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In an eternally accelerating universe observers are surrounded by event horizons. The horizons

restrict the observer’s access to the information about the universe. This implies a boundN∼ 60

on the number of e-folds of inflation which we can observe if the scale of the dark energy today

is∼ (10−3eV)4 and its equation of state forever remainsw <−1/3. The bound is independent of

the duration of inflation, or the duration of out scrutiny of the sky. It arises because the imprints of

the inflationary perturbations “inflate away" just like the initial inhomogeneities during ordinary

inflation. The current CMB data may be giving us as much information about the history of the

universe as we can ever hope to get.

28th Johns Hopkins Workshop on Current Problems in Particle Theory
June 5-8, 2004
Johns Hopkins University Homewood campus - Bloomberg Center for Physics and Astronomy, Baltimore,
Maryland

∗Speaker.
†This work was supported in part by the DOE Grant DE-FG03-91ER40674, in part by the NSF Grant PHY-0332258

and in part by a Research Innovation Award from the Research Corporation.

Published by SISSA http://pos.sissa.it/

mailto:kaloper@physics.ucdavis.edu�


P
o
S
j
h
w
2
0
0
4
0
0
5

Observational Implications of Cosmological Event Horizons Nemanja Kaloper

1. Introduction

Observations indicate that the universe may be accelerating [1, 2, 3]. If so the universe is
dominated by a dark energy component with equation of statew = p/ρ <∼ −2/3, comprising as
much as70% of the critical energy density,ρc ∼ (10−3eV)4. Usually dark energy is modelled
either by a cosmological constant or a quintessence field [4, 5]. If the equation of state of dark
energy obeysw <−1/3 forever, the universe will continue to accelerate indefinitely. In such case
any observer is surrounded by an event horizon, which limits how much of the universe she can see
[6, 7, 8, 9]. Recently there has been discussion about the issue of compatibility between late eternal
acceleration and long early inflation, motivated by the interpretational questions about holography
in de Sitter space [10, 11, 12]. If one adopts the covariant entropy bounds [13, 14] as a measure
of entropy in cosmology, then the late acceleration does not yield a bound on the duration of early
inflation, but does produce a bound on how much of the early inflation will ever be observable [12].
If our universe accelerates forever, we will never see past the last60e-folds or so.

We have also found that a universe which accelerates eternally in the future contains the most
information about the early inflationary perturbations at the epoch of transition to the late accel-
eration [12]. After this time, observers will be able to observe less and less about the inflationary
phase. This is because the fluctuations generated during inflation cease to come back into the
horizon, and those that did return will be evicted again. The overall amplitude of the CMB will
redshift, and more significantly the pattern of anisotropies will freeze in such a way that little new
information will become available. Eventually, the CMB will redshift to a point where it is perma-
nently contaminated by cosmological Hawking radiation. This is the cosmological analogue of the
“frozen star" picture in black hole physics, corresponding to the indefinite reddening of the surface
of a collapsing cloud of matter.

If the universe does not stop to accelerate, the current observations may be already providing
us with all the information about the early universe that we can ever hope to get. This leads to an
interesting new twist on the “Why Now?" problem:

Why is now (± few current Hubble times) the best time to observe the signatures of early
universe physics?

In this note we will review these issues.

2. E-fold Counts and Holography

We adopt the point of view that in backgrounds with horizons, the entropy in the spacetime
conforms to the covariant entropy bounds of [13, 14]. Then the existence of a horizon constrains
only the entropyinsidethe final Hubble volume to not exceed the area of its horizon. This bound
cannot restrict the entropy depositedoutside1 of it. The covariant bound is clearly not violated
in our universe, as the entropy of the observable universe is many orders of magnitude below the
horizon area. To an observer inside the causal patch in Fig.1., the portion of the reheating surface
RS which is outside the event horizon lies beyond her causal future, in a sense. Hence she can’t

1However, it is still very much unclear how to think about the entropy deposited in the region outside of the horizon
the viewpoint of any given observer.
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ever see that inflation ended there, and that any entropy has been released, or for that matter, that
inflation even happened there.

Figure 1: Causal patch of an observer in a universe where inflation and reheating are followed by eternal
accelerated expansion. The symbols designate: PH and FH - past and future sections of the event horizon,
AH - apparent, or Hubble, horizon, RS - reheating surface, and LS - a future oriented light sheet, which
intersects both the event horizon and the infinitely inflated future. Black arrows are the worldlines of the
entropy released at the end of inflation.

Thus outside of the event horizon we constrain the entropy on the portion of the reheating
surface in that region using the lightsheet labelled LS in Fig.1. According to the covariant bound
[14], the entropy that crosses any segment of a lightsheet is bounded by a maximum of the area
along this segment, in Planck units. Because LS intersects the infinitely inflated future at the
top of the diagram, and so its maximal area diverges, the covariant entropy bound does not give
an interesting constraint. It can easily accommodate the entropy released after arbitrarily long
inflation. For a more detailed discussion of these issues, see [11, 12]. Similar difficulties with
adding up entropy on large, arbitrarily chosen spacelike surfaces have been noticed earlier in [13,
14, 15]. They are consistently resolved by the application of the covariant bound.

3. How Far Can We See?

Given that horizons do not restrict the duration of inflation in the early universe, we can ask
if they restrict how much of it we can see. We will now review the argument of [12], that in the
spacetimes undergoing eternal acceleration the event horizon limits the total number of e-folds that
we can everobserveto the lastN∼ 60or so.

We study inflation by observing temperature and density contrasts on the sky, that were pro-
duced earlier in inflation. To solve the horizon and flatness problems, inflation must have lasted at
leastN ∼ 60 e-folds [16]. During this stage quantum fluctuations are imprinted on the curvature
and are subsequently stretched by inflation to super (Hubble) horizon scales [17, 18], where they
“freeze out": their amplitude approaches a constant set by the horizon crossing condition, whereas
their wavelength scales with the particle horizon,λ(t) = λ0a(t)/a0. Their future evolution depends
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on the subsequent evolution of the universe. If inflation ends and reheating occurs, the Hubble hori-
zon will grow linearly in time, while the wavelength stretches more slowly, asλ ∼ a(t). If after
inflation the vacuum energy is zero, after a long enough time the Hubble horizon catches up with
any perturbation, of any given initial wavelength (see the left panel of Fig.2). The perturbation
will reenter the horizon and “melt": it will oscillate and seed structure formation via the Jeans in-
stability [17, 18]. Hence in such case a patient observer would be able to see arbitrarily far back

Figure 2: Evolution of the wavelengths of some typical inflationary perturbations in the causal patch in a
universe without (left panel) and with (right panel) event horizons. In the left panel, all fluctuations even-
tually reenter the Hubble horizon. In the right panel, in the casea), a fluctuation is stretched outside of the
Hubble horizon during inflation, remains there for a time, then reenters during a matter dominated era after
inflation, and eventually gets expelled out of the horizon once more during the final stage of acceleration. In
the case b), the fluctuation could have reentered about now, but the late acceleration pushes it back out. In
the case c), the late acceleration prevents the fluctuation from ever reentering the Hubble horizon.

into inflation. The longer she waits, the earlier the fluctuations she sees were created.

On the other hand, if a small positive vacuum energy remains after inflation, the universe will
start to accelerate again after some time, continuing to do so forever. There will be event horizon as
in the right panel of Fig.2, rendering a huge part of the global spacetime permanently inaccessible
to any given observer. In this case, the inflationary fluctuations could either (see the right panel
of Fig. 2): a) reenter the Hubble horizon during matter domination, and then be expelled again in
the far future, b) in the marginal case, have a wavelength which equals the Hubble horizon size at
about the time when the universe begins to accelerate again, or c) never reenter, remaining instead
outside the Hubble horizon forever after their eviction from it during early inflation.

An observer learns about inflation by examining the structures which form by the accretion of
matter in the gravitational wells formed from the perturbations which may reenter the horizon, by
observing anisotropies induced by these wells in the temperature of the thermal photons emitted at
reheating.2 The observer in an accelerating universe will notice a gradual loss of the information
about inflation in the course of time. She will notice fewer new structures at the largest scales,
because the inflationary fluctuations cease to enter the horizon after the onset of late acceleration.

2We ignore the difference between the reheating surface and the last scattering surface here for the sake of simplicity.
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She will also notice the breakup of the structures that have already begun forming, as they are torn
up by the late acceleration. In due course, all the inflationary fluctuations which re-entered during
radiation and matter domination will be pushed back out of the Hubble horizon, whose interior will
be smoothed out again, at least on large scales.

The CMB photons originate on the slice (i.e. a sphere) of the last scattering surface (RS),
separated from the observer by null geodesics (labelled PT, for photon trajectory, in Fig.2.). The
inflationary fluctuations are imprinted on them en route to the observer, appearing as a distribution
of hot and cold spots on the last scattering surface. In a decelerating universe, the radius of this last
scattering sphere grows without bound, the pattern of spots changes, and new information about
inflation continues to become available over time. Eventually, if one continued to observe the
pattern of anisotropies in the CMB, the entire history of the inflationary period would (in principle)
be available.

If a universe accelerates at late times, the last-scattering sphere asymptotes to the size of the
event horizon at the time of last scattering, which is finite. In this case waiting a given period
of time will correspond to a smaller and smaller change in the size of the last-scattering sphere.
The size converges to a constant (or changes extremely slowly, in the case of quintessence). The
pattern of anisotropies in the CMB will “freeze" after the transition to future acceleration, first on
the largest scales, and then on shorter and shorter scales. Therefore observations made after the
beginning of the late acceleration will not reveal any information about periods of inflation earlier
than those that have already been seen, and will at best slightly improve the data on the already
visible period. The acceleration freezes an ever-fainter image of one slice of the last scattering
surface on the sky, for a very long time. This is the cosmological analogue of the “frozen star"
concept in black hole physics.

Even this information will be erased. Spacetimes with event horizons contain Hawking par-
ticles. As the cosmological expansion advances, the CMB will cool until the number of CMB
photons counted by an observer drops below the number of Hawking photons. After that, the
information in the CMB will be masked by the “noise" in the cosmological Hawking radiation.
Asymptotically the bath of Hawking particles will completely overwhelm the CMB. Some impli-
cations of the loss of a record of the last stages of inflation for astronomy have been discussed in
[19, 20, 21].

We now turn to the quantitative statement of the bound. For inflation to solve the horizon and
flatness problems, it must yieldN e-folds which will expand the initial Hubble patch into a region
at least of the size of the present Hubble horizon size,(H0)−1∼ (10−33eV)−1. The wavelengths of
perturbations grow in time according to

λ(t) = λ0
a(t)
a(t0)

. (3.1)

Taking t0 to beO(today) (t0 ∼ 1010 years), we are interested in the largest scale observable now3,
λ0 = 1/H0. Such a perturbation originated during inflation at some timetb < t0, when its wave-
length was the inflationary Hubble size,λ(tb) = 1/H(tb). Hence,

a(tb)H(tb) = a0H0 . (3.2)

3We denote quantities evaluated at timet = t0 with a subscript0.
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This equation is just the usual horizon crossing condition [18]. Approximating the inflating phase as
de Sitter space with a constant Hubble scaleHi and using the flat slicing, we geta(t)= aeexp(Hi(t−
te)) during inflation, where the subscripte refers to the end of inflation. Evaluating this at a timetb
during inflation and substituting into (3.2) yields

N≡ Hi(te− tb) = ln

(
aeHi

a0H0

)
. (3.3)

After inflation, the universe grew by a factor of abouta0/ae ∼ Te/T0, whereTe is the reheating
temperature andT0 ∼ 10−3eV the current CMB temperature. Takinga0/ae ∼ 1026− 1028 and
assuming that the scale of inflation isHi

<∼ 1014GeV, one findsN ∼ 60. This may be sensitive to
the reheating temperature, the scale of inflation etc, but we will ignore such details here (see [16]).

Figure 3: On the left, evolution of the comoving Hubble scalea(t)H(t) for a universe which inflates,
followed by radiation and matter domination; on the right, the same graph for a universe that enters a late-
time accelerating phase.

To illustrate this equation, we plot the comoving Hubble scalea(t)H(t) for a universe without
any late epoch of cosmic acceleration in the left panel of Fig.3. Initially, it grows exponentially
because of inflation, but then it decreases as a small negative power oft, because after reheating the
universe decelerates; e.g. if the universe is dominated by matter with an equation of statep = wρ,
a(t)H(t) scales ast−(1+3w)/[3(1+w)], which is decreasing forw > −1/3. As a(t)H(t) decreases, it
scans through more and more values of the comoving momentumk = 1/λ0. Those are the scales
that reenter the horizon. We see that regardless of how large a scaleλ0 is, if the universe decelerates
forever anda(t)H(t) continues to decrease, at some time this scale will reenter the Hubble horizon.

In contrast, if the universe accelerates in the future, the comoving Hubble scalea(t)H(t) will
grow again at late times, as we can see by settingw < −1/3 in the scaling law given above. At
a timet f , where f stands for final, when the comoving Hubble scale equals its value at reheating,
the very last perturbation generated during inflation will be pushed back out of the horizon. After
t f no inflationary perturbations will remain in the Hubble horizon and no new structure will form
from the seeds generated by inflation4 (see the right panel of Fig.3.). The timet f is defined by the

4In reality, the information about the primordial inflation encoded in the shortest scales generated during inflation
will already be strongly contaminated by the nonlinear effects occurring in the intervening period betweente and t f ,
such as galaxies, clusters etc. We are ignoring this contamination here.
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equality
a(t f )H(t f ) = a(te)Hi , (3.4)

wherete is the time at reheating. The value oft f depends on the equation of state of the dark energy
in a way we calculate below.

Moreover, spacetimes with event horizons contain Hawking particles, characterized by the
Gibbons-Hawking temperature5 TH = H/2π [22]. This temperature does not redshift in the usual
way, because the Hawking radiation is continuously replenished by quantum fluctuations. Thus in
an accelerating universe the CMB temperatureTCMB will eventually redshift down toTH ∼ H(t).
If Te was the reheating temperature, under adiabatic evolution the temperature at any later time
is related to it byTCMB(t) = Tea(te)/a(t), and so the equality of CMB and Hawking radiation
temperatures,TCMB(tT) = TH , will occur at a timetT roughly given by

a(tT)H(tT) = a(te)Te. (3.5)

If reheating were perfectly efficient, the reheating temperature would be related to the Hubble
scale at the end of inflation byTe∼

√
Hi (recall that we have set the Planck mass equal to unity).

Thus, sinceHi < 1, Te > Hi , andtT > t f . In practice, however, the reheating temperature is model
dependent6, and it is possible that there are some models where the ordering oft f andtT is reversed.
But in this case, fort > tT the CMB photons will be outnumbered by Hawking photons, and it would
be impossible to extract any information about inflation from their fluctuations.

If the late epoch of acceleration goes on forever, only those inflationary fluctuations with
comoving momenta in the intervala(tb)H(tb) ≤ k≤ a(te)H(te) will ever be observable. Thus an
observer will not see much past the last 60 e-folds of inflation, however patient she may be. Further,
this information will be lost after the timetT , the value of which depends on the equation of state
of the dark energy (tT ∼ t f ). It can be found by solving (3.5), eqs. (3.2) and (3.3), and the scaling
a(t)H(t)∼ a0H0(t/t0)−(1+3w)/[3(1+w)] when−1 < w <−1/3:

tT ∼ 1078(1+w)/|1+3w|t0 . (3.6)

Whenw→ −1/3 the time diverges, as expected since forw≥ −1/3 the event horizon and the
Hawking particles disappear, and the information about early inflation survives and remains avail-
able to an investigation by a patient observer. The limitw→−1 is simpler to determine by directly
substitutinga(tT)H(tT) = a0H0exp(H0tT), which yields

tT ∼ 60
H0

. (3.7)

Specifically, if the dark energy is a small cosmological constant, the record of early inflation will
be lost in about a trillion years (see also [19, 20, 21] for astronomical implications of these time
scales).

5This is certainly correct for a positive cosmological constant (w = −1). For quintessential universes, we believe
there is a similar effect [7], but we are not aware of a precise calculation of it.

6As a result, the right-hand side of the equation (3.5) should really reada(tR)TR, and this quantity may evolve
slightly differently. However, the differences will all be model dependent and confined to short scales, and so we will
ignore this here.
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4. Summary

Having assumed the covariant entropy bounds [13, 14] we find that eternal dark energy with
w <−1/3 limits us to seeing only those inflationary perturbations which originated after the ones
currently observable. It also gradually dilutes the information available in the currently observable
perturbations. Hence we can re-formulate the “Why Now?" problem in a new way:Why are we
living in the time at which we can see back to the earliest scales?More specifically, why would
the number of e-folds required to solve the horizon problem and explain the observed large scale
homogeneity, isotropy and flatness of the universe also be the maximum number of e-folds which
we will ever be able to observe?
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