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1. Introduction

One of the fundamental issues of theoretical physics is that of the confinement for the fun-
damental constituents of matter. In fact distinction between the apparently related phenomena of
screening and confinement is of considerable importance in our present understanding of gauge
theories. Field theories that yield the linear potential are important to particle physics, since those
theories may be used to describe the confinement of quarks and gluons and be considered as effec-
tive theories of quantum chromodynamics.

We study the confinement versus screening properties of some theories of massless antisym-
metric tensors, magnetically and electrically coupled to topological defects that eventually con-
dense, as a consequence of the Julia–Toulouse mechanism (JTM)[1]. This mechanism is the dual
to the Higgs mechanism and has been shown to lead to a concrete massive antisymmetric theory
with a jump of rank. We show that in the presence of two tensor fields the condensation induces
not only a mass term and a jump of rank but also a BF coupling which will be responsible for the
change from the screening to the confining phase of the theory.

An important issue here is the nature of the phase transition in the presence of a finite con-
densate of topological defects. It is this aspect, inD = d+1 dimensions for generic antisymmetric
tensors theories, that is of importance for us. This issue was discussed long time ago [1] in the
framework of ordered solid-state media and more recently in the relativistic context [2]. The ba-
sic idea in Ref.[1] was to consider models with non-trivial homotopy group able to support stable
topological defects characterized by a length scaler = 1/M, where the mass parameterM is a cut-
off for the low-energy effective field theory. The long wavelength fluctuations of the continuous
distribution of topological defects are the new hydrodynamical modes for the effective theory that
appear when topological defects condense. In [1] there is an algorithm to identify these modes
in the framework of ordered solid-state media. However, due to the presence of non-linear terms,
the lack of relativistic invariance and the need to introduce dissipation terms it becomes difficult
to write down an action for the phase with a condensate of topological defects. In the relativistic
context none of the above problems is present. In [2] an explicit form for the action in the finite
condensate phase, for generic compact antisymmetric field theories was found. In this context the
JTM is the natural generalization of the confinement phase for a vector gauge field.

In this paper we make use of the JTM, as presented in [2], to study the low-energy field theory
of a pair of massless anti-symmetric tensor fields, sayAp and Bq with p+ q+ 2 = D, coupled
electrically and magnetically to a large set of(q−1)-branes, characterized by chargeeand a Chern-
KernelΛp+1 [3], that eventually condense. It is shown that the effective theory that results displays
the confinement property by computing explicitly the effective potential for a pair of static, very
massive point probes. Basically, we are interested in studying the JTM in model field theories
involving Bq andAp coupled to a(q−1)-brane, according to the following action

S =
∫

1
2

(−1)q

(q+1)!
[Hq+1(Bq)]

2 +eBqJq(Λ)+
1
2

(−1)p

(p+1)!
[Fp+1(Ap)−eΛp+1]

2 (1.1)

and consider the condensation phenomenon whenΛp+1 becomes the new massive mode of the
effective theory. Our compact notation here goes as follows. The field strength readsFp+1(Ap) =
Fµ1µ2...µp+1 = ∂[µ1

Aµ2···µp+1], Hq+1(Bq)= ∂[µ1
Bµ2···µq+1] andΛp+1 = Λµ1···µp+1 is a totally anti-symmetric
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object of rank (p+ 1). The conserved currentJq(Λ) is given by a delta-function over the world-
volume of the (q−1)-brane [4]. This conserved current may be rewritten in terms of the kernel
Λp+1 as

Jq(Λ) =
1

(p+1)!
εq,α,p+1∂αΛp+1 , (1.2)

andεq,α,p+1 = εµ1...µq,α,ν1...νp+1. This notation will be used in the discussion of the JTM in the next
section as long as no chance of confusion occurs.

2. The Julia–Toulouse mechanism and the action in the condensed phase

Although the JTM becomes problematic in the ordered solid state media, Quevedo and Tru-
genberg [2] have shown that it leads to simple demands in the study of compact antisymmetric
tensor, where it produces naturally the effective action for the new phase. They observed that when
the (d−h−1)-branes condense this generates a new scale∆ related to the average densityρ of
intersection points of the(d−h)-dimensional world-hypersurfaces of the condensed branes with
any(h+1)-dimensional hyperplane. The four requirements to describe effectively the dense phase
are: (i) an action built up to two derivatives in the new field possessing (ii) gauge invariance, (iii)
relativistic invariance and, most important, (iv) the need to recover the original model in the limit
∆ → 0. One is therefore led to consider the action for the condensate as

SΩ =
∫ (−1)h

2∆2(h+1)!
[Fh+1(Ωh)]

2− (−1)h h!
2e2 [Ωh−Hh(φh−1)]

2 (2.1)

whereHµ1···µh = ∂[µ1
φµ2···µh] and the underlying gauge invariance is manifest by the simultaneous

transformationsΩµ1···µh → Ωµ1···µh + ∂[µ1
ψµ2···µh] andφµ1···µh−1 → φµ1···µh−1 + ψµ1···µh−1. Upon fixing

this invariance one can drop all considerations overφh−1 after absorbingHh(φh−1) into Ωh, so
that the action describes the exact number of degrees of freedom of a massive field whose mass
parameter readsm = ∆/e. This process, named as JTM, is dual to the Higgs mechanism. Here
on the other hand, the new modes generated by the condensation of magnetic topological defects
absorbs the original variables of the effective theory, thereby acquiring a mass while in the Higgs
mechanism it is the original field that incorporates the degrees of freedom of the electric condensate
to acquire mass. This difference explains the change of rank in the JT mechanism that is not present
in the Higgs process. In the limit∆ → 0 the only relevant field configurations are those that satisfy
the constraintFh+1(Ωh) = 0 whose solution readsΩµ1···µh = ∂[µ1

ψµ2···µh] whereψh−1 is an(h−1)-
anti-symmetric tensor field. The fieldψh−1 can then be absorbed intoφh−1 this way recovering the
original low-energy effective action before condensation.

The distinctive feature of the JT mechanism is that after condensationΛp+1 is elevated to the
condition of propagating field. The new degree of freedom absorbs the degrees of freedom of the
tensorAp this way completing its longitudinal sector. The new mode is therefore explicitly massive.
SinceAp → Λp+1 there is a change of rank with dramatic consequences. The last term in (1.1),
displaying the magnetic coupling between the field-tensorFp+1(Ap) and the(q−1)-brane, becomes
the mass term for the new effective theory in terms of the tensor fieldΛp+1 and a new dynamical
term is induced by the condensation. The minimal coupling of theBq tensor becomes responsible
for another contribution for the mass, this time of topological nature. Indeed the second term (1.1)
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becomes a “B∧F(Λ)" term between the remaining propagating modes, inducing topological mass,
in addition to the induced condensed mass,

Scond =
∫ (−1)q

2(q+1)!
[Hq+1(Bq)]

2 +eBqεq,α,p+1∂αΛp+1 +

+
∫ (−1)p+1

2(p+2)!
[Fp+2(Λp+1)]

2− (−1)p+1 (p+1)!
2

m2Λ2
p+1. (2.2)

Recall that the theory before condensation displayed two independent fields coupled to a(q−1)–
brane. The nature of the two couplings were however different. TheAp tensor, that was magneti-
cally coupled to the brane, was then absorbed by the condensate after phase transition. On the other
hand, the electric coupling, displayed by theBq tensor, became a “B∧F(Λ)" topological term after
condensation. There has been a drastic change in the physical scenario. We want next to obtain an
effective action for theBq tensor. To this end we shall next integrate out the fieldΛ describing the
condensate to obtain, our final effective theory as

Se f f =
∫ (−1)q+1

2(q+1)!
Hq+1(Bq)

(
1+

e2

∆2+m2

)
Hq+1(Bq). (2.3)

3. Interaction energy

Next we examine the screening versus confinement issue and consider an example involving
two Maxwell tensors coupled electrically and magnetically to a point-charge. After condensation
we end up with a Maxwell and a massive Kalb-Ramond field coupled topologically to each other.
We shall calculate the interaction energy for the effective theory between external probe sources
by computing the expectation value of the energy operatorH in the physical state|Φ〉 describing
the sources, denote by〈H〉Φ. The Kalb-Ramond fieldΛµν carrying the degrees of freedom of the
condensate is integrate out leading to

L = −1
4

Fµν

(
1+

e2

42 +m2

)
Fµν −A0J

0, (3.1)

whereJ0 is an external current. We observe that the limitse→ 0 or m→ 0 are well defined and
lead to a pure Maxwell theory or to a topologically massive model. Since the probe charges only
couple to the Maxwell fields, the Kalb- Ramond condensate will not contribute to their interaction
energy if the parametere→ 0 since the Maxwell field and the condensate decouple. The second
limit means that we are back to the dilute phase. As so the confinement disappears being taken
over by an screening phase controlled by the parametereplaying the role of topological mass.

The canonical quantization of this theory from the Hamiltonian point of view follows straight-
forwardly. The canonical momenta readΠµ = −

(
1+ e2

∆2+m2

)
F0µ with the only nonvanishing

canonical Poisson brackets being
{

Aµ(t,x) ,Πν (t,y)
}

= δν
µδ(x−y). SinceΠ0 vanishes we have

the usual primary constraintΠ0 = 0, andΠi =
(

1+ e2

∆2+m2

)
Fi0. The canonical Hamiltonian is thus

HC =
∫

d3x

{
−1

2
Πi

(
1+

e2

∆2 +m2

)−1

Πi +Πi∂iA0 +
1
4

Fi j

(
1+

e2

∆2+m2

)
Fi j +A0J

0

}
. (3.2)
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Conservation of the primary constraint leads to the Gauss-lawΓ1 (x)≡ ∂iΠi −J0 = 0. The preserva-
tion of Γ1 for all times does not give rise to any further constraints. The theory possess only two first
class constraints being therefore gauge-invariant. The extended Hamiltonian that generates transla-
tions in time then readsH = HC+

∫
d3x(c0 (x)Π0(x)+c1(x)Γ1(x)), wherec0 (x) andc1 (x) are the

Lagrange multiplier fields. Moreover, it is straightforward to see thatȦ0(x) = [A0(x) ,H] = c0 (x),
which is an arbitrary function. SinceΠ0 = 0 always, neitherA0 norΠ0 are of any interest

The quantization of the theory requires the removal of nonphysical variables, which is done by
imposing a gauge condition such that the full set of constraints becomes second class. A convenient

choice is found to be [8]Γ2(x) ≡
∫

Cξx

dzνAν (z) ≡
1∫
0

dλxiAi (λx) = 0, whereλ (0 ≤ λ ≤ 1) is the

parameter describing the spacelike straight pathxi = ξi +λ (x− ξ)i , andξ is a fixed point (reference
point). There is no essential loss of generality if we restrict our considerations toξi = 0. In this
case, the only nonvanishing equal-time Dirac bracket is

{
Ai (x) ,Π j (y)

}∗ = δj
i δ

(3) (x−y)−∂x
i

1∫

0

dλxjδ(3) (λx−y) . (3.3)

We now turn to the problem of obtaining the interaction energy between pointlike sources in
the model under consideration. The state|Φ〉 representing the sources is obtained by operating over
the vacuum with creation/annihilation operators. We want to stress that, by construction, such states
are gauge invariant. In the case at hand we consider the gauge-invariant stringy

∣∣Ψ(y)Ψ(y′)
〉
,

where a fermion is localized aty′ and an antifermion aty as follows [9],

|Φ〉 ≡
∣∣Ψ(y)Ψ(y′)

〉
= ψ(y)exp


iq

y∫

y′

dziAi (z)


ψ(y′) |0〉 , (3.4)

where|0〉 is the physical vacuum state and the line integral appearing in the above expression is
along a spacelike path starting aty′ and endingy, on a fixed time slice. It is worth noting here that
the strings between fermions have been introduced in order to have a gauge-invariant function|Φ〉.
In other terms, each of these states represents a fermion-antifermion pair surrounded by a cloud of
gauge fields sufficient to maintain gauge invariance. As we have already indicated, the fermions
are taken to be infinitely massive (static).

From our above discussion, we see that〈H〉Φ reads

〈H〉Φ = 〈Φ|
∫

d3

{
−1

2
Πi

(
1− e2

∇ 2−m2

)−1

Πi

}
|Φ〉 , (3.5)

where, in this static case,∆2 = −∇ 2. Observe that whene= 0 we obtain the pure Maxwell theory,
as mentioned after (3.1). From now on we will supposee 6= 0.

Next, from the foregoing Hamiltonian analysis,〈H〉Φ becomes〈H〉Φ = 〈H〉0 +V(1) +V(2),
where〈H〉0 = 〈0|H |0〉. TheV(1) andV(2) terms are given by:

V(1) = −q2

2

∫
d3x

∫ y′

y
dz′iδ

(3) (x−z′
) 1

∇ 2
x −M2 ∇ 2

x

∫ y′

y
dziδ(3) (x−z), (3.6)
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and

V(2) =
q2m2

2

∫
d3x

∫ y′

y
dz′iδ

(3) (x−z′
) 1

∇ 2
x −M2

∫ y′

y
dziδ(3) (x−z) , (3.7)

whereM2 ≡ m2 +e2 and the integrals overzi andz′i are zero except on the contour of integration.
TheV(1) term may look peculiar, but it is nothing but the familiar Yukawa interaction plus

self-energy terms. In effect, as was explained in Ref. [10], the expression (3.6) can also be written
as

V(1) =
e2

2

∫ y′

y
dz′i∂

z′
i

∫ y′

y
dzi∂i

zG
(
z′,z

)
= − q2

4π
e−M|y−y′|

|y−y′|
, (3.8)

where we used that the Green functionG(z′,z) = 1
4π

e−M|z′−z|

|z′−z| and remembered that the integrals

over zi andz′i are zero except on the contour of integration. The expression then reduces to the
Yukawa-type potential after subtracting the self-energy terms.

We now turn our attention to the calculation of theV(2) term, which is given by

V(2) =
q2m2

2

∫ y′

y
dz′i

∫ y′

y
dziG(z′,z). (3.9)

It is appropriate to observe here that the above term is similar to the one found for the system
consisting of a gauge field interacting with a massive axion field [10]. Notwithstanding, in order
to put our discussion into context it is useful to summarize the relevant aspects of the calculation
described previously [10]. In effect, as was explained in Ref. [10], by using the Green function in

momentum space, that is,14π
e−M|z′−z|

|z′−z| =
∫ d3k

(2π)3
eik·(z′−z)
k2+M2 , the expression (3.9) can also be written as

V(2) = q2m2
∫

d3k

(2π)3 [1−cos(k · r)] 1
(k2 +M2)

1

(n̂ ·k)2 , (3.10)

wheren̂≡ y−y′

|y−y′| is a unit vector andr = y−y′ is the relative vector between the quark and antiquark.

Sincen̂ andr are parallel, we get accordinglyV(2) = q2m2

8π3

∞∫
−∞

dkr
k2

r
[1−cos(kr r)]

∞∫
0

d2kT
1

(k2
r +k2

T+M2) ,

wherekT denotes the momentum component perpendicular tor. Integration overkT yieldsV(2) =
q2m2

8π2

∞∫
−∞

dkr
k2

r
[1−cos(kr r)] ln

(
1+ Λ2

k2
r +M2

)
, whereΛ is an ultraviolet cutoff. We also observe at

this stage that similar integral was obtained independently in Ref.[11] in the context of the dual
Ginzburg-Landau theory by an entirely different approach.

We now proceed to compute the previous integral. For this purpose we introduce a new auxil-
iary parameterε by making in the denominator of the previous integral the substitutionk2

r → k2
r +ε2.

Thus it follows thatV(2) ≡ limε→0Ṽ(2) = limε→0
q2m2

8π2

∞∫
−∞

dkr
(k2

r +ε2) [1−cos(kr r)] ln
(

1+ Λ2

k2
r +M2

)
. We

further note that the integration on thekr -complex plane yields̃V(2) = q2m2

8π

(
1−e−ε|y−y′|

ε

)
ln

(
1+ Λ2

M2−ε2

)
.

Taking the limitε → 0, this expression then becomesV(2) = q2m2

8π |y−y′| ln
(

1+ Λ2

M2

)
.

This, together with Eq.(3.8), immediately shows that the potential for two opposite charges
located aty andy′ is given by

V(L) = − q2

4π
e−ML

L
+

q2m2

8π
L ln

(
1+

Λ2

M2

)
, (3.11)

whereL ≡ |y−y′|.
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4. Final remarks

We have studied the confinement versus screening issue for a pair of antisymmetric tensors
coupled to topological defects that eventually condense, giving a specific realization of the Julia–
Toulouse phenomenon. We have seen that the Julia–Toulouse mechanism for a couple of massless
antisymmetric tensors is responsible for the appearance of mass and the jump of rank in the mag-
netic sector while the electric sector becomes a BF–type coupling. The condensate absorbs and
replaces one of the tensors and becomes the new massive propagating mode but does not couple
directly to the probe charges. The effects of the condensation are however felt through the BF cou-
pling with the remaining massless tensor. It is therefore not surprising that they become manifest
in the interaction energy for the effective theory. We have obtained the effective theory for the
condensed phase in general and computed the interaction energy between two static probe charges,
in a specific example, in order to test the confinement versus screening properties of the effective
model. Our results show that the interaction energy in fact contains a linear confining term and
an Yukawa type potential. It can be observed that confinement completely disappears in the limit
m→ 0 while the screening takes over controlled by the topological mass parameter instead. Al-
though we have considered the case where the effective model consists of the BF–coupling between
a Kalb-Ramond field (that represents the condensate) and a Maxwell field, our results seem to be
quite general. A direct calculation for tensors of arbitrary rank in the present approach is however
a quite challenging problem that we hope to be able to report in the future.
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