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1. Introduction

After Dirac’s seminal papers on magnetic monopoles [1], there appsavedal others in the
literature [2, 3], all of them presenting quantization conditions for the étectiarge, but involving
magnetic monopoles as well. We aim here at reassessing charge quaniizdtierabsence of
monopoles. To do that, we reconsider the Aharonov-Bohm experimediffoection of charged
particles.

In their celebrated papers of 1959 and 1961, Aharonov and Boh#] [ghnsidered an in-
finitely long solenoid inside which we could have a uniform and constant etegireld; outside
no magnetic field is present. Outside the solenoid, Aharonov and Bohm test@ potential in
such a way that its circulation around a closed path would give the magnetibfugh a surface
whose the boundary was the considered path.

In this work, we show that it is not conflicting with Stokes’ Theorem to takeothoices to
the vector potential outside the solenoid, even if their circulations arouta$eadpath do not give
the flux of the magnetic field through a surface whose boundary is théeoed path. If we adopt
this possibility (that is valid for the Classical Mechanics), in the context cdirum Mechanics,
and slightly and conveniently modify the potential chosen by Aharonov aarBwe are straight
taken to a quantization condition for the possible values of the electric chardgige nature, with
no need to appeal for the existence of magnetic monopoles.

The modification we consider in the Aharonov-Bohm choice for the veattential can be
interpreted as if we had taken an Aharonov-Bohm-like potential as beingeagauge field. The
gquantization condition obtained is consistent with the quark fractional eeagd with the exis-
tence of anti-patrticles.

2. Quantization condition

The basic set-up of the Aharonov-Bohm effect is an infinitely long sateoiradiusR where,
in its interior, we have a uniform and constant magnetic field; in its exteriau)lamragnetic field.
One considers that no particles, or wave functions, can penetrate irt¢hierof the solenoid.

In cylindrical coordinates, the magnetic field in the whole space can be waigten

B =B2 p<R

whereq is the azimuthal angle, and we considered the solenoid axis lying ondRkis. On the
solenoid,p = R, the field is not defined.

In the interior of the solenoid, we can have a vector potential giveA by Bp/2 Ep In the
exterior of the solenoid, we can choose any vector poteial,whose rotational is zero. In the
context of Classical Electrodynamics, an interesting choice is a vectantjabtef the form

A|(p,Z,(p) = %EP, p<R

Ap,Z@) = i : (2.2)
Ae(p.29) =10 p>R

038/2



The Aharonov-Bohm Potential and the Electric Charge Quatitn F. A. Barone

I:
o

Figure 1: a) RegionD divided into two othersP; andD,, where the vector potential is of cla€3. b)
RegionD; with the path™; in its boundary. c) regio®, with the pathd | andl'r in its external and internal
boundaries, respectively.

a) b) C)

wherey is a constant. In the exterior region, the potential (2.2) has the propettitdhategral
along any circular path perpendicular to thaxis, and centered at the origin, does not depend on
the path radius:

j{AE.dezzny, 2.3)
)

for any circular path in the exterior region (for > R), whered/ stands for the tangent vector to
the curve.
In order to calculate the flux of the magnetic field (2.1) through ais€ radiusL > Rlying
on thexy plane and centered at the origin, we can use Stokes’ Theorem, but tatoraccount
two points: () the vector potential (2.2) is not of cla€3 [6], due to its behavior ap = R, and
(i) we are using cylindrical coordinates, which is not a one-to-one mapeoretiion we want to
calculate the flux. To avoid the problem presentednwe divide the dis® into two regions:
the first one D1, is the internal region of the solenoid with< R, and the second on®p, is the
external region of the solenoid, with< p < L, as indicated in figure (2). Now, the vector potential
(2.2) is of clas<C! in both regionsP; andDs, and we can apply Stokes’ Theorem in each of them.
The problem presented ifi ) can be easily circumvented by using a Cartesian coordinate system
in the internal region of the solenoid, and dividing the external region inbestetors, one of them
with 0 < @ < Ttand the other witht < @ < 2t With this procedure, it can be shown that poin} (
is irrelevant to this problem, and we can apply Stokes’ Theorem withoutgdkat into account.
ForD;, we have the magnetic flux

q:lz//DlB|-d81: rIA|-d£:T[BR2, (2.4)

whererl is the path around the boundary of the region, with positive orientation, as indicated
in figure (2). The regio, has two boundaries; in this case, we have

(DZZ// Be-dS, = Ag-df— Ag-d/=0, (2.5)
Dz rL rR

where we used the property (2.3).
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The total magnetic flux through the whole regibris
D=+, =TBR . (2.6)

With the appropriate choice of theparameter, as made by Aharonov and Bohm [4], in equa-
tion (2.2) we set

BR
Y= > (2.7)
we have from (2.3),
A -dl=¢ Ag-dl=¢ Ag-dl=TBR. (2.8)
M Mo Ir
With this peculiarity, and equations (2.4), (2.5) and (2.6), we can write
CD://A~dS: Ac-df=d¢ A-di=TBR. 2.9)
J JD M Mo

Equation (2.9) has an interesting interpretation: it is like we could apply Stdkesrem to
the potential A
Pop<R

Bep>R

discarding the fact that it is not@ field in the regiorD; we simply considered the integral along
the exterior patti .

We would like to emphasize that the value of taparameter (2.7) is only a choice, it is not
an imposition of Stokes’ Theorem. Another important point to notice is that, witrctiogce ofy,
we can define a continuous potential (2.10pat R, (if we consider it defined in this region) but
its first derivative is still discontinuous, and consequently, it is rotdield?.

In the context of Quantum Mechanics, the situation is not so simple. As pointetdyo
Aharonov and Bohm [4], in spite of the magnetic fi@d in the exterior region to be zero, a vector
potential of the form (2.2) can yield measurable physical phenomenayeétfeits rotational being
zero. These phenomena, usually known as Aharonov-Bohm effeats,their explanations based
on the fact that, by virtue of equation (2.2), when we consider waveifurgin the exterior region
of the solenoid, these ones become no more single-valued functiongjrgquphase factor when
we take a closed path around the solenoid; so, for an wave funpgthatside the solenoid, we have

W(ro+2m2) = exp(—ig 7{ Ag-d0)4(r,92)

= exp(—ZTu'qy)Lp(r, o, Z) ) (211)

whereq is the charge of the considered wave function

1in the spirit of the theory of distributions, a vector potential of the fori@{2an produce a magnetic delta field on
the solenoid@ = R). In a classical context, it is not a problem, since the magnetic field is diy€2.1) in the physical
regions [7]. A similar fact happens in the Dirac quantization, where, erbinac’s string, the magnetic field diverges
[2, 7].

2These phenomena are also based on the fact that the domain of théunatien (the exterior region) is not
simply-connected [8].
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The physical quantities introduced by the property (2.11) are propaitiorthe phase differ-
enceq $ Ag - d¢ = 2riqy and are periodic functions of the paramegewith period given by 1q. If
we haveq § Ag -d¢ = 2riqy = 2N, for N =0, +1, £2, ..., the wave function (2.11) becomes single
valued and we have no physical effect.

In order to keep the vector potential continuous over the whole spadd¢pdeep the famil-
iar expression (2.9) for Stokes’ Theorem, as already said, AharandvBohm took the vector
potential as being the one expressed in equation (2.10), which turnsceg{2all) into the form

W(r, -+ 211 2) = exp(—iqrBR) (1, ¢,2) (2.12)

where we used equation (2.9).

Ever since, many other problems dealing with an infinitely long solenoid, assdied above,
were studied in the literature, and in all of them, it is considered the vectontiadteith the form
(2.10). As a consequence, the physical result predictions for aleskthroblems are proportional
to the phase difference presented in (2.12).

Different choices for the value for theparameter in equation (2.2) would give different phys-
ical results for effects of the Aharonov-Bohm kind. In spite of this, 880K heorem and Quantum
Mechanics do not state that the valuegyafiust be the one expressed in equation (2.7); it was simply
a choice.

Nowadays, there are experimental evidences for the existence cbthaBohm effects, in
agreement with the value (2.7). What we wish to explore in this text is the fat{2hv7) is not
the only choice that can be done for taparameter according to the experiments. There is still a
certain freedom in the value gf In order to study this point and its consequences, instead of (2.7),
let us write:

y:¥+K, (2.13)

wherek is any real constant. Inserting (2.13) into equation (2.2), and using)(2vélhave
W(r, @+ 211, 2) = exp(—iqrBR?) exp(—2migK ) W(r, ¢, 2) . (2.14)

We do not expect that the choice (2.13) gives physical results diffémem the ones presented in
the literature, and obtained, with the choice (2.7) those for which therexpegimental verifica-
tions. To assure this, the phase difference of the wave function in (&1t4) be the same phase
difference of the equation (2.12). This condition is satisfied by taking

0K = Ngk , (2.15)

whereng is an integer number that depends on the chargé the wave function, and on the
parametek. In order to get the possible valuesigfwe consider the expression above for the case
of the electron charge, The result is

Nex Nk

K= — = —
e

< (2.16)

whereN is an integer that depends only n
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Using equations (2.15) and (2.16), we have that any given value dfielelcarge must satisfy
the condition N
q,K
q= N—Ke. (2.17)
The only way to avoid &-dependence for the chargés to takeng x = ngng andN¢ = Nn,, where
ng andng are integers that depend, respectively,coandk, andN is an integer constant. This
finally leads to

_ Mg
q= Ne’ (2.18)

that is, any value of electric charges an integer multiple of a given fraction of the electron charge
e
It is interesting to notice that the result (2.18) is consistent with the existdrargieparticles
and with the quarks charges. From equation (2.16), we can see thaigbiblp values of the-
parameter, that was completely free at the classical level, become quantizeduantum context.
The result (2.18) could be proposed by means of a slightly different pbwiew. Equation
(2.13) is equivalent to a gauge transformation of the form

A—>A+gfp, (2.19)

for the vector potential (2.10) in the exterior region of the solenoid. Thigigdransformation is
not in disagreement with Stokes’ Theorem and with Quantum Mechanictheloontext of the
Classical Electrodynamics, it will produce no effect, but in the contexeantum Mechanics,
it will produce a phase difference of the form (2.14) in a wave functiotside the solenoid. As
a consequence, we will have, in the problems of the Aharonov-Bohm #yperrection to the
physically measurable quantities due only to the gauge transformation (Zh8)only way to
avoid physical dependences on the gauge parameteto have the condition (2.15). With the
previous argument, we are taken to equation (2.18).

A similar gauge transformation to (2.19) occurs in the Dirac’s quantizatioit &yroduced in
considering that the vector potentials generated by two Dirac’s stringtededo the same magnetic
monopole, but located in different regions of space, can be related&yge transformation of the
form (2.19).

In our case, the transformation (2.19) occurs naturally, due only to ttigHat it is well-
defined in the exterior region of the solenoid because-nds is excluded from this region (what
makes it a region with a non trivial geometry). A similar analysis could be chaug from other
situations where we have non-trivial geometries.

As a last comment, we would like to say that the freedom inydparameter in equation
(2.2), or equivalently, the gauge transformation (2.19), was used, geans ago, to argue that the
Aharonov-Bohm does not exist [9]. This idea was refused by sormeswith the argument that
the transformation (2.19) was in disagreement with the Stokes’ Theorgm [10

3. Conclusions and final remarks

We have shown that Stokes’ Theorem allows us to have, in the AhaiBabir experiment, a
vector potential outside the solenoid, whose circulation around a clofieéspet equal to the flux
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of the magnetic field through a surface whose boundary is the consiplstifed/Ve have shown that,
when we consider this possibility in the context of Quantum Mechanics, dgsthg conveniently
the vector potential in the exterior of the solenoid, we are taken straightuargigation condition
for the values of the electric charges, without appealing to the existermagyietic monopoles.

The convenient choice for the vector potential quoted above can bergted as a gauge
transformation, which has the form of an Aharonov-Bohm potential. Tantization condition
attained thereby is consistent with the quark electric charges and with thened®of antiparticles.

We think that these results can be extended to the case of non-Abelianviblele a quanti-
zation condition for the color charges must be obtained too.

Acknowledgements

The authors would like to thank M. V. Cougo-Pinto, C. Farina, H. BosdhieFand F.E.
Barone for useful discussions. Professor R. Jackiw is kindly aglatlged for relevant comments,
and Professor Nathan Lepora for the help with relevant refereircd$3. thanks FAPERJ for the
invaluable financial help.

References
[1] P.A.M. Dirac,Quantized Singularities in the Electromagnetic Field, ®lBoy. SocA 133(1931) 60;
P.A.M. Dirac,The Theory of Magnetic Poles, Phys. ReV(1948) 817.

[2] P. Goddard and D. Oliveylagnetic Monopoles in Gauge Field Theories, Rep. Prog. PHy§1978)
1361.

[3] Juan A. MignacoElectromagnetic Duality, Charges, Monopoles, TopologyBraz. J. of Phys31
(2001) 235.

[4] Y. Aharonov and D. BohmSignificance of Electromagnetic Potentials in the Quantin@ory, Phys.
Rev.115(1959) 485; Y. Aharonov and D. Bohriurther Considerations on Electromagnetic
Potentials in the Quantum Theory, Phys. Re&3(1961) 1511.

[5] M. Peshkin and A. Tonomurdhe Aharonov -Bohm Effetectures Notes in Physi&10
Springer-Verlag, Berlin 1989.

[6] J.E. Marsden and A.J. Tromb¥gctor CalculusW.H. Freeman and Company, New York 1996.
[7] F.A. Barone and J.A. Helayél-Neto, work in progress.

[8] R.J. Riverspath Integral Methods in Quantum Field ThepGambridge University Press, Cambridge
1988.

[9] P. Bocchieri and A. LoingefNonexistence of the Aharonov-Bohm Effect, Nuovo Cim&n{b9738)
475; P. Bocchieri, A. Loinger and G. Siragudinexistence of the Aharonov-Bohm Effect - 1, Nuovo
Cimento51(1979) 1.

[10] D. Bohm and B.J. HileyOn the Aharonov-Bohm Effect, Nouvo Cimeb2(1979) 295; A. Zeilinger,
On the Aharonov-Bohm Effect, Lett. Nuovo Cime28¢1979) 333; H.J. Roth&omments on the
Theory of the Aharonov-Bohm Effect, Nuovo Cimé&#¢1981) 54.

038/7



