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Abstract: Properties of nonlinear higher spin gauge theories of totally symmetric mass-

less higher spin fields in anti-de Sitter space of any dimension are discussed with the

emphasize on the general aspects of the approach.

1. Introduction

As shown by Fronsdal [1], an integer-spin massless spin-s field is described by a totally

symmetric tensor ϕn1...ns (m,n, . . . = 0, . . . , d− 1 are d-dimensional vector indices) subject
to the double tracelessness condition ϕr

r
k
kn5...ns = 0 which is nontrivial for s ≥ 4. The

quadratic action for a free spin s field ϕn1...ns is fixed up to an overall factor in the form Ss =

ϕLϕ with some second order differential operator L by the condition of gauge invariance

under the Abelian gauge transformations δϕn1...ns = ∂{n1
εn2...ns} with symmetric traceless

tensor parameters εn1...ns−1 , ε
r
rn3...ns−1 = 0. It is the higher spin (HS) gauge symmetry

principle that makes the HS gauge theories interesting and perhaps fundamental. The

free HS gauge theories extend the linearized theories of electromagnetism (spin 1) and

gravity (spin 2) in a uniform way. The original Fronsdal theory and its more geometric

versions [2, 3] generalize the metric formulation of gravity. The HS generalization of Cartan

formulation of gravity with the HS fields described in terms of the frame-like 1-forms was

proposed in [4, 5]. Uniformity of geometric formulations of HS fields raises the question

whether there exists an underlying nonlinear HS gauge theory which in the free field limit

gives rise to the free Fronsdal Lagrangians. There is a number of motivations for studying

HS gauge theories.

From supergravity perspective, this is interesting because theories with HS fields may

have more supersymmetries than the “maximal” supergravities with 32 supercharges. Re-

call that the limitation that the number of supercharges is ≤ 32 is a direct consequence of
the requirement that s ≤ 2 for all fields in a supermultiplet (see e.g. [6]). From superstring
perspective, the most obvious motivation is due to Stueckelberg symmetries in the string
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field theory [7], which have a form of spontaneously broken HS gauge symmetries. An

important indication in the same direction is that string amplitudes exhibit certain sym-

metries in the high-energy limit equivalent to the string mass parameter tending to zero

[8].

Unusual feature of interacting HS gauge theories is that unbroken HS gauge symmetries

do not allow flat space-time as a vacuum solution, requiring nonzero curvature [9]. Anti-de

Sitter (AdS) space is the most symmetric vacuum of this type. This property may admit

interpretation [10, 11, 12] in the context of the AdS/CFT correspondence conjecture [13].

In particular, it was conjectured [10, 11] that HS gauge theories in AdS bulk are dual to

some conformal models on the AdS boundary in the large N limit with g2N → 0 where g2

is the boundary coupling constant. Again, this indicates that HS gauge theory has a good

chance to be related to a symmetric phase of superstring theory. On the other hand, a

reason why the HS gauge theory may be hard to observe in superstring theory may be that

a quantum formulation of the latter is not still available in the AdS background despite

the progress achieved at the classical level [14].

Whatever a motivation is, the HS problem is to find any nonlinear theory such that

• In the free field limit it contains a set of Fronsdal fields (with correct signs of kinetic
terms) plus, may be, some other fields that admit consistent quantization (e.g., mixed

symmetry massless fields which exist in d > 4 [15]).

• HS gauge symmetries are unbroken in a nonlinear HS theory and are deformed to
some non-Abelian symmetry.

The first condition rules out ghosts1. The condition that a HS symmetry is non-Abelian

avoids a trivial possibility of building a nonlinear theory with undeformed Abelian HS sym-

metries by adding powers of gauge invariant HS field strengths to the Fronsdal action like,

for example, adding powers of the Maxwell field strengths to a collection of free Maxwell

actions instead of deforming it to the Yang-Mills action. For the HS models we discuss,

this condition is satisfied as a result of the manifest invariance under diffeomorphisms. A

structure of the HS symmetry is one of the key elements of the theory.

Although being absolutely minimal, these conditions are so restrictive that they were

believed for a long period to admit no solution at all. One argument was due to the

Coleman-Mandula type no-go theorems [17] which state that any S matrix in flat space-

time, that has a symmetry larger than (semi)direct product of usual space-time (su-

per)symmetries and inner symmetries, is trivial (S = Id). Since no scattering means

no interactions, this sounds like no theory with non-Abelian HS global symmetries can

exist.

An alternative test was provided by the attempt [18] to introduce interactions of a

HS gauge field with gravity. It is straightforward to see that the standard covariantization

procedure ∂ → D = ∂−Γ breaks down the invariance under the HS gauge transformations
because, in order to prove invariance of the action Ss, one has to commute derivatives,

1Note that the standard HS field dynamics is free of ghosts but this is not the case, e.g., for the partially

massless HS models of [16] in AdS.
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while the commutator of the covariant derivatives is proportional to the Riemann tensor,

[D . . . , D . . .] = R . . . . As a result, the gauge variation of the covariantized action S cov
s is

different from zero, having the structure

δScov
s =

∫

R...(ε...Dϕ...) 6= 0 . (1.1)

It seems difficult to cancel these terms because for s > 2 they contain the Weyl tensor part

of R which cannot be compensated by a transformation of the gravitational field.
On the other hand, a number of indications on the existence of some consistent inter-

actions of the HS fields were found both in the light-cone [19] and in the covariant approach

[20], giving strong evidence that some fundamental HS gauge theory must exist. In these

works, the problem was considered in flat space. Somewhat later it was realized [9] that the

situation improves drastically once the problem is analyzed in the AdS space with nonzero

curvature Λ. This allowed constructing consistent 4d HS-gravitational interactions in the

cubic order at the action level [9] and, later, in all orders in interactions at the level of

equations of motion [21]. Recently, the 4d results of [21] were generalized to any space-time

dimension [22].

The role of AdS background in HS gauge theories is important in many respects. In

particular it cancels the Coleman-Mandula argument because AdS space admits no S-

matrix, and fits naturally the AdS/CFT correspondence conjecture. From the technical

side, the dimensionful cosmological constant allows new types of HS interactions with

higher derivatives, which resolve the problem with HS-gravitational interactions as follows.

The Riemann tensor Rnm,kl is not small near AdS background but

Rnm,kl = Rnm,kl − Λ(gnkgml − gnlgmk) , (1.2)

where Λ is the cosmological constant, gmn is the background AdS metric tensor and R is a

deviation of the Riemann tensor from the AdS background curvature. Expanding around

the AdS geometry is therefore equivalent to expanding in powers of R rather than in powers

of the Riemann tensor R. The crucial difference compared to the flat space is that the
commutator of covariant derivatives in the AdS space

[Dn, Dm] ∼ Λ (1.3)

is not small for general Λ. With nonzero Λ one can add to the action some cubic terms

schematically written in the form

Sint =

∫

∑

p,q

α(p, q)Λ− 1
2
(p+q)Dp(ϕ)Dq(ϕ)R , (1.4)

which contain higher derivatives2 with some of the coefficients proportional to negative

powers of Λ. There exists such a unique (modulo total derivatives and field redefinitions)

action correction by the terms (1.4) with a minimal order of derivatives that its HS gauge

2Dp and Dq denote here some combinations of derivatives of orders p and q, respectively.
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variation exactly compensates the original variation (1.1) (for any two given spins an order

of minimally necessary derivatives in the vertex (1.4) is finite, increasing linearly with

the sum of spins). This implies that Λ should necessarily be nonzero in the phase with

unbroken HS gauge symmetries. In that respect, HS gauge theories are analogous to gauged

supergravities with charged gravitinos, which also require Λ 6= 0.
Properties of HS gauge theories are to large extent determined by HS global symmetries

of their most symmetric vacua. HS symmetry restricts interactions and fixes spectra of

spins of massless fields in HS theories as ordinary supersymmetry does in supergravity. To

elucidate the structure of a global HS (super)algebra h it is useful to use the approach in

which fields, action and transformation laws are formulated in terms of the gauge fields

of h. An attractive feature of this approach, which generalizes the MacDowell-Mansouri-

Stelle-West approach [23, 24] to gravity, is that it treats all fields as differential forms with

the gravitational field being on equal footing with other massless fields in a HS multiplet.

The only special property of the metric tensor is that it has a nonzero vacuum expectation

value allowing a meaningful linearized approximation for all fields in the model. In section

2 we recall the MacDowell-Mansouri-Stelle-West approach to gravity. Then in section 3 we

show following to [5] how free HS fields can be reformulated in terms of differential forms

to be interpreted as gauge connections. The non-Abelian HS algebra is defined in section

4 in terms of some star-product algebra. Then we describe unfolded formulation of free

field HS dynamics in section 5 and formulate nonlinear HS equations in section 6. Some

conclusions and perspectives are summarized in the Conclusion.

2. Gravity as o(d-1,2) gauge theory

Our approach to higher spins generalizes the MacDowell-Mansouri-Stelle-West [23, 24]

formulation of gravity as o(d − 1, 2) gauge theory. The key observation is that the frame
1-form ea(x) = dxnen

a(x) and Lorentz connection ωab(x) = dxnωn
ab(x) can be interpreted

as components of the o(d − 1, 2) connection 1-form ωAB(x) = dxnωn
AB(x) (a, b, . . . =

0, . . . , d − 1 are fiber Lorentz vector indices and A,B, . . . = 0, . . . , d are fiber o(d − 1, 2)
vector indices). The Lorentz subalgebra o(d − 1, 1) ∈ o(d − 1, 2) is identified with the
stability subalgebra of some vector V A. Since Lorentz symmetry is local, this vector can

be chosen differently at different points of space-time, thus becoming a field V A = V A(x).

It is convenient to relate its norm to the cosmological constant so that V A has dimension

of length3

V AVA = −Λ−1 . (2.1)

This allows for a covariant definition of the frame field and Lorentz connection [24]

EA = D(V A) ≡ dV A + ωABVB , ωLAB = ωAB +Λ(EAV B −EBV A) . (2.2)

3Λ is negative and positive in the AdS and dS cases, respectively (within the mostly minus signature).

For definiteness, we refer mostly to the AdS case in this paper, although all formulae are valid also for the

dS case.

– 4 –



j
h
w
2
0
0
3

27th Johns Hopkins Workshop on Current Problems in Particle Theory:
Symmetries and Mysteries of M Theory Mikhail Vasiliev

According to these definitions, EAVA ≡ 0 , DLV A = dV A + ωLABVB ≡ 0 . The theory is
formulated in a way independent of a particular choice of V A. The simplest choice is with

V A being a constant vector pointing at the (d+ 1)th direction, i.e.,

V A = |Λ|−1/2δAd . (2.3)

The Lorentz directions are those orthogonal to V A: V AAA = 0 → AA = Aa. In this

“standard gauge” the Lorentz connection is ωab, and ea = ωaBVB . When the frame EA
n

has the maximal rank d, it gives rise to the nondegenerate metric tensor gnm = EA
nE

B
mηAB .

The o(d− 1, 2) Yang-Mills field strength is

RAB = dωAB + ωA
C ∧ ωCB . (2.4)

It can be decomposed into the torsion part RA ≡ DEA ≡ RABVB and the V –transversal

Lorentz part. In the standard gauge (2.3) they identify with the torsion tensor and Riemann

tensor shifted by the terms bilinear in the frame 1-form

Ra = dea + ωa
b ∧ eb , Rab = dωab + ωa

c ∧ ωcb +Λea ∧ eb . (2.5)

The zero-torsion condition Ra = 0 expresses the Lorentz connection via the frame field

in the usual manner. Provided that the metric tensor is nondegenerate, any field ω satis-

fying the zero-curvature equation RAB = 0 describes (A)dSd space with the cosmological

constant Λ,

AdSd : RAB = 0 , rank|EA
n | = d . (2.6)

The action of Stelle and West [24] for 4d gravity is

S = − 1

4κ2|Λ|1/2
∫

M4

εABCDEV
ARBCRDE . (2.7)

In the standard gauge it amounts to the action of MacDowell-Mansouri [23]. To see that

it is equivalent to the Einstein action with the cosmological term one decomposes Rab =

Rab
L + ΛR

ab
C where Rab

L is the field strength of the Lorentz subalgebra o(d − 1, 1) and
Rab
C = ea ∧ eb. Plugging this into (2.7) one observes that the terms RL × RL form a

topological invariant (Gauss-Bonnet), which does not contribute to the field equations,

RL ×RC terms form the scalar curvature and RC ×RC terms give rise to the cosmological
term.

The field V A makes the o(d− 1, 2) gauge symmetry manifest

δωAB = DεAB , δV A = −εABVB . (2.8)

Also, the action (2.7) is manifestly invariant under diffeomorphisms because of using the

exterior algebra formalism. Let us define a covariantized diffeomorphism transformation as

a mixture of a usual diffeomorphism, generated by an infinitesimal vector field parameter

ξn, with a local o(d − 1, 2) gauge symmetry transformation with the parameter εAB
ξ =

−ξnωAB
n . The transformation law under the covariantized diffeomorphisms is

δξV
A = ξnDnV

A ≡ ξnEA
n , (2.9)
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δξω
AB
m = ξn∂nω

AB
m + ∂m(ξ

n)ωAB
n −Dm(ξ

nωAB
n ) ≡ ξnRAB

nm . (2.10)

Fixing some gauge for V A, one relates the parameters of diffeomorphisms and gauge

transformations from o(d− 1, 2)/o(d − 1, 1) via the condition

δV A = 0 = ξnEA
n − εABVB . (2.11)

When V A is a constant vector, the condition does not restrict the parameters of true (i.e.,

noncovariantized) diffeomorphisms, rather restricting to zero the gauge parameters from

o(d−1, 2)/o(d−1, 1). The resulting theory turns out to be expressed in terms of the frame
field and Lorentz connection contained in ωAB and, as it should, is manifestly invariant

under local Lorentz transformations and diffeomorphisms. Alternatively, expressing the

covariantized diffeomorphism parameters from (2.11)

ξngnm = EmAε
ABVB (2.12)

and using (2.10), one can interpret the mixture of diffeomorphisms and transformations

from o(d−1, 2)/o(d−1, 1), that leave invariant V A, as a deformation of the transformation

law (2.8) for the connection ωAB by some R-dependent terms.

With the help of VA it is straightforward to write a d–dimensional generalization [5] of

the MacDowell-Mansouri-Stelle-West action

S = − 1

4|Λ|1/2κd−2
∫

Md

εA1...Ad+1
RA1A2 ∧RA3A4 ∧EA5 ∧ . . . ∧EAdV Ad+1 . (2.13)

Obviously, among various solutions of the equations of motion of the action (2.13), any flat

connection with RAB = 0 is a solution. According to (2.6) it describes AdSd provided that

the metric is nondegenerate. (Different flat connections with nondegenerate metric describe

AdSd in different coordinates.) This solution is most symmetric. Indeed, let ω
AB
0 (x) be

some solution of (2.6). According to (2.10), covariantized diffeomorphisms act trivially on

ω0. Local o(d − 1, 2) transformations (2.8) map one solution ω0 of (2.6) to another. The
transformations, that leave ω0 invariant, satisfy

D0ε
AB(x) = 0 , (2.14)

where D0 is the o(d − 1, 2) covariant derivative constructed from ω0. Equation (2.14) is

formally consistent because D2
0 = 0. As a result, it determines all derivatives of the 0-form

εAB(x) in terms of its values εAB(x0) at any given point x0. So, in the topologically trivial

situation, any solution εAB
0 (x) of (2.14) is fixed in terms of εAB

0 (x0) ∈ o(d − 1, 2) which
are arbitrary parameters of the global symmetry o(d − 1, 2) of the vacuum (2.6). It is

important to note that the same symmetry can be realized by diffeomorphisms generated

by the Killing vector fields ξn (2.12) of the metric g0nm = EA
0 nE0mA where E0 is defined

by (2.2) with the AdS background connection ω0
AB . This explains why the space-time

symmetry algebras associated with the motions of the most symmetric vacuum spaces

reappear as gauge symmetry algebras in the gauge approach to gravity.

The lesson is that, to describe a gauge model that has a global symmetry h, it is useful

to reformulate it in terms of the gauge connections ω and curvatures R of h in such a way
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that the zero curvature equation R = 0 solves the field equations. If a symmetry h is not

known, this observation can be used other way around to guess what it is by reformulating

dynamics a la MacDowell-Mansouri to guess a structure of an appropriate curvature R.

3. Higher spin gauge fields

In the spin two case, the formulation in terms of gauge connections results from the exten-

sion gnm −→ {ean, ωab
n } −→ ωAB

n . It has the following generalization to any spin

s ≥ 1 : ϕn1...ns −→ {ena1 ...as−1 , ωn
a1...as−1,b1...bt

∣

∣

∣

t=1,2...s−1
} −→ ωA1...As−1,B1...Bs−1

n .

(3.1)

The first arrow is for the equivalent free field reformulation [4] of the Fronsdal dynamics

in terms of the set of 1-forms dxnωn
a1...as−1,b1...bt (0 ≤ t ≤ s− 1) which contain the frame

type dynamical field en
a1...as−1 = ωn

a1...as−1 (t = 0) and the generalized Lorentz connections

ωa1...as−1,b1...bt (t > 0). The connections ωa1...as−1,b1...bt are symmetric in the fiber Lorentz

vector indices ai and bj separately, satisfy the antisymmetry condition

ωn
a1...as−1,asb2...bt = 0 (3.2)

implying that symmetrization over any s fiber indices gives zero, and are traceless with

respect to the fiber indices ωn
a1...as−3c

c
,b1...bt = 0, ωn

a1...as−2c,
c
b2...bt = 0, ωn

a1...as−1,
c
cb3...bt =

0. The HS gauge fields associated with the spin s massless field therefore take values in

the direct sum of all irreducible representations of the d-dimensional massless Lorentz

group o(d − 1, 1) described by the Young diagrams with at most two rows such that the
longest row has length s− 1

s− 1

t
. Analogously to the relationship between metric

and frame formulations of the linearized gravity, the totally symmetric double traceless HS

fields used to describe the HS dynamics in the metric type formalism [1, 2] identify with the

symmetrized part ϕa1...as = ω{a1 ...as} of the frame type field ωn
a1...as−1 . The antisymmetric

part in ωn
a1...as−1 can be gauge fixed to zero with the aid of the generalized HS Lorentz

symmetries with the parameter εa1...as−1,b. That ϕa1 ...as is double traceless is a consequence

of the tracelessness of ωn
a1...as−1 in the indices ai. The generalized Lorentz connections

ωn
a(s−1),b(t) with t > 0 are auxiliary fields expressed through order-t derivatives of the

dynamical frame-like field by certain constrains, ωn
a(s−1),b(t) ∼

(

1√
Λ

∂
∂x

)t
(e).

The second arrow in (3.1) expresses the observation of [5] that the set of the HS 1-forms

dxnωn
a1...as−1,b1...bt with all 0 ≤ t ≤ s − 1 results from the “dimensional reduction” of a

1-form dxnωn
A1...As−1,B1...Bs−1 carrying the irreducible representation of the AdSd algebra

o(d − 1, 2) described by the traceless two-row rectangular Young tableau of length s − 1,
i.e.

ω{A1...As−1,As}B2...Bs−1 = 0 , ωA1...As−3C
C,

B1...Bs−1 = 0 . (3.3)

The Lorentz covariant irreducible fields dxnωn
a1...as−1,b1...bt identify with those components

of dxnωn
A1...As−1,B1...Bs−1 which are parallel to the compensator field V A in s− t−1 indices

and are transversal in the rest ones.
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The linearized HS curvature R1 has the form of the covariant derivative D0 with the

o(d − 1, 2) connection ωAB
0 in the representation of o(d − 1, 2) described by the two-row

rectangular Young tableau of length s− 1, i.e.

R
A1...As−1,B1...Bs−1

1 = D0(ω
A1...As−1,B1...Bs−1) = dωA1...As−1,B1...Bs−1

+(s− 1)
(

ω
{A1

0 C ∧ ωCA2...As−1},B1...Bs−1 + ω
{B1

0 C ∧ ωA1...As−1,CB2...Bs−1}
)

, (3.4)

where ωAB
0 is the background AdSd gauge field satisfying the flatness condition D2

0 = 0

(2.6) which guarantees that the linearized curvature (3.4) is invariant under the Abelian

HS gauge transformations with the HS gauge parameters εA1...As−1,B1...Bs−1

δω1
A1...As−1,B1...Bs−1 = D0ε

A1...As−1,B1...Bs−1 . (3.5)

The o(d− 1, 2) covariant form of the free action for a massless spin s field is [5]

Ss
2 =

1

2

s−2
∑

p=0

a(s, p)εA1...Ad+1

∫

Md

EA5 ∧ . . . ∧EAdV Ad+1VC1 . . . VC2(s−2−p)

∧RA1B1...Bs−2

1 ,
A2C1...Cs−2−pD1...Dp ∧RA3

1 B1...Bs−2,
A4Cs−1−p...C2(s−2−p)

D1...Dp , (3.6)

where

a(s, p) = ã(s)(−Λ)−(s−p−1) (d− 5 + 2(s− p− 2))!! (s − p− 1)
(s− p− 2)! . (3.7)

The coefficients a(s, p) are fixed up to an overall spin-dependent factor ã(s) by the “ex-

tra field decoupling condition” that the variation of the free action (3.6) is different from

zero only for the fields ωnA1...As−1,B1 = ωnA1...As−1 ,B1...Bs−1V
B2 . . . V Bs−1 which contain the

frame type dynamical HS field ωn
a1...as−1 and the Lorentz type auxiliary field ωn

a1...as−1,b,

which is expressed in terms of the frame type field by virtue of its equation of motion

equivalent to the “zero torsion condition” R1A1...As−1 ,B1...Bs−1V
B1 . . . V Bs−1 = 0 . Insertion

of the expression for ωn
a1...as−1,b into (3.6) gives rise to the HS action expressed entirely

(modulo total derivatives) in terms of ωn
a1...as−1 and its first derivatives. Since the lin-

earized curvature (3.4) is invariant under the Abelian HS gauge transformations (3.5) the

resulting action has necessary HS gauge symmetries and, because of the extra field decou-

pling condition, describes correctly the free field HS dynamics in AdSd. In particular, the

generalized Lorentz-like transformations with the gauge parameter εA1...As−1 ,B1(x) guaran-

tee that only the totally symmetric Fronsdal part ϕa1...as = ω{a1 ...as} of the frame type
gauge field contributes to the action.

4. Higher spin algebras

Once dynamics of totally symmetric HS gauge fields is shown to be described by 1-forms

taking values in the two-row rectangular Young tableaux of o(d−1, 2), this suggests that a
AdSd HS algebra h admits a basis formed by a set of elements TA1...An,B1...Bn , which satisfy

the properties analogous to (3.3), T{A1...As−1,As}B2...Bs−1
= 0, TA1...As−3CC,

B1...Bs−1 = 0,

and contains the o(d− 1, 2) basis elements TA,B = −TB,A such that

[TC,D, TA1...As−1,B1...Bs−1 ] = ηDA1TCA2...As−1,B1...Bs−1 + . . . . (4.1)
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The question is whether there exists a non-Abelian algebra h with these properties. If

yes, the Abelian curvatures R1 (3.4) can be understood as resulting from the linearization

of the non-Abelian field curvatures R of h with the h gauge connection ω̃ = ω0+ω, where

ω0 is some fixed flat zero-order connection of the AdSd subalgebra o(d− 1, 2) ⊂ h and ω is

the first-order dynamical part which describes massless fields of various spins. According to

the discussion of section 2, any h of this class is a candidate for a global HS algebra of the

symmetric vacuum of a HS theory. The existence of such an algebra was indicated by the

results of [25] where conserved currents (and therefore charges) in the free massless scalar

field theory were shown to be described by various traceless two-row rectangular Young

tableaux of the conformal algebra. A formal definition of h as a conformal HS algebra of

symmetries of a scalar field theory in d − 1 dimension was given by Eastwood in [26]. In
this paper we use a slightly different definition of h which is more suitable for the analysis

of the HS interactions.

Consider oscillators Y A
i with i = 1, 2 satisfying the commutation relations

[Y A
i , Y B

j ]∗ = εijη
AB , εij = −εji , ε12 = 1 , (4.2)

where ηAB is the invariant metric of o(d − 1, 2). (These oscillators can be interpreted as
conjugated coordinates and momenta Y A

1 = PA, Y B
2 = Y B.) ηAB and ε

ij are used to raise

and lower indices in the usual manner AA = ηABAB , a
i = εijaj , ai = ajεji .

We use the Weyl (Moyal) star product

(f ∗ g)(Y ) = 1

π2(d+1)

∫

dSdTf(Y + S)g(Y + T ) exp−2SA
i T

i
A . (4.3)

[f, g]∗ = f ∗ g − g ∗ f , {f, g}∗ = f ∗ g + g ∗ f . The associative algebra of polynomials with
the ∗ product law generated via (4.2) is called Weyl algebra Ad+1. Its generic element is

f(Y ) =
∑

φi1...in
A1...An

Y A1
i1

. . . Y An

in
or, equivalently,

f(Y ) =
∑

m,n

fA1...Am ,B1...BnY
A1
1 . . . Y Am

1 Y B1
2 . . . Y Bn

2 (4.4)

with the coefficients fA1...Am ,B1...Bn symmetric in the indices Ai and Bj.

Various bilinears of oscillators Y A
i form the Lie algebra sp(2(d+1)) with respect to the

star commutator. It contains the subalgebra o(d − 1, 2) ⊕ sp(2) spanned by the mutually

commuting generators

TA,B = −TB,A =
1

2
Y iAY B

i , tij = tji = Y A
i YjA [TA,B , tij ]∗ = 0 . (4.5)

Consider the subalgebra S ∈ Ad+1 spanned by the sp(2) singlets f(Y )

f ∈ S : [tij , f(Y )]∗ = 0 . (4.6)

Eq.(4.6) is equivalent to
(

Y Ai ∂
Y A

j

+ Y Aj ∂
Y A

i

)

f(Y ) = 0 . For the expansion (4.4) this con-

dition implies that the coefficients fA1...Am ,B1...Bn are nonzero only if n = m and that

symmetrization over any m + 1 indices of fA1...Am ,B1...Bm gives zero, i.e. fA1...Am ,B1...Bm
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has the symmetry properties of a two-row rectangular Young tableau. The algebra S

is not simple. It contains the two-sided ideal I spanned by the elements of the form

g = tij ∗ gij , where gij transforms as a symmetric tensor with respect to sp(2), i.e.,

[tij , g
kl]∗ = δki gj

l+ δkj gi
l+ δligj

k+ δljgi
k. (Note that tij ∗ gij = gij ∗ tij.) Actually, from (4.6)

it follows that f ∗ g, g ∗ f ∈ I ∀f ∈ S, g ∈ I. Due to the definition (4.5) of tij, the ideal

I contains all traces of the two-row Young tableaux. As a result, the algebra S/I has only

traceless two-row tableaux in the expansion (4.4).

Now consider the Lie algebra with the commutator in S/I as the product law. Its

real form corresponding to a unitary HS theory in AdSd is called hu(1/sp(2)[d− 1, 2]) [22].
Note that, by construction, the AdSd algebra o(d − 1, 2) with the generators T A,B is the

subalgebra of hu(1/sp(2)[n,m]).

The gauge fields of hu(1/sp(2)[d − 1, 2]) are

ω(Y |x) =
∞
∑

l=0

ωA1...Al ,B1...Bl
(x)Y A1

1 . . . Y Al
1 Y B1

2 . . . Y Bl
2 (4.7)

with the component gauge fields ωA1...Al ,B1...Bl
(x) taking values in all traceless two-row

rectangular Young tableaux of o(d−1, 2). Note that, because dtij = 0, the sp(2) invariance
condition, which imposes the Young symmetry properties, can be written in the covariant

form

D(tij) ≡ dtij + [ω, tij ]∗ = 0 . (4.8)

The HS curvatures and gauge transformations have the standard Yang-Mills form

R(Y |x) = dω(Y |x) + ω(Y |x) ∧ ∗ω(Y |x) , (4.9)

δω(Y |x) = Dε(Y |x) , Dε(Y |x) = dε(Y |x) + [ω(Y |x), ε(Y |x)]∗ . (4.10)

Different spins correspond to irreducible representations of o(d − 1, 2) spanned by
homogeneous polynomials

ω(µY |x) = µ2(s−1)ω(Y |x) . (4.11)

(Note that one unit of spin is carried by the 1-form index). In particular, spin 1 is described

by a 1-form ω(x) = dxnωn(x). The algebra hu(1/sp(2)[d− 1, 2]) is infinite dimensional. It
contains o(d−1, 2)⊕u(1) as the maximal finite dimensional subalgebra with the generators
TAB (4.5) for o(d−1, 2) and constants for u(1). The corresponding gauge fields carry spins
2 and 1, respectively. Taking two HS symmetry parameters εs1 and εs2 , being polynomials

of degrees s1 − 1 and s2 − 1, respectively, one obtains

[εs1 , εs2 ]∗ =
s1+s2−2
∑

t=|s1−s2|+1
εt . (4.12)

Thus, once a spin s > 2 gauge field appears, the HS symmetry algebra requires an infinite

tower of HS gauge fields to be present. The barrier s ≤ 2 separates theories with infinite
dimensional gauge symmetries from those with usual lower spin symmetries. It is tempting

to speculate that the latter result from the spontaneous breaking of infinite dimensional
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HS symmetries down to usual lower spin symmetries. In that case, the HS gauge fields

should acquire masses as a result of this spontaneous HS symmetry breaking.

The formula (4.12) manifests the quantum-mechanical nonlocality of the oscillator

algebra (4.2) (equivalently, the star product (4.3)). Because bilinear terms in the HS

curvatures (4.9) describe interactions, one concludes that lower spins form sources for

higher spins and vice versa. A less obvious fact, which follows from the HS field equations,

is that the nonlocal character of the star product algebra results in the appearance of

higher space-time derivatives in the HS interactions. Thus the star-product origin of the

HS algebra links together such seemingly different properties of the HS theories as the

relevance of the AdS background, necessity of introducing infinitely many spins and space-

time non-locality of the HS interactions. Note that these properties make the HS theories

reminiscent of the superstring theory with the analogy between the cosmological constant

and α′.

To introduce inner symmetries, one considers following [27] matrix-valued gauge fields

ω(Y |x) −→ ων
µ(Y |x), µ, ν . . . = 1, . . . , p, imposing the reality condition

[ων
µ(Y |x)]† = −ων

µ(Y |x) , (4.13)

where the involution † combines matrix hermitian conjugation with the involution of the
star product algebra (Y A

j )
† = iY A

j . The resulting real Lie algebra is called hu(p|sp(2)|[d−
1, 2]). Its gauge fields describe the set of massless fields of all spins s ≥ 1 which take values
in the adjoint representation of u(p). In particular, spin 1 gauge fields are u(p) Yang-Mills

fields.

Combining the antiautomorphism of the star product algebra ρ(f(Y )) = f(iY ) with

some antiautomorphism of the matrix algebra generated by a nondegenerate form ραβ one

can impose the conditions [27]

ωα
β(Y |x) = −ρβγρδαωγ

δ(iY |x) , (4.14)

which truncate the original system to the one with the Yang-Mills gauge group USp(p)

or O(p) depending on whether the form ραβ is antisymmetric or symmetric, respectively.

The corresponding global HS symmetry algebras are called husp(p|sp(2)[d − 1, 2]) and
ho(p|sp(2)[d − 1, 2]), respectively. In this case all fields of odd spins take values in the
adjoint representation of the Yang-Mills group while fields of even spins take values in

the opposite symmetry second rank tensor representation (i.e., symmetric for O(p) and

antisymmetric for USp(p)) which contains a singlet. The graviton is always the color

singlet. For general p, color spin 2 particles also appear however. Note that this does

not contradict to the no-go results of [28] because the theory under consideration does not

allow a flat limit with unbroken HS and color spin 2 symmetries. The minimal HS theory

is based on the algebra ho(1|sp(2)[n,m]). It describes even spin particles, each in one copy.
(Odd spins do not appear because the adjoint representation of o(1) is trivial.)

5. Unfolded higher spin dynamics

An efficient approach to HS dynamics consists of reformulation of linear and non-linear

field equations in the form of some generalized covariant constancy conditions first at the
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linear and then at the nonlinear level. This “unfolded formulation” originally introduced

for the description of 4d HS dynamics in [29] allows one to control simultaneously formal

consistency of field equations, gauge symmetries and the invariance under diffeomorphisms.

The unfolded formulation treats uniformly higher derivatives of the dynamical fields and

is just appropriate for the analysis of HS dynamics because HS symmetries mix higher

derivatives of the dynamical fields. The same time, the unfolded formulation is a universal

tool applicable to any dynamical system although it may be looking unusual from the

perspective of standard field theory because it operates in terms of infinite dimensional

modules which describe all degrees of freedom of the system in question. To illustrate the

idea let us recall the unfolded formulation of the Einstein gravity, using the compensator

formalism.

As explained in section 2, Riemann tensor and torsion tensor are components of the

o(d− 1, 2) field strength (2.4) RAB = dxn ∧ dxmRnm
AB . The components of the Riemann

tensor, that can be nonzero when Einstein equations and zero-torsion constraints are sat-

isfied, belong to the Weyl tensor, i.e. Einstein equations with the cosmological term can

be rewritten as

RA,B
∣

∣

∣

o.m.s.
= EC ∧EDC

AC,BD , (5.1)

where CAC,BD is treated as an independent tensor field variable that has the symmetry

properties of the window Young tableau and describes the Weyl tensor. For our

purpose it is convenient to use the symmetric basis with CAC,BD = CCA,BD = CAC,DB.

In addition, CAC,BD has the following properties

zero-torsion constraint : VAC
AB,CD = 0 , (5.2)

Einstein equations : CB
B,CD = 0 , (5.3)

Bianchi identities for (5.2) : C{A1A2,A3}D = 0 : . (5.4)

Field equations for free totally symmetric integer spin s ≥ 2 massless HS fields in AdSd

[4] can analogously be rewritten in the form [4]

R
A1...As−1,B1...Bs−1

1

∣

∣

∣

o.m.s.
= E0As ∧E0BsC

A1...As,B1...Bs . (5.5)

The generalized Weyl tensors CA1...As,B1...Bs are described by the traceless V A–transversal

two-row rectangular Young tableaux of length s, i.e., VA1C
A1...As,B1...Bs = 0, ηA1A2C

A1...As,B1...Bs =

0 and C{A1...As,As+1}B2...Bs = 0. The equation (5.5) referred to as First On-Mass-Shell The-

orem is a consequence of the massless field equations along with the constraints on auxiliary

and extra fields imposed by requiring appropriate components of HS curvature to vanish

[4]. Let us note that although the extra fields ωn
a1...as−1,b1...bt with t ≥ 2 do not contribute

to the free action, they do contribute at the interaction level. To make such interactions

meaningful, one has to express the extra fields in terms of the dynamical ones modulo

pure gauge degrees of freedom. This is achieved by imposing appropriate constraints [4]

contained in (5.5) like the torsion constraint in gravity is contained in (5.1).

The Bianchi identities D0(R1) = 0 along with the equation (5.5) impose some differ-

ential restrictions on the generalized Weyl tensor CA1...As,B1...Bs . The trick is to denote the

– 12 –



j
h
w
2
0
0
3

27th Johns Hopkins Workshop on Current Problems in Particle Theory:
Symmetries and Mysteries of M Theory Mikhail Vasiliev

components of the first derivatives of CA1...As,B1...Bs , that are allowed to be non-zero by the

Bianchi identities, by a new tensor field C1, writing symbolically D
L
0 C = E0 ∧ C1, where

DL
0 is the Lorentz derivative and E0 is the AdS frame 1-form. The Bianchi identities for

this equation impose differential conditions on C1 to be written as D
L
0 C1 = E0∧C2, etc. It

turns out that the full set of the 0-forms Ci consists of all two-row traceless V
A−transversal

Young tableaux CA1...Au,B1...Bs with the second row of length s, i.e.,

VA1C
A1...Au,B1...Bs = 0 , ηA1A2C

A1...Au,B1...Bs = 0 , C{A1...Au,Au+1}B2...Bs = 0 . (5.6)

The fields CA1...Au,B1...Bs form a basis of the space of on-mass-shell nontrivial derivatives

of order u − s of the spin s generalized Weyl tensor CA1...As,B1...Bs . The full set of the

compatibility conditions of the equations (5.5) can be written in the form of the covariant

constancy condition [22]

D̃0C
A1...Au,B1...Bs = 0 u ≥ s , (5.7)

where D̃0 is the o(d− 1, 2) covariant derivative in the so called twisted adjoint representa-
tion.

To define the twisted adjoint representation it is useful to observe that the set of fields

CA1...Au,B1...Bs satisfying (5.6) spans the space isomorphic to the space of star-product func-

tions C(Y |x) satisfying (4.6) and with the ideal I factored out to impose the tracelessness
condition. Then D̃0 is [22]

D̃0 = DL
0 − 2ΛEA

0 V
B
(

⊥Y i
A
‖YBi −

1

4
εji

∂

∂⊥Y Aj∂‖Y Bi

)

, (5.8)

where the Lorentz covariant derivative is DL
0 = d+ ωLAB

0
⊥YAi

∂
∂⊥Y B

i

and we use notations

AA
i =

‖AA
i +

⊥AA
i ,

‖AA
i =

1

V 2
V AVBA

B
i , ⊥AA

i = AA
i −

1

V 2
V AVBA

B
i (5.9)

for any vector AA. The twisted adjoint covariant derivative (5.8) commutes with the

operator N tw = ⊥Y A
i

∂
∂⊥Y A

i

−‖Y A
i

∂
∂‖Y A

i

. This means that the equation (5.7) decomposes into

independent subsystems for the sets of fields satisfying N twC = 2sC with various integers

s ≥ 0 (the eigenvalues of the operator N tw are non-negative on the space of o(d − 1, 2)
tensors with the symmetry property of a two-row rectangular Young tableau because having

more than a half of vector indices aligned along V A would imply symmetrization over more

than a half of indices, thus giving zero). Different Lorentz irreducible components of the

field C(Y |x) with some fixed s just give the set of components CA1...Au,B1...Bs satisfying (5.6)

with u− s being a number of indices of the length u two-row traceless rectangular tableau,
contracted with the compensator V A. Note that any spin s submodule of the twisted

adjoint o(d − 1, 2) module, where the 0-forms C take their values, is infinite dimensional.
This is expected because the components C parametrize all gauge invariant combinations

of on-mass-shell non-zero derivatives of the higher spin fields.

Equations (5.5) and (5.7) were originally derived [4, 5] by the equivalent reformulation

(unfolding) of the free equations of motion of totally symmetric massless fields of all integer
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spins s ≥ 2 in AdSd supplemented with some constraints which express an infinite set of

auxiliary variables via higher derivatives of the dynamical fields. However, the equation of

motion of a massless scalar coincide [30] with the s = 0 sector of equation (5.7). Analo-

gously, equation (5.7) with s = 1 imposes the Maxwell equations on the spin 1 potential

(1-form) ω on the left hand side of (5.5).

Thus, the equations (5.5) and (5.7) give an equivalent form of bosonic symmetric

massless fields of all spins in AdSd for any d. We call this important fact Central On-

Mass-Shell Theorem. It is of key importance in many respects and, in particular, for the

analysis of interactions. Central On-Mass-Shell theorem can be formulated in the following

compact form

R1(
‖Y,⊥Y |x) = 1

2
EA
0 ∧EB

0

∂2

∂Y A
i ∂Y B

j

εijC(0,
⊥Y |x) , (5.10)

D̃0(C) = 0 , (5.11)

where R1 = dω+ω0 ∗ω+ω ∗ω0 , D̃0(C) = dC +ω0 ∗C −C ∗ ω̃0 and ω0 = ωAB
0 (x)TAB(Y )

where ωAB
0 (x) satisfies (2.6) to describe the (A)dSd background, and tilde denotes the V -

reflection automorphism, i.e., ω̃0(Y |x) = ω0(Ỹ |x) = ω0(
⊥Y − ‖Y |x). The V -transversal

components of the expansion of the 0-forms C(0, ⊥Y ) on the r.h.s. of (5.10) in powers of

Y A
i give rise to HS Weyl 0-forms Ca1...as,b1...bs on the r.h.s. of (5.5). The key fact is that, as

one can readily see, the equations (5.10) and (5.11) are consistent, i.e., the application of

the covariant derivative to the l.h.s. of (5.10) and (5.11) does not lead to new conditions.

6. Nonlinear higher spin classical dynamics

The problem is to find a nonlinear deformation of the equations (5.10) and (5.11) in

which the linearized curvature and covariant derivative are replaced with the full ones

with ω = ω0 + ω1 where ω0 describes the background AdSd space-time and ω1 describes

the dynamical HS gauge fields. According to the general analysis of [29], where the 4d case

was considered, any deformation, formulated using the exterior algebra formalism, that is

consistent with the Bianchi identities, describes gauge invariant interactions and is invari-

ant under diffeomorphisms. Here we formulate following [22] a system of equations which

generates all nonlinear corrections to the equations (5.10) and (5.11). Before going into

technical details let us stress that the solution we have found gives a deformation which

is unique modulo field redefinitions. This means that all dimensionless coupling constants

can be rescaled away in the classical HS model like the dimensionless Yang-Mills constant

g2 = |Λ| d−2
2 κ2 in the classical pure Yang-Mills theory. The only nontrivial ambiguity that

remains is to consider HS theories with different HS algebras corresponding to different

Yang-Mills groups according to the classification of section 4.

Roughly speaking, the idea is to describe complicated nonlinear corrections to HS

equations as a solution of some simple differential type equations with respect to addi-

tional variables. To this end we double a number of oscillators by introducing additional

variables ZA
i . The full system of equations is formulated in terms of the fields W (Z, Y |x),

B(Z, Y |x) and S(Z, Y |x), where B(Z, Y |x) is a 0-form while W (Z, Y |x) = dxnWn(Z, Y |x)
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and S(Z, Y |x) = dZA
i S

i
A(Z, Y |x) are connection 1-forms in space-time and auxiliary ZA

i

directions, respectively. The fields ω and C are identified with the “initial data” for the

evolution in Z variables as follows ω(Y |x) =W (0, Y |x), C(Y |x) = B(0, Y |x). The Z - con-
nection S will be determined in terms of B modulo gauge ambiguity. The differentials sat-

isfy the standard anticommutation relations dxndxm = −dxmdxn , dZA
i dZ

B
j = −dZB

j dZ
A
i ,

dxndZB
j = −dZB

j dx
n and commute to all other variables (from now on we discard the

wedge symbol).

The space of functions f(Z, Y ) is endowed with the star product

(f ∗ g)(Z, Y ) = 1

π2(d+1)

∫

dSdTf(Z + S, Y + S)g(Z − T, Y + T ) exp−2SA
i T

i
A , (6.1)

which is associative, normalized so that 1∗f = f ∗1 = f and gives rise to the commutation

relations [Y A
i , Y B

j ]∗ = εijη
AB , [ZA

i , Z
B
j ]∗ = −εijηAB , [Y A

i , ZB
j ]∗ = 0. The star product

(6.1) describes a normal-ordered basis in A2(n+m) with respect to creation and annihilation

operators Z − Y and Y + Z, respectively.

Important property of the star product (6.1) is that it admits the inner Klein operator

K = exp−2ziyi , yi =
1√
V 2

VBY
B
i , zi =

1√
V 2

VBZ
B
i , (6.2)

which has the properties

K ∗ f = f̃ ∗ K , K ∗ K = 1 , (6.3)

where f̃(Z, Y ) = f(Z̃, Ỹ ) with ÃA = ⊥AA − ‖A⊥ for AA = ZA, Y A . . ..

The full nonlinear system of HS equations is [22]

dW +W ∗W = 0 , dS +W ∗ S + S ∗W = 0 , dB +W ∗ B −B ∗ W̃ = 0 , (6.4)

S ∗ S = −1
2
(dZA

i dZ
i
A + 4Λ

−1dzidz
iB ∗ K) , S ∗ B = B ∗ S̃ , (6.5)

where S̃(dZ,Z, Y ) = S(d̃Z, Z̃, Ỹ ) and dzi =
1√
V 2
VBdZ

B
i . In terms of a noncommutative

connection W = d+W + S the system (6.4), (6.5) reads

W ∗W = −1
2
(dZA

i dZ
i
A + 4Λ

−1dzidz
iB ∗ K) , W ∗B = B ∗ W̃ . (6.6)

We see that dzidz
iB ∗K is the only nonzero component of the noncommutative curvature.

The B-dependent part of the equation (6.5) is responsible for interactions. Note that B has

dimension cm−2 to match the Central On-Mass-Shell theorem (5.10) upon identification of
B with C in the lowest order, i.e., Λ−1B is dimensionless. This form of the nonzero part of
the non-commutative curvature manifests that taking the flat limit may be difficult in the

interacting theory unless a value of the cosmological constant is shifted by a condensate

which breaks the HS gauge symmetries.

The system is formally consistent in the sense that the associativity relations W∗ (W∗
W) = (W ∗ W) ∗ W and (W ∗ W) ∗ B = B ∗ (W ∗ W), equivalent to Bianchi identities,
are respected by the equations (6.4), (6.5). The only nontrivial part of the consistency

check is that for the relationship (S ∗ S) ∗ S = S ∗ (S ∗ S) in the sector of (dzi)3 due to
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the second term on the r.h.s. of (6.5) since B ∗ K commutes to everything except for dzi
to which it anticommutes by the second equation in (6.5). However, this does not break

down the consistency of the system because (dzi)
3 ≡ 0. As a result, the equations (6.4),

(6.5) are consistent as “differential” equations with respect to x and Z variables. A related

statement is that the equations (6.4), (6.5) are invariant under the gauge transformations

δW = [ε,W]∗ , δB = ε ∗B −B ∗ ε̃ (6.7)

with an arbitrary gauge parameter ε(Z, Y |x).
To analyze the equations (6.4), (6.5) perturbatively one setsW =W0+W1, S = S0+S1

and B = B0+B1 with the vacuum solution B0 = 0, S0 = dZA
i Z

i
A andW0 =

1
2ω

AB
0 (x)Y i

AYiB ,

where ωAB
0 (x) satisfies the zero curvature conditions to describe (A)dSd. As shown in [22],

the nontrivial part of the system (6.4), (6.5) in the lowest order has the form (5.10), (5.11).

The same time the system (6.4)-(6.5) generates all nonlinear corrections to the unfolded

free HS equations (5.10), (5.11).

An intriguing feature of the unfolded formulation of the nonlinear HS equations is

that their nontrivial part (6.5) has a form of deformed oscillator algebra equivalent [31] to

a two-dimensional fuzzy hyperboloid in the “auxiliary” non-commutative space with the

coordinates Z, Y . The origin of this fact can be traced back to the condition that the

theory must admit unbroken sp(2) symmetry with some nonlinearly deformed generators

tij satisfying the covariant constancy condition (4.8) at the nonlinear level to guarantee

that the interacting HS theory admits interpretation in terms of the same set of tensor

fields as the free theory (see [22] for more details). According to [31], from (6.6) it follows

that the radius of the fuzzy hyperboloid is RH2(x) ∼ (4Λ−1B(x) + 1) ∗ (4Λ−1B(x) − 3).
Note that it depends via B on a value of the HS curvature (including the gravitational

one) at a given point x of the space-time base manifold.

7. Conclusion

The main conclusion is that there exists a class of consistent nonlinear HS gauge theo-

ries in anti-de Sitter space of any dimension. These theories describe totally symmetric

bosonic fields of all integer spins and are fixed uniquely by the HS gauge symmetry princi-

ple modulo the choice of the spin 1 Yang-Mills group which can be U(n), O(n) or Sp(2n).

Global HS symmetries of the most symmetric vacua of HS gauge theories are certain star

product algebras which exhibit usual quantum-mechanical nonlocality in the auxiliary non-

commutative spaces. The field equations in the HS gauge theory map this nonlocality to

space-time nonlocality (i.e., higher derivatives) at the interaction level. The same time the

HS gauge theories remain local at the linearized level because the space-time symmetries

are realized in terms of bilinears of auxiliary oscillators. Let us note that analogously to

the non-commutative geometry framework of string theory, HS theory is based on the asso-

ciative algebras (i.e., star product and its matrix extension). For this reason, in particular,

there is no HS model with the spin 1 gauge group SU(n).

Finally, let us list some open problems important for elucidating the structure of HS

gauge theories in higher dimensions and their possible relationship with string theory.
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• To develop a theory of mixed symmetry (i.e. neither totally symmetric nor totally
antisymmetric) HS gauge fields in AdSd. This problem is not completely trivial in

view of the observation of [32] that not every free mixed symmetry field in Minkowski

space allows a smooth deformation to AdSd. The origin of this phenomenon is [33]

that some of the HS gauge symmetries of the flat space mixed symmetry fields turn

out to be broken in the AdS background. This means that the covariant description

of generic massless fields in AdSd requires separate investigation compared to the flat

space [15]. A progress in this direction achieved recently in [34, 35, 36] indicates that

the general problem has a good chance to be solved soon. The formulation of [35]

in terms of HS gauge potentials analogous to that used to describe symmetric HS

fields looks particularly promising from the perspective of elucidating a structure of

HS algebras underlying HS gauge theories with mixed symmetry fields.

• As a nontrivial consistency test, it is instructive to check whether the HS algebras
admit unitary representations with the spectra of spins of massless fields equivalent

to those predicted by the consistent nonlinear field equations (6.6).

• To extend the formulation of the nonlinear HS dynamics to the action level.

• To find solutions of HS field equations which break down HS gauge symmetries and
introduce a massive parameter m different from the cosmological constant. This is

necessary to define a low energy expansion in
(

1
m

∂
∂x

)p
. Note that the cosmological

constant Λ cannot be used for this purpose because the dimensionless operator Λ− 1
2D

is of order one as a consequence of (1.3), i.e. an expansion in powers of derivatives

in AdS space without any other dimensionful parameter m has formal meaning.
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