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1. Introduction

After Dirac’s seminal papers on magnetic monopoles [1], there appearedseveral others in the
literature [2, 3], all of them presenting quantization conditions for the electric charge, but involving
magnetic monopoles as well. We aim here at reassessing charge quantizationin the absence of
monopoles. To do that, we reconsider the Aharonov-Bohm experiment ondiffraction of charged
particles.

In their celebrated papers of 1959 and 1961, Aharonov and Bohm [4,5] considered an in-
finitely long solenoid inside which we could have a uniform and constant magnetic field; outside
no magnetic field is present. Outside the solenoid, Aharonov and Bohm took avector potential in
such a way that its circulation around a closed path would give the magnetic flux through a surface
whose the boundary was the considered path.

In this work, we show that it is not conflicting with Stokes’ Theorem to take other choices to
the vector potential outside the solenoid, even if their circulations around a closed path do not give
the flux of the magnetic field through a surface whose boundary is the considered path. If we adopt
this possibility (that is valid for the Classical Mechanics), in the context of Quantum Mechanics,
and slightly and conveniently modify the potential chosen by Aharonov and Bohm, we are straight
taken to a quantization condition for the possible values of the electric charges in the nature, with
no need to appeal for the existence of magnetic monopoles.

The modification we consider in the Aharonov-Bohm choice for the vector potential can be
interpreted as if we had taken an Aharonov-Bohm-like potential as being a pure gauge field. The
quantization condition obtained is consistent with the quark fractional charges and with the exis-
tence of anti-particles.

2. Quantization condition

The basic set-up of the Aharonov-Bohm effect is an infinitely long solenoid of radiusRwhere,
in its interior, we have a uniform and constant magnetic field; in its exterior, a null magnetic field.
One considers that no particles, or wave functions, can penetrate in the interior of the solenoid.

In cylindrical coordinates, the magnetic field in the whole space can be writtenas

B(ρ,φ,z) =

{

BI = Bẑ, ρ < R
BE = 0, ρ > R

, (2.1)

whereφ is the azimuthal angle, and we considered the solenoid axis lying on thez axis. On the
solenoid,ρ = R, the field is not defined.

In the interior of the solenoid, we can have a vector potential given byAI = Bρ/2 φ̂. In the
exterior of the solenoid, we can choose any vector potential,AE, whose rotational is zero. In the
context of Classical Electrodynamics, an interesting choice is a vector potential of the form

A(ρ,z,φ) =











AI (ρ,z,φ) = Bρ
2 φ̂, ρ < R

AE(ρ,z,φ) = γ
ρ φ̂, ρ > R

. (2.2)
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Figure 1: a) RegionD divided into two others,D1 andD2, where the vector potential is of classC1. b)
RegionD1 with the pathΓI in its boundary. c) regionD2 with the pathsΓL andΓR in its external and internal
boundaries, respectively.

whereγ is a constant. In the exterior region, the potential (2.2) has the property that its integral
along any circular path perpendicular to thez-axis, and centered at the origin, does not depend on
the path radius:

∮

Γ
AE ·dℓ = 2πγ , (2.3)

for any circular pathΓ in the exterior region (forr > R), wheredℓ stands for the tangent vector to
the curve.

In order to calculate the flux of the magnetic field (2.1) through a discD of radiusL > R lying
on thexy plane and centered at the origin, we can use Stokes’ Theorem, but takinginto account
two points: (i) the vector potential (2.2) is not of classC1 [6], due to its behavior atρ = R, and
(ii ) we are using cylindrical coordinates, which is not a one-to-one map on the region we want to
calculate the flux. To avoid the problem presented in (i), we divide the discD into two regions:
the first one,D1, is the internal region of the solenoid withρ < R, and the second one,D2, is the
external region of the solenoid, withR≤ ρ < L, as indicated in figure (2). Now, the vector potential
(2.2) is of classC1 in both regions,D1 andD2, and we can apply Stokes’ Theorem in each of them.
The problem presented in (ii ) can be easily circumvented by using a Cartesian coordinate system
in the internal region of the solenoid, and dividing the external region into two sectors, one of them
with 0≤ φ < π and the other withπ ≤ φ < 2π. With this procedure, it can be shown that point (ii )
is irrelevant to this problem, and we can apply Stokes’ Theorem without taking that into account.

ForD1, we have the magnetic flux

Φ1 =
∫ ∫

D1

BI ·dS1 =
∮

ΓI

AI ·dℓ = πBR2 , (2.4)

whereΓI is the path around the boundary of theD1 region, with positive orientation, as indicated
in figure (2). The regionD2 has two boundaries; in this case, we have

Φ2 =
∫ ∫

D2

BE ·dS2 =
∮

ΓL

AE ·dℓ−
∮

ΓR

AE ·dℓ = 0 , (2.5)

where we used the property (2.3).
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The total magnetic flux through the whole regionD is

Φ = Φ1 +Φ2 = πBR2 . (2.6)

With the appropriate choice of theγ-parameter, as made by Aharonov and Bohm [4], in equa-
tion (2.2) we set

γ =
BR2

2
; (2.7)

we have from (2.3),
∮

ΓI

AI ·dℓ =
∮

ΓL

AE ·dℓ =
∮

ΓR

AE ·dℓ = πBR2 . (2.8)

With this peculiarity, and equations (2.4), (2.5) and (2.6), we can write

Φ =
∫ ∫

D
A ·dS=

∮

ΓL

AE ·dℓ =
∮

ΓL

A ·dℓ = πBR2 . (2.9)

Equation (2.9) has an interesting interpretation: it is like we could apply Stokes’ Theorem to
the potential

A(ρ,z,φ) =











Bρ
2 φ̂,ρ < R

BR2

2ρ φ̂,ρ > R
, (2.10)

discarding the fact that it is not aC1 field in the regionD; we simply considered the integral along
the exterior pathΓL.

We would like to emphasize that the value of theγ-parameter (2.7) is only a choice, it is not
an imposition of Stokes’ Theorem. Another important point to notice is that, with thischoice ofγ,
we can define a continuous potential (2.10) atρ = R, (if we consider it defined in this region) but
its first derivative is still discontinuous, and consequently, it is not aC1-field1.

In the context of Quantum Mechanics, the situation is not so simple. As pointed out by
Aharonov and Bohm [4], in spite of the magnetic fieldBE in the exterior region to be zero, a vector
potential of the form (2.2) can yield measurable physical phenomena, even with its rotational being
zero. These phenomena, usually known as Aharonov-Bohm effects,have their explanations based
on the fact that, by virtue of equation (2.2), when we consider wave functions in the exterior region
of the solenoid, these ones become no more single-valued functions, acquiring a phase factor when
we take a closed path around the solenoid; so, for an wave functionψ outside the solenoid, we have

ψ(r,φ+2π,z) = exp
(

−iq
∮

AE ·dℓ
)

ψ(r,φ,z)

= exp(−2πiqγ)ψ(r,φ,z) , (2.11)

whereq is the charge of the considered wave function2.

1In the spirit of the theory of distributions, a vector potential of the form (2.2) can produce a magnetic delta field on
the solenoid (ρ = R). In a classical context, it is not a problem, since the magnetic field is given by (2.1) in the physical
regions [7]. A similar fact happens in the Dirac quantization, where, on the Dirac’s string, the magnetic field diverges
[2, 7].

2These phenomena are also based on the fact that the domain of the wavefunction (the exterior region) is not
simply-connected [8].
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The physical quantities introduced by the property (2.11) are proportional to the phase differ-
enceq

∮

AE ·dℓ = 2πiqγ and are periodic functions of the parameterγ, with period given by 1/q. If
we haveq

∮

AE ·dℓ = 2πiqγ = 2πN, for N = 0,±1,±2, ..., the wave function (2.11) becomes single
valued and we have no physical effect.

In order to keep the vector potential continuous over the whole space, and to keep the famil-
iar expression (2.9) for Stokes’ Theorem, as already said, Aharonovand Bohm took the vector
potential as being the one expressed in equation (2.10), which turns equation (2.11) into the form

ψ(r,φ+2π,z) = exp(−iqπBR2)ψ(r,φ,z) , (2.12)

where we used equation (2.9).

Ever since, many other problems dealing with an infinitely long solenoid, as discussed above,
were studied in the literature, and in all of them, it is considered the vector potential with the form
(2.10). As a consequence, the physical result predictions for all of these problems are proportional
to the phase difference presented in (2.12).

Different choices for the value for theγ-parameter in equation (2.2) would give different phys-
ical results for effects of the Aharonov-Bohm kind. In spite of this, Stokes’ Theorem and Quantum
Mechanics do not state that the value ofγ must be the one expressed in equation (2.7); it was simply
a choice.

Nowadays, there are experimental evidences for the existence of Aharonov-Bohm effects, in
agreement with the value (2.7). What we wish to explore in this text is the fact that (2.7) is not
the only choice that can be done for theγ-parameter according to the experiments. There is still a
certain freedom in the value ofγ. In order to study this point and its consequences, instead of (2.7),
let us write:

γ =
BR2

2
+κ , (2.13)

whereκ is any real constant. Inserting (2.13) into equation (2.2), and using (2.11), we have

ψ(r,φ+2π,z) = exp(−iqπBR2)exp(−2πiqκ)ψ(r,φ,z) . (2.14)

We do not expect that the choice (2.13) gives physical results different from the ones presented in
the literature, and obtained, with the choice (2.7) those for which there are experimental verifica-
tions. To assure this, the phase difference of the wave function in (2.14)must be the same phase
difference of the equation (2.12). This condition is satisfied by taking

qκ = nq,κ , (2.15)

wherenq,κ is an integer number that depends on the chargeq of the wave function, and on the
parameterκ. In order to get the possible values ofκ, we consider the expression above for the case
of the electron charge,e. The result is

κ =
ne,κ

e
=

Nκ

e
, (2.16)

whereNκ is an integer that depends only onκ.
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Using equations (2.15) and (2.16), we have that any given value of electric charge must satisfy
the condition

q =
nq,κ

Nκ
e . (2.17)

The only way to avoid aκ-dependence for the chargeq is to takenq,κ = nqnκ andNκ = Nnκ, where
nq andnκ are integers that depend, respectively, onq andκ, andN is an integer constant. This
finally leads to

q =
nq

N
e , (2.18)

that is, any value of electric chargeq is an integer multiple of a given fraction of the electron charge
e.

It is interesting to notice that the result (2.18) is consistent with the existence of anti-particles
and with the quarks charges. From equation (2.16), we can see that the possible values of theκ-
parameter, that was completely free at the classical level, become quantizedin the quantum context.

The result (2.18) could be proposed by means of a slightly different point of view. Equation
(2.13) is equivalent to a gauge transformation of the form

A → A +
κ
ρ

φ̂ , (2.19)

for the vector potential (2.10) in the exterior region of the solenoid. This gauge transformation is
not in disagreement with Stokes’ Theorem and with Quantum Mechanics. Inthe context of the
Classical Electrodynamics, it will produce no effect, but in the context ofQuantum Mechanics,
it will produce a phase difference of the form (2.14) in a wave function outside the solenoid. As
a consequence, we will have, in the problems of the Aharonov-Bohm type, a correction to the
physically measurable quantities due only to the gauge transformation (2.19).The only way to
avoid physical dependences on the gauge parameterκ is to have the condition (2.15). With the
previous argument, we are taken to equation (2.18).

A similar gauge transformation to (2.19) occurs in the Dirac’s quantization andit is produced in
considering that the vector potentials generated by two Dirac’s strings, related to the same magnetic
monopole, but located in different regions of space, can be related by agauge transformation of the
form (2.19).

In our case, the transformation (2.19) occurs naturally, due only to the fact that it is well-
defined in the exterior region of the solenoid because thez-axis is excluded from this region (what
makes it a region with a non trivial geometry). A similar analysis could be carried out from other
situations where we have non-trivial geometries.

As a last comment, we would like to say that the freedom in theγ-parameter in equation
(2.2), or equivalently, the gauge transformation (2.19), was used, someyears ago, to argue that the
Aharonov-Bohm does not exist [9]. This idea was refused by some authors with the argument that
the transformation (2.19) was in disagreement with the Stokes’ Theorem [10].

3. Conclusions and final remarks

We have shown that Stokes’ Theorem allows us to have, in the Aharonov-Bohm experiment, a
vector potential outside the solenoid, whose circulation around a closed path is not equal to the flux
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of the magnetic field through a surface whose boundary is the consideredpath. We have shown that,
when we consider this possibility in the context of Quantum Mechanics, by choosing conveniently
the vector potential in the exterior of the solenoid, we are taken straight to a quantization condition
for the values of the electric charges, without appealing to the existence ofmagnetic monopoles.

The convenient choice for the vector potential quoted above can be interpreted as a gauge
transformation, which has the form of an Aharonov-Bohm potential. The quantization condition
attained thereby is consistent with the quark electric charges and with the existence of antiparticles.

We think that these results can be extended to the case of non-Abelian fields, where a quanti-
zation condition for the color charges must be obtained too.
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