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1. Introduction

There has been increased interest on the relevance of quantum effects on plasmas under ex-
treme conditions such as those encountered in laser and some astrophysical plasmas or in ultra small
electronic devices [1]-[5]. Quantum plasmas are very complicated and thedifficulty to develop and
explore full fledged quantum descriptions has motivated the introduction ofapproximated models
to describe plasmas with quantum corrections. One of these approaches isthe multistream quantum
model proposed by Haaset al. [1] and recently generalized by Andersonet al. [2] who incorpo-
rated statistical effects. Applied to a two stream system, the multistream quantum plasma model
predicts some new instabilities (attenuated by statistics, [2]) and provides an overall stabilization
mechanism for large wave numbers. The same dispersive and stabilizing contribution appears for
quantum effects in three stream plasmas [3]. Similar behavior also occurs for quantum plasmas
described within the framework of the Wigner-Poisson system [4, 5].

In classical plasmas, nonlinear phenomena are frequently formulated in terms of completely
integrable evolution equations of the Korteweg-de Vries (KdV) or nonlinear Schrödinger equa-
tion (NLS) type [6]-[8]. These completely integrable equations, as is well known, admit N-soliton
solutions, derivable from the Inverse Scattering Transform (IST) method. Soliton solutions fol-
low from a delicate balance between nonlinearity and dispersion, and a natural question concerns
the role quantum effects play in this regard. More exactly, how do quantumeffects alter soliton
formation in plasmas?

We will try to answer such questions by applying the same weak nonlinearity expansion, used
to study classical plasmas, on the quantum hydrodynamic model [9]. This procedure yields a mod-
ified KdV equation [10] that describes the evolution of ion acoustic waves.As shown in [10],
quantum effects can distort or even suppress the usual one soliton solutions, as a result of the quan-
tum dispersion effects. Following this line, the interaction between ion acousticand Langmuir
waves in quantum plasmas has been studied [11], in this case in the framework of Zakharov equa-
tions [6]-[8] with quantum corrections. The linear modes of this system [11] were shown to have
stronger stability properties in comparison with the classical plasma case. Nonlinear waves for the
quantum Zakharov equations, however, are not yet sufficiently well understood. For instance, the
classical Zakharov equations in the adiabatic limit reduce to the NLS equation which is completely
integrable in terms of the IST method. No similar technique seems to be easily constructed in the
quantum case.

The purpose of this study is to investigate the role played by quantum effectsin the nonlin-
earity/dispersion balance leading to the formation of soliton solutions for the Zakharov equations.
This is more easily done in the context of a variational formulation derived for the simultaneous
adiabatic and semiclassical regimes of the quantum Zakharov equations. Inparticular we show that
in this situation the envelope of the high frequency electric field of the quantumplasma is described
by a decoupled nonlinear evolution equation. In the next section, we derive this modified equation
which, in the formal classical limit, becomes the NLS equation. In terms of the variational for-
mulation, we propose a variational solution reproducing the NLS one-soliton. In the sequence we
investigate the properties of the variational solution.

015 / 2



P
o
S
(
W
C
2
0
0
4
)
0
1
5

Quantum Zakharov Equations Fernando Haas

2. Zakharov equations with a quantum correction

Consider a two species plasma composed of electrons and ions, the ions being much more
massive than electrons. In this system, we identify two different time scales, the slow time scale of
the ions and the fast time scale of the electrons. This suggests a developmentin terms of two time
scales. It is the low mobility of the ions compared to that of the electrons that justifies this kind of
treatment. Starting with the quantum hydrodynamic model for plasmas with a quantum correction
[9, 10] and adopting the same procedure used [6]-[8] in the classical approach, we obtain the
following modified quantum Zakharov equations, in one spatial variable

i
∂E
∂t

+
∂2E
∂x2 −H2 ∂4E

∂x4 = nE, (2.1)

∂2n
∂t2 − ∂2n

∂x2 +H2 ∂4n
∂x4 =

∂2|E|2
∂x2 . (2.2)

In these equations, non-dimensional variables are used throughout,E is the envelope of an electric
field, andn is the plasma density deviation measured from its equilibrium value. In addition, we
introduce

H =
h̄ωi

κBTe
(2.3)

a parameter that measures the importance of the quantum effects in modulationalinstabilities.
In this definition,ωi is the ion plasma frequency andTe the temperature of the electron fluid.
Notice that the quantum parameterH is the ratio of an ionic term, the ion plasmon energy, and
an electronic term, the electron kinetic energy. In fact, the coupling betweeninertial (ionic) and
dynamic (electronic) terms is characteristic of phenomena involving the propagation of ion acoustic
waves in plasmas. This is the case for the ion acoustic wave velocitycs = (κBTe/mi)

1/2, wheremi

is the ion mass. In the formal classical limitH → 0, the quantum Zakharov equations recover the
classical [6]-[8] Zakharov system. For the details on the derivation of (2.1-2.2), we refer to [11].

Solutions of the classical (H = 0) Zakharov system are found, in the adiabatic limit, by set-
ting ∂2n/∂t2 ≈ 0 in (2.2). In this situation, the envelope of the electric field satisfies a nonlinear
Schrödinger equation, which is completely integrable yielding N-soliton solutions. An interesting
question at this point is if the quantum effects may perturb or perhaps evendestroy these localized
solitonic solutions. Indeed, solitons usually arise as a consequence of thedetailed balance between
dispersive and nonlinear contributions. Since quantum effects enhance dispersion, one should ex-
pect that quantum solitons will not be so easily found for quantum Zakharov equations as for the
classical case. Let us investigate this conjecture by taking∂2n/∂t2 ≈ 0 in (2.2). Integrating twice
and assuming decaying boundary conditions, immediately gives

n = −|E|2 +H2 ∂2n
∂x2 . (2.4)

Equation (2.4), inserted in Eq. (2.1), yields

i
∂E
∂t

+
∂2E
∂x2 + |E|2E = H2

(

∂4E
∂x4 +E

∂2n
∂x2

)

. (2.5)
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In the formal classical limitH → 0, the right hand side of Eq. (2.5) vanishes and the completely
integrable NLS equation are recovered. However, forH 6= 0 the traditional reduction procedure of
searching for solutions in the form

E = F(x−Mt)exp(i[k(x−ut)+δ]) , n = G(x−Mt) , (2.6)

for real functionsF andG, and parametersk, M, u, andδ, does not seem to produce any results
here. The basic difficulty stems from the fact that the new equations constitute a complicated fourth
order system of coupled, nonlinear equations. The existence of localized or soliton solutions for
this new system remains an open question. However, some insight on this issue can be gained by
considering the simultaneous adiabatic and semiclassical limits. Substituting (2.4) into (2.5) and
retaining only terms of order up toH2, yields the decoupled equation

i
∂E
∂t

+
∂2E
∂x2 + |E|2E = H2

(

∂4E
∂x4 −E

∂2|E|2
∂x2

)

. (2.7)

Equation (2.7) is derivable from a variational principle,

δS= δ
∫

Ldxdt= 0, (2.8)

based on the Lagrangian density

L =
i
2
(E

∂E∗

∂t
−E∗ ∂E

∂t
)+

∂E
∂x

∂E∗

∂x
− |E|4

2
+H2 ∂2E

∂x2

∂2E∗

∂x2 − H2

2
|E|2∂2|E|2

∂x2 . (2.9)

It is now ease to check that the variational derivativesδS/δE∗ = δS/δE = 0 produce (2.7) and its
complex conjugate equation, respectively.

Inspired on the form of the classical soliton solutions, we proceed by proposing time-dependent
variational solutions

E = α(t)exp(iθ(t))sech(β(t)x) , (2.10)

dependent on adjustable realα,β, andθ, considered as functions of time only. This form warrants
that the classical one soliton solutions for the nonlinear Schrödinger equation are recovered when-
everα =

√
2Ω,θ = Ω t, andβ =

√
Ω, for Ω constant. After inserting (2.10) into (2.8), we get a

mechanical system governed by the action

S=
∫

Ldt (2.11)

constructed from the Lagrange

L = L(θ,α,β, θ̇, α̇, β̇) =
α2

15

(

30θ̇
β

− 10α2

β
+10β+8H2α2β+14H2β3

)

. (2.12)

We can now compute the variational derivatives and obtain

δS
δθ

= 0 ⇒ d
dt

(

α2

β

)

= 0, (2.13)

δS
δα

= 0 ⇒ α
(

θ̇− 2α2

3
+

β2

3
+

8H2α2β2

15
+

7H2β4

15

)

= 0, (2.14)

δS
δβ

= 0 ⇒ α2
(

θ̇− α2

3
− β2

3
− 4H2α2β2

15
− 7H2β4

5

)

= 0. (2.15)
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Equation (2.13) has a simple solution

α2 = 2
√

Ωβ , (2.16)

for Ω a numerical constant. By discarding the trivial caseα = 0 and inserting (2.16) into (2.14),
we derive

θ̇ =
4
√

Ωβ
3

− β2

3
− 16

√
ΩH2β3

15
− 7H2β4

15
, (2.17)

which, after taking into account (2.15), yields

H2β3 +
6
√

ΩH2β2

7
+

5β
14

− 5
√

Ω
14

= 0. (2.18)

Equation (2.18) is the key equation for our variational treatment to the semiclassical Zakharov
system in the adiabatic limit. A useful simplification is achieved by adopting the rescaling

β̄ =
β√
Ω

, H̄ =
√

ΩH , (2.19)

which eliminates one irrelevant parameter in Eq. (2.18),

H̄2β̄3 +
6H̄2β̄2

7
+

5β̄
14

− 5
14

= 0. (2.20)

In the formal classical limit̄H = 0, we obtain̄β = 1, which reproduces the classical one soliton
solution. In addition, it can be shown that, for

H̄2 ≤ 5
1152

(681+23
√

897) ≈ 5.946, (2.21)

Eq. (2.20) admits just one real root besides two complex conjugate ones. This range of parameters
seems to be in accordance with the semiclassical limit we have taken. However,it is important to
notice that, in view of the dependence ofH̄ on Ω (see Eq. (2.19)), no constraint is imposed on the
maximum value ofH̄, providedH 6= 0, and sufficiently high values ofΩ are chosen. Hence, we
now consider both cases separately.

2.1 Small H̄2

In this situation, Eq. (2.20) possesses the perturbative solution

β̄ = 1− 26H̄2

5
+O(H̄4) . (2.22)

By retaining only terms of order up tōH2 and going back to the original variables, we get

α =
√

2Ω(1− 13ΩH2

5
) , (2.23)

β =
√

Ω(1− 26ΩH2

5
) , (2.24)

θ̇ = Ω−5Ω2H2 . (2.25)
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Inspection of the variational solution (2.10), leads to the conclusion that thequantum effects con-
tribute, in the smallH̄ limit, to decrease the amplitude (proportional toα), enlarge the spatial
dispersion (proportional to 1/β), and to decrease the rate of change of the phase (proportional toθ̇)
of the classical soliton. All this is in accordance with the dispersive character of quantum effects
in the semiclassical limit. They contribute to smear the soliton out, perturbing (perhaps in a cru-
cial way) the critical balance between the nonlinearity and dispersion effects which supported the
existence of the soliton solutions for the nonlinear Schrödinger equation.

2.2 Large H̄2

We can access̄H =
√

ΩH ≫ 1, even for the semiclassicalH ≪ 1 case we are considering,
providedH 6= 0 andΩ is taken sufficiently large. For largēH we find, instead of just one class of
solutions as in the preceding subsection, three different subclasses ofsolutions, namely

β̄0 = −6
7

+
65
72

H̄−2 +O
(

H̄−4) , (2.26)

β̄+ = (
5
12

)1/2 H̄−1− 65
144

H̄−2 +O
(

H̄−3) , (2.27)

β̄− = −(
5
12

)1/2 H̄−1− 65
144

H̄−2 +O
(

H̄−3) . (2.28)

It is important to mention that the first solution comes from an expansion in 1/H̄2, while the last two
solutions result from an expansion in 1/H̄. As a consequence, the accuracy of these perturbative
solutions are different as can be easily checked by taking some fixed large value ofH̄2, solving
(2.20) and comparing with (2.26-2.27).

In view of (2.16), a purely imaginary solutionα is obtained for Eq. (2.26), when the solution of
Eq. (2.28) with the negative sign is used and only leading order terms are retained in the expansion.
This is in contradiction with the proposal (2.10), constructed with real functionsα, β andθ. Hence
we discard these solutions and consider onlyβ̄+ in (2.27). This yields, again considering only
leading order terms,

α =

(

5Ω
3H2

)1/4

, β =
(5/12)1/2

H
, θ̇ =

4
9

√

5Ω
3H2 . (2.29)

SinceH ≪ 1 andΩ ≫ 1, this corresponds to a large amplitude, highly localized, and highly oscil-
lating variational solution, which has no classical correspondence.

3. Conclusion

Using a variational principle, we show that quantum effects tend to smear out the one soliton
solutions of the quantum Zakharov equations, in the adiabatic semiclassical limit.This is not an
obvious result, specially if we realize that quantum terms appear also in a nonlinear way in the right
hand side of equation (2.7). In addition, we have found a new variationalsolution, with no classical
counterpart. It must be emphasized though, that the nonlinear wave solutions for the quantum
Zakharov equations are still only poorly understood. For instance, an important open question
concerns the influence of quantum effects in N-soliton solutions and their stability. In the classical
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case, numerical experiments [6]-[8] typically show that the solutions for the Zakharov equations
relax asymptotically to N-soliton solutions. To this moment, no similar numerical investigation has
been reported, for the correponding quantum Zakharov equations.
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