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1. Introduction

There has been increased interest on the relevance of quantuits effigglasmas under ex-
treme conditions such as those encountered in laser and some astrdgiigsioas or in ultra small
electronic devices [1]-[5]. Quantum plasmas are very complicated artifticailty to develop and
explore full fledged quantum descriptions has motivated the introductiapmximated models
to describe plasmas with quantum corrections. One of these approatifesigltistream quantum
model proposed by Haat al. [1] and recently generalized by Andersenal. [2] who incorpo-
rated statistical effects. Applied to a two stream system, the multistream qualasmapmodel
predicts some new instabilities (attenuated by statistics, [2]) and providegeaallstabilization
mechanism for large wave numbers. The same dispersive and stabilizitidpation appears for
guantum effects in three stream plasmas [3]. Similar behavior also oanugsidntum plasmas
described within the framework of the Wigner-Poisson system [4, 5].

In classical plasmas, nonlinear phenomena are frequently formulatedria ¢drcompletely
integrable evolution equations of the Korteweg-de Vries (KdV) or noniir8&rédinger equa-
tion (NLS) type [6]-[8]. These completely integrable equations, as is weiua, admit N-soliton
solutions, derivable from the Inverse Scattering Transform (IST) ogettSoliton solutions fol-
low from a delicate balance between nonlinearity and dispersion, and @ingiiestion concerns
the role quantum effects play in this regard. More exactly, how do quastteuts alter soliton
formation in plasmas?

We will try to answer such questions by applying the same weak nonlineaggnsion, used
to study classical plasmas, on the quantum hydrodynamic model [9]. Tddeqiure yields a mod-
ified KdV equation [10] that describes the evolution of ion acoustic waves.shown in [10],
guantum effects can distort or even suppress the usual one solitdioss)@s a result of the quan-
tum dispersion effects. Following this line, the interaction between ion accastid_angmuir
waves in quantum plasmas has been studied [11], in this case in the frat@idakharov equa-
tions [6]-[8] with quantum corrections. The linear modes of this systerhktle shown to have
stronger stability properties in comparison with the classical plasma caséné&mrmwaves for the
quantum Zakharov equations, however, are not yet sufficiently welkkrstood. For instance, the
classical Zakharov equations in the adiabatic limit reduce to the NLS equatich i8 completely
integrable in terms of the IST method. No similar technique seems to be easilyumbedtin the
guantum case.

The purpose of this study is to investigate the role played by quantum eifieitte nonlin-
earity/dispersion balance leading to the formation of soliton solutions for tkieafav equations.
This is more easily done in the context of a variational formulation derivetht simultaneous
adiabatic and semiclassical regimes of the quantum Zakharov equatiqgastitular we show that
in this situation the envelope of the high frequency electric field of the quapkasma is described
by a decoupled nonlinear evolution equation. In the next section, weedbis modified equation
which, in the formal classical limit, becomes the NLS equation. In terms of thatiaral for-
mulation, we propose a variational solution reproducing the NLS one-solitahe sequence we
investigate the properties of the variational solution.
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2. Zakharov equations with a quantum correction

Consider a two species plasma composed of electrons and ions, the iogsrhaih more
massive than electrons. In this system, we identify two different time scatesla time scale of
the ions and the fast time scale of the electrons. This suggests a develdpteemts of two time
scales. It is the low mobility of the ions compared to that of the electrons thatggsdtifis kind of
treatment. Starting with the quantum hydrodynamic model for plasmas with a quantuection
[9, 10] and adopting the same procedure used [6]-[8] in the clasgigabach, we obtain the
following modified quantum Zakharov equations, in one spatial variable

0E  0°E 0°E
|E+W—H2W:nE, (2.1)
°n 9*n  ,0°n  0?E)?

a2z ax2 x4 ax2 (2.2)

In these equations, non-dimensional variables are used throughisitie envelope of an electric
field, andn is the plasma density deviation measured from its equilibrium value. In additen, w
introduce

ho

H= it (2.3)

a parameter that measures the importance of the quantum effects in modulat&ahilities.
In this definition, wy is the ion plasma frequency afd the temperature of the electron fluid.
Notice that the quantum parametéris the ratio of an ionic term, the ion plasmon energy, and
an electronic term, the electron kinetic energy. In fact, the coupling betimeetial (ionic) and
dynamic (electronic) terms is characteristic of phenomena involving the gatipa of ion acoustic
waves in plasmas. This is the case for the ion acoustic wave vet:gci:t;(KBTe/m)l/z, wherem,
is the ion mass. In the formal classical lifklt— 0, the quantum Zakharov equations recover the
classical [6]-[8] Zakharov system. For the details on the derivatio2.4f2.2), we refer to [11].

Solutions of the classicaH = 0) Zakharov system are found, in the adiabatic limit, by set-
ting 0°n/dt? ~ 0 in (2.2). In this situation, the envelope of the electric field satisfies a nonlinea
Schrédinger equation, which is completely integrable yielding N-soliton sokutidn interesting
guestion at this point is if the quantum effects may perturb or perhapsdestioy these localized
solitonic solutions. Indeed, solitons usually arise as a consequenceddttiked balance between
dispersive and nonlinear contributions. Since quantum effects eafigmersion, one should ex-
pect that quantum solitons will not be so easily found for quantum Zakheguations as for the
classical case. Let us investigate this conjecture by tadngat? ~ 0 in (2.2). Integrating twice
and assuming decaying boundary conditions, immediately gives

,0%n

n=—|E2+H 5 (2.4)

Equation (2.4), inserted in Eq. (2.1), yields

2 4 2
0E 0°E 0°E an>' (2.5)

— +—=> +|EPE=H?( =5 +E=
5 tae TIE <axfr e
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In the formal classical limiH — 0, the right hand side of Eq. (2.5) vanishes and the completely
integrable NLS equation are recovered. HoweverHg# O the traditional reduction procedure of
searching for solutions in the form

E =F(x—Mt)exp(i[k(x—ut)+9]), n=G(x—Mt), (2.6)

for real functionsF andG, and parametens, M, u, andd, does not seem to produce any results
here. The basic difficulty stems from the fact that the new equations caestitomplicated fourth
order system of coupled, nonlinear equations. The existence of lagalizeoliton solutions for
this new system remains an open question. However, some insight on teis@&gsbe gained by
considering the simultaneous adiabatic and semiclassical limits. Substituting (2.42.B) and
retaining only terms of order up t82, yields the decoupled equation

6E 0°E 9°E 0|E|?
— +|E|’E =H? E— . 2.7
ot tae TIE <6x4 6x2> 2.7)
Equation (2.7) is derivable from a variational principle,
5S= 6/dedt:0, 2.8)
based on the Lagrangian density
_ i, _O0E* _,0E OEOE* [E[*  ,0%E0°%E* 262|E|
L= B T ax 2 Hﬁaxz*—' | - @9

It is now ease to check that the variational derivat®8sdE* = 6S/0E =0 produce (2.7) and its
complex conjugate equation, respectively.

Inspired on the form of the classical soliton solutions, we proceed lpgsiog time-dependent
variational solutions

E =a(t)exp(ib(t))sechB(t)x), (2.10)
dependent on adjustable real3, and®, considered as functions of time only. This form warrants
that the classical one soliton solutions for the nonlinear Schrédingetien@ae recovered when-
evera = v/2Q,0 = Qt, andp = V/Q, for Q constant. After inserting (2.10) into (2.8), we get a
mechanical system governed by the action

S= / Ldt (2.11)
constructed from the Lagrange
=L(8,0,B,0,d,B) = 15 (386 1%0(2 1oB+8H2a2[3+14H2[33) (2.12)
We can now compute the variational derivatives and obtain
® oo 2 (%) _o, (2.13)
oo = afe- L 7“;)‘34) ~o, (2.14)
2: —0 = ol ('e—%z—%z—4H21°;282—7H5234> ~0. (2.15)
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Equation (2.13) has a simple solution
o =2VQp, (2.16)

for Q a numerical constant. By discarding the trivial case 0 and inserting (2.16) into (2.14),
we derive

. 4/QB B 16VQHZR  TH2B?
=73 "3 135 15 (2.17)

which, after taking into account (2.15), yields
6VQH?B2 58 5/Q

H2p3 TV . 2.1
B+ 7 T4 14 0 (2.18)

Equation (2.18) is the key equation for our variational treatment to the sesic@bZakharov
system in the adiabatic limit. A useful simplification is achieved by adopting theliegca

— B _
=" H=+vQH, 2.19
B /a (2.19)
which eliminates one irrelevant parameter in Eq. (2.18),
—= 6H2B2 53 5
23, 2 F Y~
U=+ 1= (2.20)

In the formal classical limiH = 0, we obtairﬁ: 1, which reproduces the classical one soliton
solution. In addition, it can be shown that, for

- 5
H? < 115,681+ 23\/897) ~ 5.946, (2.21)

Eqg. (2.20) admits just one real root besides two complex conjugate ohiss.afhge of parameters
seems to be in accordance with the semiclassical limit we have taken. Howévénportant to
notice that, in view of the dependenceﬁ)fon Q (see Eq. (2.19)), no constraint is imposed on the
maximum value oi—T, providedH = 0, and sulfficiently high values @ are chosen. Hence, we
now consider both cases separately.

2.1 Small H?2

In this situation, Eq. (2.20) possesses the perturbative solution

~ 26H2

B=1 +O(HY). (2.22)
By retaining only terms of order up 192 and going back to the original variables, we get
a=v2Q(1- 13%H2), (2.23)
B=VQ(l- ZB%HZ), (2.24)
6 = Q—50%H2. (2.25)
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Inspection of the variational solution (2.10), leads to the conclusion thajuthetum effects con-
tribute, in the smalH limit, to decrease the amplitude (proportionaldd enlarge the spatial
dispersion (proportional to/B), and to decrease the rate of change of the phase (proporticﬁ)al to
of the classical soliton. All this is in accordance with the dispersive chara€ quantum effects
in the semiclassical limit. They contribute to smear the soliton out, perturbingajpeih a cru-
cial way) the critical balance between the nonlinearity and dispersioateffehich supported the
existence of the soliton solutions for the nonlinear Schrodinger equation.

2.2 Large H?

We can accesll = VQH > 1, even for the semiclassichl < 1 case we are considering,
providedH # 0 andQ is taken sufficiently large. For lardge we find, instead of just one class of
solutions as in the preceding subsection, three different subclasselsitidns, namely

— 6 65— -

Bo = —?+7—2H‘2+O(H -, (2.26)
5 _ /Supg1 655 T-3

B _(12) H —144H +0O(H™), (2.27)
3 _(2yeg1_ 852, 578

B- = —(33)"?H Taa" +O(H3). (2.28)

Itis important to mention that the first solution comes from an expansio;"l-iﬁ,lwhile the last two
solutions result from an expansion ifiH. As a consequence, the accuracy of these perturbative
solutions are different as can be easily checked by taking some fixexlVahge ofH2, solving
(2.20) and comparing with (2.26-2.27).

In view of (2.16), a purely imaginary soluti@nis obtained for Eq. (2.26), when the solution of
Eq. (2.28) with the negative sign is used and only leading order termstanea® in the expansion.
This is in contradiction with the proposal (2.10), constructed with realtfonsa, 3 and6. Hence
we discard these solutions and consider dhlyin (2.27). This yields, again considering only
leading order terms,

50 \ 4 (5/12¥2 . 4 [5Q

SinceH <« 1 andQ > 1, this corresponds to a large amplitude, highly localized, and highly oscil-
lating variational solution, which has no classical correspondence.

3. Conclusion

Using a variational principle, we show that quantum effects tend to smé#ne@one soliton
solutions of the quantum Zakharov equations, in the adiabatic semiclassicalTinmstis not an
obvious result, specially if we realize that quantum terms appear also ifiaesmwvay in the right
hand side of equation (2.7). In addition, we have found a new variatimhation, with no classical
counterpart. It must be emphasized though, that the nonlinear wave selfitiothe quantum
Zakharov equations are still only poorly understood. For instance, aariarg open question
concerns the influence of quantum effects in N-soliton solutions and theitity. In the classical
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case, numerical experiments [6]-[8] typically show that the solutions iZthkharov equations
relax asymptotically to N-soliton solutions. To this moment, no similar numerical inatistighas
been reported, for the correponding quantum Zakharov equations.
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