY gets diluted only because of the cosmological expansion.

The freeze-out temperature Tf is determined by the relation

τ−1
ann ≡ Γann ∼ H

where we can still use the equilibrium formulas, as Y -particles are in thermal equilibrium (with
respect to annihilation and creation) just before freeze-out. We find

σ0 ·nY (Tf ) ∼
T 2

f

M∗
Pl

(6.3)

or

σ0 ·gY ·
(

mY Tf

2π

)3/2
e−

mY
Tf ∼

T 2
f

M∗
Pl

The latter equation gives the freeze-out temperature, which, up to loglog terms, is

Tf ≈
mY

ln(M∗
PlmY σ0)
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Note that this temperature is quite a bit smaller than mY , if the relevant microscopic mass scale
is much below MPl . This means that Y -particles freeze out when they are indeed non-relativistic,
hence the term “cold dark matter”. The fact that the annihilation and creation of Y -particles ter-
minates at relatively low temperature has to do with rather slow expansion of the Universe, which
should be compensated for by the smallness of the number density nY .

At the freeze-out temperature, we make use of eq. (6.3) and obtain

nY (Tf ) =
T 2

f

M∗
Plσ0

Note that this density is inversely proportional to the annihilation cross section (up to logarithms).
The reason is that for higher annihilation cross section, the creation–annihilation processes are
longer in equilibrium, and less Y -particles survive.

To estimate the present density of Y -particles, it is convenient to consider ratio nY /s where s
is the entropy density,

s =
2π2

45 g∗T 3

The point is that during the adiabatic expansion after freeze-out, both entropy density and nY behave
as a−3, so this ratio stays constant. Up to a factor of order 1, this ratio at freeze-out is

nY

s
∼ 1

g∗(Tf )M∗
PlTf σ0

At late times, the entropy density, again up to a factor of order 1, is equal to the number density of
photons, so the present number density of Y -particles is of order

nY,0 ∼ nγ,0 ·
(nY

s

)

f reeze−out

and the mass density is

ρY,0 = mY nY,0

∼ nγ,0 ·
ln(M∗

PlmY σ0)

g∗(Tf )M∗
Plσ0

(6.4)

This formula is remarkable. The mass density depends mostly on one parameter, the annihilation
cross section σ0. The dependence on the mass of Y -particle is through the logarithm and g∗(Tf ),
and is very mild. From this formula we immediately derive the condition ensuring that Y -particles
are dark matter candidates, i.e., their present mass density is of the order of ρc,

σ0 ∼
nγ,0

g∗(Tf )M∗
Plρc

ln(M∗
PlmY σ0)

The value of the logarithm here is between 20 and 40, depending on parameters (this means, in
particular, that freeze-out occurs when the temperature drops 20 to 40 times below the mass of
Y -particle). Plugging in other numerical values (ρc ∼ 10−5 GeV cm−3, nγ,0 ∼ 400 cm−3, g∗(Tf ) ∼
100, M∗

Pl ∼ 1018 GeV), we obtain an estimate

σ0 ∼ 10−11 GeV−2
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which already crudely tells us what the relevant range of mass scales is. In fact, the annihilation
cross section may be parametrized as

σ0 =
α2

M 2

where α is some coupling constant, and M is the mass scale. This parametrization is suggested
by the picture of Ȳ -Y annihilation via exchange of another particle of mass M , which may be
somewhat higher than mY . With α ∼ 10−2, the estimate for the mass scale is roughly

M ∼ 1 TeV

Thus, with very mild assumptions, we find that the non-baryonic dark matter may naturally origi-
nate from the TeV-scale physics!

In supersymmetric extensions of the Standard Model, the lightest supersymmetric particle
(LSP, most likely, neutralino — a mixture of superpartners of photon, Z-boson and neutral Higgs
bosons) is often stable, and its annihilation cross section is automatically in the right ballpark. This
is illustrated in fig. 11.

Figure 11: Present mass density of relic neutralino LSP’s (denoted by χ), as function of the neutralino
mass [39] in Minimal Supersymmetric Standard Model (MSSM). Each point corresponds to a randomly
chosen set of MSSM parameters. Crosses, dots and circles correspond to different neutralino content. Note
that observational data suggest Ωχ ≈ 0.25, h ≈ 0.7, so that Ωχh2 ≈ 0.12.

Naturally, search for both direct and indirect signals from neutralino dark matter (and more
generally, weakly interacting massive particles, WIMPs) is an active area of experimental research.
For discussions of the potential of existing and future experiments, see, e.g., Refs. [39, 40].

003 / 37



P
o
S
(
R
T
N
2
0
0
5
)
0
0
3

Cosmology V. A. Rubakov

If dark matter particles are indeed WIMPs, and the relevant energy scale is of order 1 TeV, then
the Hot Big Bang theory will be probed experimentally up to temperatures of (a few) ·10 GeV and
down to age 10−9 s in relatively near future (compare to 1 MeV and 1 s accessible today). With
microscopic physics to be known from collider experiments, the WIMP density will be reliably
calculated and checked against data from observational cosmology. Thus, WIMP scenario (and
also some others) offers a window to a very early stage of the evolution of the Universe.

The mechanism discussed here is by no means the only mechanism capable of producing cold
dark matter, and WIMPs by no means are the only candidates for dark matter particles. Other
dark matter candidates include very heavy relics produced towards the end of inflation, axions,
gravitinos, Q-balls, massive gravitons, etc.

6.5 Baryon asymmetry of the Universe

In the present Universe, there are baryons and almost no anti-baryons. The number density of
baryons today is characterized by the ratio η, see eq. (2.18). In the early Universe, the appropriate
quantity is

∆B =
nB −nB̄

s
where nB̄ is the number density of anti-baryons, and s is the entropy density. If the baryon number is
conserved, and the Universe expands adiabatically, ∆B is constant, and its value is, up to a numerical
factor, equal to η, so that

∆B ≈ 10−10

Back at early times, at temperatures well above 100 MeV, cosmic plasma contained many quark-
antiquark pairs, whose number density was of the order of the entropy density,

nq +nq̄ ∼ s

while baryon number density was related to densities of quarks and antiquarks as follows (baryon
number of a quark equals 1/3),

nB =
1
3(nq −nq̄)

Hence, in terms of quantities characterizing the very early epoch, the baryon asymmetry may be
expressed as

∆B ∼ nq −nq̄

nq +nq̄

We see that there was one extra quark per about 10 billion quark-antiquark pairs! It is this tiny
excess that is responsible for entire baryonic matter in the present Universe.

There is no logical contradiction to suppose that the tiny excess of quarks over antiquarks was
built in as an initial condition. This is not at all satisfactory for a physicist, however. Furthermore,
inflationary scenario does not provide such an initial condition for Hot Big Bang; rather, inflation
theory predicts that the Universe was baryon-symmetric just after inflation. Hence, one would like
to explain the baryon asymmetry dynamically.

The baryon asymmetry may be generated from initially symmetric state only if three necessary
conditions, dubbed Sakharov’s conditions, are satisfied. These are

(i) baryon number non-conservation;
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(ii) C- and CP-violation;
(iii) deviation from thermal equilibrium.
All three conditions are easily understood. (i) If baryon number were conserved, and initial

net baryon number in the Universe was zero, the Universe today would be symmetric rather than
asymmetric. (ii) If C or CP were conserved, then the rate of reactions with particles would be the
same as the rate of reactions with antiparticles. In other words, if the initial state of the Universe
was C- and CP-symmetric, then the asymmetry between particles and antiparticles may develop
only if C and CP is violated. (iii) Thermal equilibrium means that the system is stationary (no time
dependence at all). Hence, if the initial baryon number is zero, it is zero forever, unless there are
deviations from thermal equilibrium.

There are two well understood mechanisms of baryon number non-conservation. One of them
emerges in Grand Unified Theories and is due to the exchange of super-massive particles. It is very
similar, say, to the mechanism of charm non-conservation in weak interactions which occurs via
the exchange of heavy W -bosons. The scale of these new, baryon number violating interactions is
the Grand Unification scale, presumably of order 1016 GeV.

Another mechanism is non-perturbative and is related to the triangle anomaly in the baryonic
current (a keyword here is “sphaleron”). It exists already in the Standard Model, and, possibly with
slight modifications, operates in all its extensions. The two main features of this mechanism, as
applied to the early Universe, is that it is effective over a wide range of temperatures,
100 GeV < T < 1011 GeV, and that it conserves (B−L).

Realistic mechanisms of baryon number non-conservation are thus not numerous, yet there are
several ways the baryon asymmetry could have been generated. They differ by the characteristic
temperature at which the asymmetry is produced.

(i) Grand Unification mechanisms operate at extremely high temperatures, T ∼ 1015−1016 GeV.
The most commonly discussed source of the baryon asymmetry in this context are B- and CP-
violating decays of ultra-heavy particles. At later times, the baryon number is violated by anoma-
lous electroweak processes whose effect is basically to wash out (B + L). They would therefore
reprocess part of the baryon asymmetry, but if non-zero (B− L) is generated at GUT tempera-
tures, then this (B−L) would survive until the present epoch (provided there are no strong lepton
number violating interactions at intermediate temperatures, 100 GeV < T < 1011 GeV, otherwise
all fermion quantum numbers would be violated at those temperatures, and no asymmetry would
survive). Part of this (B−L) would be carried by baryons.

(ii) Electroweak baryogenesis is a scenario in which the baryon asymmetry is generated en-
tirely due to the anomalous electroweak processes. Its generation would occur at temperature of
order 100 GeV, at which these anomalous processes are switching off. Since the Universe expands
slowly at the electroweak epoch (as compared to rates of microscopic interactions), considerable
departure from thermal equilibrium is possible only due to the first order phase transition. Indeed,
the latter transition, which proceeds through the nucleation, expansion and collisions of bubbles of
the new phase, is quite a violent phenomenon. With LEP limits on the Higgs boson mass, no first
order electroweak phase transition occurs in the Standard Model, so the electroweak baryogenesis
requires that SM be extended. It is unlikely also that electroweak baryogenesis operates within the
Minmal Supersymmetric Standard Model (MSSM), though there still exists a window in its param-
eter space where the phase transition is of strong enough first order. On the other hand, introducing
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extra scalars, one can construct extensions of the Standard Model and/or MSSM where electroweak
baryogenesis is successfull. An extension of SM is useful for electroweak baryogenesis also from
the point of view of CP-violation, as the CKM mechanism alone is insufficient to generate the
realistic baryon asymmetry. Electroweak baryogenesis is a particularly fascinating possibility, as
physics involved is being probed at Tevatron and will soon be explored at LHC.

(iii) Currently popular mechanism is leptogenesis. It may occur at some intermediate tem-
perature (the estimates range from 107 GeV to 1011 GeV), say, due to L- and CP-violating decays
of heavy Majorana neutrinos [41]. Of course, the generation of lepton asymmetry requires lep-
ton number violation, i.e., extension of the Standard Model, but such an extension is favored by
neutrino oscillation data anyway. The lepton asymmetry would then be partially reprocessed into
baryon asymmetry by anomalous electroweak processes. Interestingly, the range of Majorana neu-
trino masses compatible with this mechanism is indeed consistent with the range inferred from
neutrino oscillations. Let us discuss leptogenesis scenario in little more detail.

Let us assume that ordinary neutrinos get their small masses via see-saw mechanism. This
mechanism invokes heavy “sterile” (neutral with respect to the Standard Model gauge interactions)
neutrinos Ni, where i = 1,2,3 is the generation number. They have large Majorana masses; in an
appropriate basis the corresponding mass matrix is diagonal and real. They are assumed to have
Yukawa interaction with conventional lepton doublets L and the Standard Model higgs field H.
Thus, besides the kinetic terms, the Lagrangian involving Ni contains two terms

L = ∑
i

MiN̄
c
i Ni +(∑

i j

hi jL̄iN jH̃ +h.c.)

where the fermions N are right, the Yukawa couplings hi j are in general complex, and H̃α = εαβH∗
β

is a weak doublet whose vacuum expectation value is (v,0). Due to this vacuume expecation value,
there is mixing between ordinary neutrinos and N’s. Upon diagonalising the mass matrix, one finds
that there are heavy states, predominantly N’s, with masses Mi, and light states with mass matrix

mi j = ∑
k

h∗ikh∗jk
v2

Mk
(6.5)

These masses are naturally small for large Mi, which is the advantage of the see-saw mechanism.
Obviously, the original Lagrangian does not conserve any of the lepton numbers.

Now assume that at high temperatures, heavy neutrinos are in thermal equilibrium19. As the
Universe cools down below T ∼ M1 (the smallest of Mi), the lightest of N’s (call it N1) starts
decaying20. There is also inverse decay process which tends to keep N1 in thermal equilibrium.
The lepton asymmetry may be produced only if N1 is not in thermal equilibrium with respect to
decay and inverse decay at T ∼ M1. This requires that its width is small enough21

Γ1 < H(T ∼ M1) (6.6)
19This may be either due to some new interactions in which N’s participate, or due to the Yukawa interactions

themselves. In the latter case, thermal equilibrium is established with large enough Yukawa couplings only, i.e., usual
neutrinos must be sufficiently heavy, mν > 3 ·10−3 eV. This is consistent with neutrino oscillation data.

20Generically, the lightest of N’s is most relevant, since any asymmetry produced in decays of heavier N’s will be
washed out by intractions involving the lightest one.

21There are cases when this relation is violated, and still required asymmetry is generated. The vaiolation should not
be by many orders of magnitude anyway.
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Now, since the Yukawa couplings contain CP-phases, there is an asymmetry in decays of N1’s,

δ ≡ Γ(N1 → LH)−Γ(N1 → L̄H̄)

Γ(N1 → LH)+Γ(N1 → L̄H̄)
6= 0

This asymmetry occurs due to the interference of the tree diagram and one-loop diagram in which
all Ni run in intermediate states. This “microscopic” asymmetry is

δ =
1

8π
1

(h†h)11
∑

k=2,3
Im

[

(h†h)2
1k

]

F

(

M1
Mk

)

where F(M1/Mk)∼M1/Mk for M1 �Mk, up to a factor of order 1. Provided the out-of-equilibrium
condition (6.6) is satisfied, the generated lepton asymmetry is of order

nL

s
∼ 0.01δ (6.7)

where the factor 0.01 is due to large number of ultra-relativistic spieces at temperature T ∼ M1.
Good part of this asymmetry gets reprocessed into the baryon asymmetry by electroweak processes,
so the generated baryon asymmetry is roughly of the same order of magnitude as (6.7).

Let us first see what the out-of-equilibrium condition (6.6) means in terms of neutrino masses.
Let L1 be a linear combination of lepton fields to which N1 is coupled (generally, this combination
is neither flavor nor mass eigenstate),

L1 ∝ ∑
k

h∗k1Lk

After rotating into the lepton basis whose first basis vector is L1, the lightest N produces the only
term in the neutrino mass matrix,

m11ν̄c
1ν1

where
m11 = (h∗11)

2 v2

M1

The width of N1 is

Γ1 =
1

16π
|h11|2M1 =

|m11|M2
1

16πv2

while H(T ∼ M1) = M2
1/M∗

Pl , so the relation (6.6) gives

m11 <
16πv2

M∗
Pl

Inserting numbers, one finds
m11 < 3 ·10−3 eV

Miraculously, this number is in the right ballpark of neutrino masses, suggested by neutrino oscil-
lations!

Let us see that the masses of heavy neutrinos must be quite large. For a crude estimate, let us
assume that all these masses are of the same order of magnitude; let us also assume that all Yukawa
couplings are of the same order. Then, assuming that CP phases are large,

δ ∼ 1
8π

h2
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We need δ > 10−8, so
1

8π
h2 ∼ mνM

8πv2 > 10−8

This gives for mν ∼ 0.1 eV the following estimate,

M > 108 GeV

which is not unreasonable for the see-saw mechanism. The conclusion is that the mechanism
described can indeed produce right amount of the baryon asymmetry. Unfortunately, the CP phases
responsible for the asymmetry are generally different from CP phases in the mass matrix of light
neutrinos. So, future observation of CP violation in neutrino oscillations, though will add weight
to the leptogenesis scenario, will not be a proof of it.

The bottom line is that the observed baryon asymmetry may be explained by a number of
mechanisms, all of which, however, exist in extensions of the Standard Model only. The prob-
lem is that, with a notable exception of the electrowaek baryogenesis, direct proof that any given
mechanism is indeed responsible for the baryon asymmetry, does not seem possible. For reviews
of baryogenesis see, e.g., Refs. [42, 43, 44, 45].

7. INFLATION

The Hot Big Bang theory, being very successful in many aspects, is not free of problems.
These have to do with initial conditions for the cosmological evolution: the initial data required
are very special, and in several respects very unnatural. This situation is improved dramatically
if the Universe underwent inflationary epoch before the Hot Big Bang stage. In this section we
first discuss the motivation for inflation, and then briefly study mechanisms of inflation and obser-
vational predictions of the inflationary theory. Major success of inflation, from the observational
point of view, is that it provides a mechanism of the generation of primordial density perturbations
in the early Universe, whose spectrum is almost flat. The approximate flatness of the spectrum
has been confirmed by the measurements of the angular anisotropy of cosmic microwave back-
ground radiation, while many alternative mechanisms of the generation of density perturbations,
like topological defects, are ruled out by the CMB data. Inflation also predicts a certain spectrum of
primordial gravitational waves in our Universe, which in principle is observable through CMB. In
these lectures we will illustrate the basic mechanism of the generation of density perturbations and
gravitational waves at inflation. Of course, the corresponding theory is rather involved, so our dis-
cussion here will be fairly qualitative. For reviews on inflationary cosmology, see Refs. [46, 47, 48].

7.1 Problems of Hot Big Bang theory

Within Hot Big Bang theory, the Universe started its expansion from the singularity. Of course,
the singularity is a property of classical General Relativity, and it may be replaced by something
else in full quantum theory of gravity and matter. In other words, it is not legitimate to extrapolate
the evolution, by making use of classical Einstein equations, to curvatures and energy densities
of the order of the Planck values or higher. Still, the classical theory is applicable soon after the
Planck epoch, and we may ask what were the properties of the Universe soon after that epoch. This
is what we mean by initial conditions in the Hot Big Bang theory.
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Off hand, one would think that these initial conditions are more or less random: different parts
of the Universe would have different properties after the Planck epoch, both spatial curvature and
energy density would be close to the Planck values, etc. It is straightforward to see, however,
that with such random initial conditions, the Universe would not evolve into the state of high
homogeneity and isotropy, as we see today. When quantifying this statement, one arrives at several
“problems of Hot Big Bang theory”.

Horizon problem.
As we know, relic photons were emitted/last scattered when the Universe was rather young,

trec ≈ 3 ·105 yrs. In the Hot Big Bang theory, the horizon size at that time was about lhor,rec = 3trec ≈
106 light yrs. In the Hot Big Bang theory, there was no cross talk, by the time of recombination,
between regions separated by distance larger than lhor,rec, i.e., these regions were not in causal
contact with each other. Hence, there is no reason for such regions to have the same properties,
e.g., the same temperature; CMB photons coming from different regions should a priori have quite
different temperatures.

The present size of the region whose size at recombination was lhor,rec is

ltoday
hor,rec = lhor,rec · (1+ zrec)

≈ 106 ·103 light yrs
≈ 300 Mpc (7.1)

while the present horizon size is lH,0 ≈ 104 Mpc. This means that the present angular size of the
horizon at recombination is

θrec =
ltoday
hor,rec

lH,0
≈ 0.03 ≈ 2o (7.2)

We conclude that there is no reason for angular isotropy of CMB temperature at angular scales
greater than 2o. Yet CMB is isotropic to better than 10−4 ! Why this is so? Why the initial
conditions for Hot Big Bang are so homogeneous and isotropic even over causally disconnected
regions of space? This is the horizon problem, which cannot be solved in the context of the Hot
Big Bang theory.

Flatness problem
The Universe today is almost spatially flat. Quantitatively,

|Ωcurv| ≡
1
a2

1
8π
3 Gρc

< 0.02

The curvature contribution into the Friedmann equation,

|ρcurv| ≡
1
a2

1
8π
3 G

scales as 1/a2, while matter and radiation contributions scale as 1/a3 and 1/a4, respectively. Thus,
the curvature term in the Friedmann equation was even less important at earlier epochs, for example

nucleosynthesis epoch : |Ωcurv| < 10−16

electroweak epoch : |Ωcurv| < 10−26
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Thus, the spatial curvature of the Universe was tiny at the beginning. Why the initial conditions
were so flat? In other words, one can compare the radius of spatial curvature a with the radius of
space-time curvature, the latter being of the order of the inverse Hubble parameter. One obtains,
e.g., at the electroweak epoch,

electroweak epoch : a > 1013H−1

Why the initial conditions are such that the radius of the Universe is so large? This “flatness
problem” again cannot be solved within Hot Big Bang theory.

Entropy problem
Let us estimate the entropy of the visible part of the Universe, i.e., entropy inside a sphere of

size lH,0. This entropy is of the order of the number of photons inside this sphere,

S ∼ Nγ ∼ nγl
3
H,0

which gives
S ∼ 1088

In the Hot Big Bang theory, the expansion of the Universe is almost adiabatic, so this huge entropy
should be built in as an initial condition. Certainly, this initial condition is very special: off hand,
one would rather expect that all dimensionless quantities are roughly of order 1 in the beginning of
the Universe.

Besides these problems which basically mean that the Hot Big Bang theory does not explain
why our Universe is so large, hot and homogeneous, there is another problem of a different kind.
This is the problem of primordial perturbations. At early times (e.g., at recombination epoch),
the Universe was not exactly homogeneous: there were density perturbations at the level δρ/ρ ∼
10−5. These density perturbations grew up, and finally gave rise to structures in our Universe
(galaxies, galactic clusters, etc.). The problem is that in the Hot Big Bang theory, the density
perturbations are to be built in as initial conditions, and there is no way to explain their origin.

Inflation is a dynamical mechanism that makes the Universe large, homogeneous, flat and
hot. As a bonus, it provides a mechanism for the generation of primordial density perturbations
(and also gravitational waves). These perturbations originate from vacuum fluctuations of quantum
fields, which get enhanced during the inflationary epoch.

7.2 Basic picture

The idea of inflation is that before the Hot Big Bang (but after the Planck era), the Universe
was in vacuum-like state and underwent the exponential expansion22,

a(t) = const · e
R

Hin f l dt

where Hin f l is almost constant in time. Due to the exponential expansion, a small patch of the
Universe expands to great size. Say, if the duration of inflation tin f l exceeds 140 Hubble times,

tin f l >
140
Hin f l

22It is not absolutely necessary that the expansion is exponential. What is needed is that by the end of inflation, the
size of the cosmological horizon is very large. As an example, power-law behaviour of the scale factor (2.33) with α > 1
would also correspond to inflation.
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then a patch of initial Planck size lPl = 1/MPl ∼ 10−33 cm expands to the size exceeding the present
horizon size lH,0 ∼ 1028 cm. Obviously, the Universe flattens out, any initial inhomogeneities get
diluted and, by the end of inflation, the Universe becomes spatially flat, homogeneous and isotropic
at exponentially large spatial scales. This solves the horizon and flatness problems.

A natural and most popular way to ensure that the Universe expands exponentially is to assume
that the matter at inflationary stage is in the vacuum-like state characterized by energy density ρin f l

which is almost constant in time. At some point, however, this energy density should transform
into conventional energy density of hot plasma. This transformation is called reheating, and after
reheating the Hot Big Bang era begins. During reheating, huge entropy is released, and this solves
the entropy problem.

This scenario automatically solves three problems mentioned above, which have to do with
horizon, flatness and entropy. It is not at all obvious that inflation solves the fourth problem of
primordial perturbations, but it does!

7.3 Simple model: one field inflation

Presently, most popular models of inflation invoke a new scalar field — inflaton, which drives
inflation and then automatically provides exit from inflationary stage. Depending on the scalar
potential, several versions of inflationary scenario have been designed, of which the simplest one
is one field inflation, or “chaotic inflation”.

Suppose that the action of the scalar field is

S =
Z

d4x
√−g

(

1
2gµν∂µφ∂νφ−V (φ)

)

where V (φ) is a simple power-law potential at large φ, say m2φ2 or λφ4. Assume further that “at
the beginning” there is a sufficiently large patch in the Universe, where the field φ(x) is reasonably
homogeneous. We should stress that these assumptions are rather mild: if “the beginning” is just
after the Planck era, then “sufficiently large” means “somewhat larger than the Planck size”, and
“reasonably homogeneous” means that the gradient term in energy density is somewhat smaller
than the potential term. Under these assumptions, one may consider both metric and scalar field as
homogeneous and isotropic, which means that metric has the FRW form, and the scalar field does
not depend on spatial coordinates. Then the the scalar field equation is

φ̈+3 ȧ
a

φ̇ = −∂V
∂φ

(7.3)

To complete the system of equations, we have to write the Friedmann equation. For homogeneous
scalar field, the energy density is

ρ ≡ T00 =
1
2 φ̇2 +V (φ)

Hence, the Friedmann equation has the following form,
(

ȧ
a

)2
=

8π
3M2

Pl

(

1
2 φ̇2 +V (φ)

)

(7.4)

The vacuum-like state occurs when the energy density is almost constant in time. This is possible
when the friction in eq. (7.3) is so strong that the scalar field barely evolves. Its kinetic energy
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(1/2)φ̇2 is small compared to the potential energy V (φ), the latter stays almost constant in time.
This is called slow roll regime. The conditions for slow roll are

ȧ
a

φ̇ � φ̈ (7.5)

and
V (φ) � φ̇2 (7.6)

If these conditions are satisfied, then the system of equations (7.3) and (7.4) simplifies; one has
instead

3 ȧ
a

φ̇ = −∂V
∂φ

(7.7)

and
(

ȧ
a

)2
=

8π
3M2

Pl

V (φ) (7.8)

It follows from eq. (7.8) that at large enough V (φ), the Hubble parameter ȧ/a is large, and then
it follows from eq. (7.7) that the field φ indeed rolls down slowly. The potential V (φ) indeed
remains almost constant, and the Universe expands exponentially. Thus, once the slow roll regime
is ensured, inflation occurs automatically.

Figure 12: Evolution of the inflaton field.

Let us study whether the slow roll conditions may be satisfied. Making use of eq. (7.7), and
then eq. (7.8), and dropping numerical factors of order 1, we write

φ̇2 ∼
(

∂V
∂φ

)2
· 1
(ȧ/a)2

∼
(

∂V
∂φ

)2 M2
Pl

V
(7.9)

Therefore, the slow roll condition (7.6) takes the form

∂V
∂φ

� V
MPl
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For potentials which have power-law behavior at large φ (i.e., V ∝ φ2, V ∝ φ4, etc.) one has

∂V
∂φ

∼ V
φ

so the slow roll condition (7.6) is satisfied at

φ � MPl

It is straightforward to see that the first slow roll condition (7.5) is also satisfied for power-law
potentials at φ � MPl . Inflation occurs whenever the value of the scalar field is larger than the
Planck mass.

It is worth noting that when considering the field values of order and larger than the Planck
mass one makes quite an extrapolation. One may suspect that there may be contributions to the
scalar potential, which are generated by gravitational effects and have the form

∑
N

CN
φN+4

MN
Pl

(7.10)

with coefficients CN of the order of one. Such a behavior would destroy the slow roll; in fact, one
can place strong bounds on CN from the analysis of density perturbations (see below): we will see
that correct amplitude of density perturbations is obtained for very flat scalar potentials. This brings
up an issue of the nature of inflaton field and a mechanism forbidding contributions like (7.10).

Furthermore, one may worry that even with sufficiently flat scalar potentials, the classical
analysis of the evolution of the Universe is not applicable at φ � MPl . This is not the case, since
at so large values of φ, energy density may still be well below the Planck value, M4

Pl . For example,
consider quartic potential, V (φ) = λφ4, where λ is a dimensionless coupling constant. The energy
density at the Planck value of the scalar field is smaller than the Planck energy density, provided
λ � 1,

V (φ ∼ MPl) ∼ λM4
Pl � M4

Pl , for λ � 1

We will see that correct amplitude of density perturbations is obtained when λ is very small indeed,
λ ∼ 10−10. Taking this value, we see that inflation occurs well below the Planck energies, and our
classical analysis makes sense. Furthermore, we will point out that there is direct observational
evidence that towards the end of inflation, its energy scale is well below the Planck scale,

H < 10−4MPl , end of inflation (7.11)

This bound has to do with the generation of gravitational waves at inflation and their effect on CMB
anisotropy.

One’s best guess about the initial value of the scalar field φb is that the energy density in the
beginning of inflation is of the order of the Planck energy density,

V (φb) ∼ M4
Pl

For quartic potential this means
φb ∼ λ−1/4MPl � MPl (7.12)
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Starting from this value, the field slowly rolls down the potential, until it reaches the value φe ∼MPl .
Inflation occurs during all this period of time. Once the field becomes of order φe ∼ MPl , the slow
roll regime terminates, the field quickly rolls down to φ≈ 0, and then oscillates around its minimum
φ = 0. Field oscillations generally lead to particle creation from vacuum, so the oscillations get
damped, and the Universe begins to be filled with particles. This is a reheating process, which
ends up when the coherent oscillations of the scalar field terminate, the classical scalar field settles
down to the minimum of the scalar potential, and particles created by the oscillations get in thermal
equilibrium. After the system thermalizes, it is described by the Hot Big Bang theory.

The reheating process is quite complex, and may occur in several stages. We will not discuss
it here; on general grounds it is clear that the outcome of this process is thermal state anyway.
The end of reheating is at the same time the beginning of Hot Big Bang. Most naive (and, in fact,
unrealistic) estimate of the temperature of the Universe after reheating is obtained if one assumes
that reheating takes of order one Hubble time. Under this assumption, all energy density of the
inflaton field V (φe) transforms into heat, and the energy density does not get substantially diluted,
because of the expansion of the Universe, during reheating. This picture implies that the Hubble
parameters at the end of inflation and in the beginning of Hot Big Bang are of the same order,

Hend o f in f lation ∼
T 2

M∗
Pl

where we made use of the standard formula for the Hubble parameter at the radiation-dominated
stage. According to this estimate, the temperature of the Universe at the beginning of the Hot Big
Bang may be quite high: a model-independent bound comes from eq. (7.11), which gives

T < 10−2
√

MPlM∗
Pl ∼ 1016 GeV

More realistic estimates give the reheat temperature which is several orders of magnitude lower,
because reheating takes more than one Hubble time. In fact, one can design inflationary models
with arbitrarily low reheat temperature.

Let us see that the inflationary stage naturally lasts long enough, so that the scale factor in-
creases a lot during inflation. In this way we make sure that the three problems of the Hot Big
Bang theory (horizon, flatness and entropy) are naturally solved. During inflation, the scale factor
increases by

ae

ab
= eNe− f olds

Ne− f olds =
Z te

tb
Hdt (7.13)

where subscripts b and e refer to the beginning and end of inflation. We obtain from eqs. (7.7) and
(7.8) that the number of e-foldings may be written as follows (again omitting factors of order one),

Ne− f olds ∼
Z φb

φe

dφ
H2

∂V/∂φ

∼
Z φb

φe

dφ
V (φ)

M2
Pl(∂V/∂φ)

(7.14)
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For power-law potentials, and φb � φe one estimates

Ne− f olds ∼
Z φb

φe

φdφ
M2

Pl

∼ φ2
b

M2
Pl

(7.15)

We have seen that at the beginning of inflation, the scalar field is naturally very large, φb � MPl .
Therefore, the number of e-foldings is indeed naturally very large. As an example, for quartic
potential we have an estimate (7.12), and taking λ ∼ 10−10 we estimate

Ne− f olds ∼ 105

The size of the Universe after inflation in this case is of order

a ∼ eNe− f olds ∼ 10100000 (7.16)

(it does not matter in which units!); this is more than enough to solve the Hot Big Bang problems.
One remark is in order. When discussing the Hot Big Bang theory, we saw that the horizon

size was of the order of the Hubble distance, H−1. If there was inflation before the Hot Big Bang,
this estimate is no longer valid: the actual horizon size is much larger, as the size of the causally
connected region of space increased during inflation by a factor eNe− f olds . In particular, the present
Hubble volume of the size of 104 Mpc makes only a small fraction of the true horizon volume.
Yet it is the distance of order 104 Mpc from which the earliest electromagnetic radiation — relic
photons — reaches us. In this sense the distance 104 Mpc is still the size of the visible part of the
Universe even in theories with inflationary stage.

One more point is that the estimates like (7.16) show that inflation naturally predicts that
the spatial curvature of the Universe is extremely small today, i.e., ρ = ρc with extremely high
precision. At some point many cosmologists believed that the Universe was open, with ρ ≈ 0.3ρc.
This was a problem for simple inflationary models. The situation cleared up due to the data on
CMB anisotropy, which tell that ρ = ρc within 2 %, and show no evidence for spatial curvature.

Finally, we should mention that one field inflation studied in this subsection is not at all the
only model of inflation (and it was not the first historically). Gross features of inflationary scenario
are quite similar in various models. Their detailed predictions for density perturbations and gravi-
tational waves differ, however, so there is hope that future detailed measurements of the properties
of CMB and large scale structure will make it possible to discriminate between various inflationary
models.

8. GENERATION OF PRIMORDIAL PERTURBATIONS AT INFLATION

8.1 Fluctuations of inflaton field

In inflationary scenario, density perturbations are generated from vacuum fluctuations of the
inflaton field, for reviews see Refs. [12, 13, 49]. In this subsection, we illustrate the main idea
and obtain the basic formulas for the scalar field perturbations. In effect, we will be dealing with
quantum field theory of free scalar field in time-dependent background, and study pair creation.
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It is amazing that such a simple mechanism is likely to be in the origin of all the structure of our
Universe.

We begin with dividing the quantum inflaton field φ̂ into its classical part and quantum fluctu-
ation operator,

φ̂(x, t) = φ(t)+ϕ(x, t)

where the classical part φ(t) is precisely the object we discussed in the previous subsection, and
ϕ is the operator describing small perturbations. We are going to develop linear theory in ϕ. Fur-
thermore, we are going to neglect the curvature of the scalar potential, as it is small at inflationary
stage. Finally, we will approximate the Hubble parameter H at inflation by a constant, i.e., ne-
glect its dependence on time. Introducing weak dependence of H on time is not difficult; we will
comment in appropriate places on the effects coming from the time-dependence of H.

Under these assumptions, the action for perturbations coincides with the action (2.35), and the
field equation is precisely (2.36). Thus, we can make use of the solutions (2.38), (2.39) and (2.40).
Unlike in the case of the radiation dominated or matter dominated Universe, the Hubble parameter
stays (almost) constant at inflation, while the physical momentum gets redshifted. Thus, a mode
of given k is first subhorizon and then superhorizon, which is just the opposite to the situation in
matter/radiation regime23. This is what inflation is about: short scales are stretched beyond the
Hubble radius. For a mode of given k, the expansion of the Universe is effectively adiabatic at
early times, so this mode experiences vacuum fluctuations like in Minkowski space-time. These
fluctuations get frozen in (up to a mode (2.40) that rapidly decays away) at the time when this mode
exits the horizon. At the radiation or matter dominated epoch this mode re-enters the horizon and
starts to oscillate again; at this moment its amplitude is much greater than the amplitude of vacuum
fluctutaions at the same frequency.

In fact, our analysis may not apply to the period after inflation, as the classical part φ is zero at
that time, and the curvature of the scalar potential may not be negligible. However, we will need
the behavior of the fluctuations at the inflationary stage only.

In Minkowski space-time, the amplitude of vacuum fluctuations of massless field, whose typ-
ical momentum is p, is of order ϕ ∼ p. This can be seen either on dimensional grounds (the scalar
field ϕ(x) has dimension of mass), or by requiring that the energy of a zero-pont fluctuation of fre-
quency p in volume p−3, which is roughly E ∼ ϕ̇2 d3x ∼ p2ϕ2 p−3 ∼ p−1ϕ2, be of order ω/2 ∼ p.
For subhorizon modes, the amplitudes of vacuum fluctuations are also of order ϕ∼ p; the larger the
wavelength, the smaller the amplitude. The point is that when p becomes of order H at inflationary
stage, the field amplitude freezes in at φ∼ p ∼H, and no longer decreases even though the physical
wavelength continues to increase. Relative to vacuum, the amplitude increases like a(t), and is thus
enhanced by a huge factor. We immediately obtain an estimate for the amplitudes of perturbations
of superhorizon modes, created from vacuum,

ϕ ∼ H , p � H

and infer that these amplitudes are independent of wavelengths (flat, Harrison–Zeldovich spec-
trum).

23The term “horizon” here refers to de Sitter horizon, not to be confused with the cosmological horizon. In fact, what
matters both here and in section 2.7 is the length scale H−1.
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To obtain quantitative estimates, one proceeds as follows. One introduces a field χ instead of
ϕ, such that

ϕ(x, t) = a−1(η)χ(x,η)

In terms of Fourier harmonics χk(η), the field equation takes the form

−∂2
ηχk − k2χk +

∂2
ηa

a
χk = 0 (8.1)

where η is conformal time, see (2.3). Assuming24 that the Hubble parameter at inflation is time-
independent, H = const, one finds that at inflation

η = − 1
H

e−Ht

The conformal time η runs from large negative values (beginning of inflation) to smaller negative
values; the inflation ends at some small |η|. The scale factor at inflation is

a(η) = − 1
Hη

so the field equation (8.1) is explicitly

−∂2
ηχk − k2χk +

2
η2 χk = 0

Its solutions are
χ(±)

k (η) = e±ikη
(

1± i
kη

)

The behavior of these solutions is in accord with our previous discussion: they oscillate at k/(aH) =

|kη| � 1 and are proportional to a ∝ 1/|η| at k/(aH) � 1.
To quantize the field χ, one notices that χ(−)

k and χ(+)
k are negative- and positive frequency

exponents at large negative times η. Hence, we immediately write for the quantized field (at early
times, χ is a canonically normalized field whose action coincides with the action for massless scalar
field in Minkowski space-time)

χ(x,η) =
Z

d3k

(2π)3/2
√

2k

(

eikxχ(−)
k (η)b̂k + e−ikxχ(+)

k (η)b̂+
k

)

(8.2)

where b̂k and b̂+
k are creation and annihilation operators obeying the standard commutational rela-

tions,
[b̂k, b̂

+
k′ ] = δ(k−k′)

After crossing out the horizon, one has

χ(±)
k = ± i

kη
24This is in fact not a strong assumption. It is important to solve the field equation near the time of the horizon

crossing only, since at early times the solution is adiabatic, see (2.38), while at late times ϕ stays constant. This explains,
that in fact the relevant value of H entering the formulas in this and next section is the value of the Hubble parameter at
the time when the mode k exits the horizon at inflation. This value slightly depends on k.
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and, in terms of ϕ,
ϕ(±)

k = ∓ iH
k

Thus, at inflationary epoch, the contribution of superhorizon modes to the field operator is

ϕ(x,η) =
Z

d3k

(2π)3/2
√

2
iH

k3/2 (eikxb̂k − e−ikxb̂+
k )

Making use of this expression, one can calculate all correlation functions involving superhorizon
modes. One finds that these are the Gaussian fluctuations with flat spectrum. For example,

〈ϕ2〉 =
H2

2

Z

d3k
(2π)3k3

=
H2

(2π)2

Z

dk
k

(8.3)

This corresponds to fluctuations of amplitude H/(2π) in a decimal interval of wavelengths.
Two remarks are in order. First, the Hubble parameter entering the fluctuation spectrum (8.3) is

the Hubble parameter at inflation. In fact, this is the Hubble parameter towards the end of inflation,
as relevant fluctuations of the scalar filed cross out the horizon towards the end of inflation. The
spectrum is exactly flat only if the Hubble parameter is constant in time; if this is not so, the
spectrum is slightly tilted (there is extra dependence on k). The reason is that fluctuations of
different momenta k cross out the horizon at different times, and the relevant value of the Hubble
parameter is the value at the time when a fluctuation of a given wavenumber crosses out the horizon.
We will not discuss the tilt in any detail in these lectures.

Second, when writing (8.2) we made an implicit assumption that the mode k is described by
the usual quantum field theory at very early times. This is certainly questionable, if “very early
times” mean, say, the beginning of inflation, tb. Indeed, at that time the physical wavelength of
every interesting mode was extremely short,

λ(tb) = λ0
a(tb)

a0

(superscript 0 still means “present”). In view of estimates like (7.16), the wavelength λ(tb) is
naturally many orders of magnitude smaller than, e.g., the Planck length. It is certainly of interest
to understand how robust are the predictions of inflation with respect to possible new effects at so
short distances. For a review of the work in this direction see, e.g., Ref. [13].

8.2 Density perturbations

How does the above discussion relate to density perturbations? An intuitive way to understand
the creation of density perturbations by fluctuations of the inflaton field is as follows. Let us
consider a region of the Hubble size towards the end of inflation. In this region, the actual value of
the scalar field is

φact = φ+ϕ

where φ is the unperturbed value determined by the classical field equations; φ is homogeneous
over the whole inflating Universe. Now, ϕ is a linear combination of scalar field fluctuations of
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superhorizon size. Because of the second term, the scalar field is different in different regions
of the Hubble size; if ϕ > 0, the field is larger than the average over the whole Universe, and
vice versa. The Hubble regions evolve in time independently, so a region where ϕ > 0 exits from
inflation later than on average. The delay time is

δt =
ϕ
φ̇

This delay leads to higher energy density, after inflation, in the region we look at: in other regions
there is more time for the density to get diluted due to the expansion. We obtain the density
perturbation

δρ = ρ̇δt

where
ρ̇ ∼ Hρ

Combining all factors, we get at scales which at the end of inflation exceed the inflationary Hubble
size

δρ
ρ

(x) =
H

φ̇
ϕ(x)

This means that primordial density perturbations are proportional to fluctuations of the inflaton
field; they occur as random (Gaussian) field whose amplitude in a decimal interval of wavelengths
is (see eq. (8.3))

δρ
ρ

∼ H2

φ̇
If H were constant in time, this would be flat, Harrison–Zeldovich spectrum with no preferred
length scale; as we discussed in the end of the previous subsection, the spectrum is in fact slightly
tilted, the tilt being model-dependent.

To obtain the correct magnitude for primordial density perturbations,

δρ
ρ

∼ 10−5 (8.4)

one has to tune the parameters of the inflaton potential. As an example, let us consider one field
inflation with quartic potential, discussed in previous section. In the slow roll approximation, one
has

H2 =
8π

3M2
Pl

V (φ)

and
φ̇ = − 1

3H
∂V
∂φ

This gives
δρ
ρ

∼
[

V 3/2

M3
Pl |∂V/∂φ|

]

end of inflation
Inflation ends when φ is about MPl , so for the quartic potential V = λφ4 one has

δρ
ρ

∼
√

λ
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The right magnitude of the density perturbations, eq. (8.4), is obtained for

λ ∼ 10−10

This tiny value of the self-coupling is not a peculiarity of the quartic potential: generally speaking,
small density perturbations require flat inflaton potential.

These primordial density perturbations stay constant until they re-enter the horizon at radiation
dominated or matter dominated stage. After that they make sound waves. The initial conditions
for these sound waves are precisely the ones we found natural in section 2.7: there are no modes
growing towards would-be singularity. As we outlined in that section, the modes start growing after
re-entering the horizon, and finally produce structures in the Universe. This picture, together with
the flatness of the spectrum of density perturbations, immediately implies that small structures
(galaxies) form earlier than larger structures (clusters): shorter wavelengths re-enter the horizon
earlier, and hence smaller structures start to develop earlier. This general prediction is in accord
with observational data on the structure in the Universe.

Inflationary prediction for nearly flat spectrum of density perturbations is in agreement with
both measurements of the CMB anisotropy and observations of structures in the Universe, see
fig. 13 for illustration. In fact, the existing data start to rule out some models of inflation which
predict considerable tilt.

Figure 13: Fit to data on CMB anisotropy, assuming flat primordial spectrum and no contribution from
gravitational waves.
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8.3 Gravity waves: the scale of inflation

Inflation creates not only scalar field perturbations, but also gravitational waves. The mecha-
nism is precisely the same as that outlined in section 8.1, and, in fact, the equation for gravitational
waves (tensor perturbations) is literally the same as the equation for scalar perturbations. The action
for metric perturbations, however, contains an extra factor 1/G = M2

Pl , so the canonically normal-
ized field differs from metric perturbation by the factor MPl . With this qualification, we make use
of eq. (8.3) to obtain the amplitude of gravitational waves in a decimal interval of wavelengths,

h =
H

2πMPl

where H is the Hubble parameter towards the end of inflation. The primordial spectrum of the
gravitational waves is flat, like the spectrum of the scalar field fluctuations, see eq. (8.3).

Primordial gravitational waves make contribution to the CMB anisotropy. This contribution is
potentially important at large angular scales, ∆θ > (a few)o. At these scales,

[

δT
T

]

grav. waves
∼ h

The very fact that the CMB anisotropy δT/T does not exceed 10−4 at large angular scales implies
the bound on the Hubble parameter near the end of inflation,

H < 10−4MPl , end of inflation

We already discussed the significance of this bound in section 7.
In most inflationary models, the contribution of gravitational waves into the CMB anisotropy

is smaller (sometimes much smaller) than the contribution of density perturbations, even at large
angular scales. This expectation is confirmed by the data, which are very well fit under the assump-
tion that the contribution of gravitational waves is negligible, see fig. 13. Yet there is a chance to
detect the contribution of gravitational waves, and discriminate it from the contribution of density
perturbations, in future measurements of the CMB polarization. In this way one would be able to
find the scale of inflation, and possibly even reconstruct part of the inflaton potential [50].

9. CONCLUSIONS

At first sight, our Universe appears infinitely complex. Yet, with not so many parameters,
a coherent picture of the present and past Universe emerges, which has already passed precision
tests of CMB anisotropy, Big Bang Nucleosynthesis, structure formation, etc. Even more precise
measurements are due to come, which makes the whole field lively and fascinating.

Even the gross features of cosmology are “orthogonal” to the Standard Model of particle
physics:

– Most of energy in the present Universe is in unknown forms. Furthermore, cosmology
requires the existence of both new stable particles (clumped non-baryonic dark matter) and dark
energy. The latter is the most fundamental and mysterious of all aspects of cosmology, as we know
it today.
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– Inflation needs inflaton, a new scalar field with very flat potential. No such field exists in the
Standard Model, neither it emerges naturally in the simplest extensions of the Standard Model.

– Baryogenesis needs new sources of CP-violation and mechanisms of baryon and/or lepton
number violation.

Cosmology certainly has its own intrinsic problems, some of which have been mentioned in
these lectures. We all know that the Standard Model has its intrinsic problems too. Experiments
and theory in particle physics and cosmology still have a lot to tell about micro- and macro-world,
as well as about the interconnections between them.
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