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Abstract: We shall discuss about some analytic properties of the high–energy parton–

parton (and hadron–hadron) scattering amplitudes in gauge theories, when going from

Minkowskian to Euclidean theory, and we shall see how they can be related to the still

unsolved problem of the s–dependence of the total cross–section.

1. Introduction

The parton–parton scattering amplitude, at high squared energies s in the center of mass

and small squared transferred momentum t (that is s → ∞ and |t| � s, let us say |t| ≤
1 GeV2), can be described by the expectation value of two infinite Wilson lines, running

along the classical trajectories of the two colliding particles [1, 2, 3, 4].

Let us consider, for example, the case of the quark–quark scattering amplitude. If one

defines the scattering amplitude Tfi = 〈f |T̂ |i〉, between the initial state |i〉 and the final
state |f〉, as follows (Ŝ being the scattering operator)

〈f |(Ŝ − 1)|i〉 = i(2π)4δ(4)(Pfin − Pin) 〈f |T̂ |i〉 , (1.1)

where Pin is the initial total four–momentum and Pfin is the final total four–momentum,

then, in the center–of–mass reference system (c.m.s.), taking for example the initial tra-

jectories of the two quarks along the x1–axis, the high–energy scattering amplitude Tfi
has the following form [explicitly indicating the color indices (i, j, . . .) and the spin indices

(α, β, . . .) of the quarks] [1, 2, 3, 4]

Tfi = 〈ψiα(p′1)ψkγ(p′2)|T̂ |ψjβ(p1)ψlδ(p2)〉

∼
s→∞−

i

Z2W
· δαβδγδ · 2s

∫
d2~z⊥ei~q⊥·~z⊥〈[Wp1(zt)− 1]ij [Wp2(0) − 1]kl〉 , (1.2)
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where q = (0, 0, ~q⊥), with t = q2 = −~q2⊥, is the tranferred four–momentum and zt =
(0, 0, ~z⊥), with ~z⊥ = (z2, z3), is the distance between the two trajectories in the transverse
plane [the coordinates (x0, x1) are often called longitudinal coordinates]. The expectation

value 〈f(A)〉 is the average of f(A) in the sense of the functional integration over the gluon
field Aµ (including also the determinant of the fermion matrix, i.e., det[iγµDµ−m0], where
Dµ = ∂µ+igAµ is the covariant derivative andm0 is the bare quark mass). The two infinite

Wilson lines Wp1(zt) and Wp2(0) in Eq. (1.2) are defined as

Wp1(zt) = T exp
[
−ig
∫ +∞
−∞

Aµ(zt + p1τ̃)p
µ
1dτ̃

]
;

Wp2(0) = T exp
[
−ig
∫ +∞
−∞

Aµ(p2τ̃)p
µ
2dτ̃

]
, (1.3)

where T stands for “time ordering” and Aµ = AaµT a; the four–vectors p1 ' (E,E, 0, 0) and
p2 ' (E,−E, 0, 0) are the initial four–momenta of the two quarks [s = (p1 + p2)2 = 4E2].
Finally, ZW in Eq. (1.2) is the residue at the pole (i.e., for p

2 → m2, m being the

quark pole mass) of the unrenormalized quark propagator, which can be written in the

eikonal approximation as [1, 4]

ZW '
1

Nc
〈Tr[Wp1(zt)]〉 =

1

Nc
〈Tr[Wp1(0)]〉 =

1

Nc
〈Tr[Wp2(0)]〉 , (1.4)

where Nc is the number of colours.

In a perfectly analogous way, one can also derive the high–energy scattering amplitude

for an elastic process involving two partons, which can be quarks, antiquarks or gluons

[2, 4]. For an antiquark, one simply has to substitute the Wilson lineWp(b) with its complex

conjugate W ∗
p (b): this is due to the fact that the scattering amplitude of an antiquark in

the external gluon field Aµ is equal to the scattering amplitude of a quark in the charge–

conjugated (C–transformed) gluon field A′µ = −Atµ = −A∗µ. In other words, going from
quarks to antiquarks corresponds just to the change from the fundamental representation

Ta of SU(Nc) to the complex conjugate representation T
′
a = −T ∗a . In the same way, going

from quarks to gluons corresponds just to the change from the fundamental representation

Ta of SU(Nc) to the adjoint representation T
(adj)
a . So, if the parton is a gluon, one must

substitute Wp(b), the Wilson string in the fundamental representation, with Vk(b), the
Wilson string in the adjoint representation [and the renormalization constant ZW with

ZV = 〈Tr[Vk(0)]〉/(N2c − 1)].
In what follows, to be definite, we shall consider the case of the quark–quark scattering

and we shall deal with the quantity

gM(ij,kl)(s; t) ≡
1

Z2W

∫
d2~z⊥ei~q⊥·~z⊥〈[Wp1(zt)− 1]ij [Wp2(0)− 1]kl〉 , (1.5)

in terms of which the scattering amplitude can be written as

Tfi = 〈ψiα(p′1)ψkγ(p′2)|T̂ |ψjβ(p1)ψlδ(p2)〉 ∼s→∞−i · 2s · δαβδγδ · gM(ij,kl)(s; t) . (1.6)
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At first sight, it could appear that the above expression (1.5) of the quantity gM is es-

sentially independent on the center–of–mass energy of the two quarks and that the s–

dependence of the scattering amplitude is all contained in the kinematical factor 2s in

front of the integral in Eq. (1.2). This is clearly in contradiction with the well–known

fact that amplitudes in QCD have a very non–trivial s–dependence, whose origin lies in

the infrared (IR) divergences typical of 3 + 1 dimensional gauge theories. In more stan-

dard perturbative approaches to high–energy QCD, based on the direct computation of

Feynman diagrams in the high–energy limit, these IR divergences are taken care of by

restricting the rapidities of the intermediate gluons to lie in between those of the two fast

quarks (see, e.g., [5, 6]). The classical trajectories of two quarks with a non–zero mass m

and a center–of–mass energy squared s = 4E2 are related by a finite Lorentz boost with

rapidity parameter log(s/m2), so that the size of the rapidity space for each intermediate

gluon grows as log s and each Feynman diagram acquires an overall factor proportional to

some power of log s, depending on the number of intermediate gluon propagators.

In the case of the quantity (1.5), as was first pointed out by Verlinde and Verlinde

in [7], the IR singularity is originated by the fact that the trajectories of the Wilson lines

were taken to be lightlike and therefore have an infinite distance in rapidity space. One

can regularize this infrared problem by giving the Wilson lines a small timelike component,

such that they coincide with the classical trajectories for quarks with a non–zero mass m

(this is equivalent to consider two Wilson lines forming a certain finite hyperbolic angle

χ in Minkowskian space–time; of course, χ → ∞ when s → ∞), and, in addition, by
letting them end after some finite proper time ±T (and eventually letting T →∞). Such
a regularization of the IR singularities gives rise to an s–dependence of the quantity gM
defined in (1.5) and, therefore, to a non–trivial s–dependence of the amplitude (1.2), as

obtained by ordinary perturbation theory [5, 6] and as confirmed by the experiments on

hadron–hadron scattering processes. We refer the reader to Refs. [7] and [8, 9, 10] for a

detailed discussion about this point.

The direct evaluation of the expectation value (1.5) is a highly non–trivial matter and

it is also strictly connected with the renormalization properties of Wilson–line operators

[11, 12]. A non–perturbative approach for the calculation of (1.5) has been proposed and

developed in Refs. [13, 14], in the context of the so–called “stochastic vacuum model”. In

three previous papers [8, 9, 10] we proposed and discussed a new approach, which consists

in analytically continuing the scattering amplitude from the Minkowskian to the Euclidean

world, so opening the possibility of studying the scattering amplitude non perturbatively

by well–known and well–established techniques available in the Euclidean theory (e.g., by

means of the formulation of the theory on the lattice). This approach has been recently

adopted in Refs. [15, 16], in order to study the high–energy scattering in strongly coupled

gauge theories using the AdS/CFT correspondence, in Ref. [17], in order to investigate

instanton–induced effects in QCD high–energy scattering, and also in Ref. [18], in the con-

text of the so–called “loop–loop correlation model”, in which the QCD vacuum is described

by perturbative gluon exchange and the non–perturbative stochastic vacuum model.

More explicitly, in Refs. [8, 9] we have given arguments showing that the expectation

value of two infinite Wilson lines, forming a certain hyperbolic angle χ in Minkowskian
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space–time, and the expectation value of two infinite Euclidean Wilson lines, forming a

certain angle θ in Euclidean four–space, are connected by an analytic continuation in the

angular variables. This relation of analytic continuation was proved in Ref. [8] for an

Abelian gauge theory (QED) in the so–called quenched approximation and for a non–

Abelian gauge theory (QCD) up to the fourth order in the renormalized coupling constant

in perturbation theory; a general proof was finally given in Ref. [9]. The relation of analytic

continuation between the amplitudes gM (χ; t) and gE(θ; t), in the Minkowskian and the

Euclidean world, was derived in Refs. [8, 9] using infinite Wilson lines, i.e., directly in the

limit T → ∞ and assuming that the amplitudes were independent on T . In other words,
the results derived in Refs. [8, 9] apply to the cutoff–independent part of the amplitudes.

On the contrary, in Ref. [10] we have considered IR–regularized amplitudes at any T

(including also possible divergent pieces when T →∞) and, generalizing the results of Ref.
[9], we have given the general proof that the expectation value of two IR–regularized Wilson

lines, forming a certain hyperbolic angle in Minkowskian space–time, and the expectation

value of two IR–regularized Euclidean Wilson lines, forming a certain angle in Euclidean

four–space, are connected by an analytic continuation in the angular variables and in the

IR cutoff T . This result can be used to evaluate the IR–regularized high–energy scattering

amplitude directly in the Euclidean theory, as discussed in Sect. 2. The conclusions and

an outlook are given in Sect. 3.

2. From Minkowskian to Euclidean theory

Let us consider the following quantity, defined in Minkowskian space–time:

gM (p1, p2; T ; t) =
M(p1, p2; T ; t)

ZM (p1; T )ZM (p2; T )
,

M(p1, p2; T ; t) =

∫
d2~z⊥ei~q⊥·~z⊥〈[W (T )

p1 (zt)− 1]ij [W
(T )
p2 (0)− 1]kl〉 , (2.1)

where zt = (0, 0, ~z⊥) and q = (0, 0, ~q⊥), so that t = −~q2⊥ = q2. The Minkowskian four–

momenta p1 and p2 are arbitrary four–vectors lying in the longitudinal plane (x
0, x1) [so

that ~p1⊥ = ~p2⊥ = ~0⊥] and define the trajectories of the two IR–regularized Wilson lines
W
(T )
p1 and W

(T )
p2 :

W (T )
p1 (zt) ≡ T exp

[
−ig
∫ +T
−T

Aµ(zt +
p1
m
τ)
pµ1
m
dτ

]
;

W (T )
p2 (0) ≡ T exp

[
−ig
∫ +T
−T

Aµ(
p2
m
τ)
pµ2
m
dτ

]
. (2.2)

Aµ = A
a
µT
a and m is the quark pole mass. T is our IR cutoff.

ZM (p; T ) in Eq. (2.1) is defined as (Nc being the number of colours)

ZM (p; T ) ≡
1

Nc
〈Tr[W (T )

p (zt)]〉 =
1

Nc
〈Tr[W (T )

p (0)]〉 . (2.3)

(The last equality comes from the space–time translation invariance.) This is a sort of

Wilson–line’s renormalization constant: as shown in Ref. [4], ZM (p ;T → ∞) is the

– 4 –
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residue at the pole (i.e., for p2 → m2) of the unrenormalized quark propagator, in the

eikonal approximation.

In an analogous way, we can consider the following quantity, defined in Euclidean

four–space:

gE(p1E , p2E ; T ; t) =
E(p1E , p2E ; T ; t)

ZE(p1E ; T )ZE(p2E ; T )
,

E(p1E , p2E ; T ; t) =

∫
d2~z⊥ei~q⊥·~z⊥〈[W̃ (T )

p1E
(ztE)− 1]ij [W̃ (T )

p2E
(0) − 1]kl〉E , (2.4)

where ztE = (0, ~z⊥, 0) and qE = (0, ~q⊥, 0), so that: t = −~q2⊥ = −q2E. The expectation value
〈. . .〉E must be intended now as a functional integration with respect to the gauge variable
A
(E)
µ = A

(E)a
µ T a in the Euclidean theory. The Euclidean four–momenta p1E and p2E are

arbitrary four–vectors lying in the plane (x1, x4) [so that ~p1E⊥ = ~p2E⊥ = ~0⊥] and define
the trajectories of the two IR–regularized Euclidean Wilson lines W̃

(T )
p1E and W̃

(T )
p2E :

W̃ (T )
p1E
(ztE) ≡ T exp

[
−ig
∫ +T
−T

A(E)µ (ztE +
p1E
m

τ)
p1Eµ
m

dτ

]
;

W̃ (T )
p2E
(0) ≡ T exp

[
−ig
∫ +T
−T

A(E)µ (
p2E
m

τ)
p2Eµ

m
dτ

]
. (2.5)

ZE(pE ; T ) in Eq. (2.4) is defined analogously to ZM (p; T ) in Eq. (2.3):

ZE(pE ; T ) ≡
1

Nc
〈Tr[W̃ (T )

pE
(ztE)]〉E =

1

Nc
〈Tr[W̃ (T )

pE
(0)]〉E . (2.6)

(The last equality comes from the translation invariance in Euclidean four–space.)

Since we finally want to obtain the expression (1.2) of the scattering amplitude in the

c.m.s. of the two quarks, taking their initial trajectories along the x1–axis, we choose p1
and p2 to be the four–momenta of the two particles with mass m, moving with speed β

and −β along the x1–direction, i.e.,

p1 = E(1, β, 0, 0) ,

p2 = E(1,−β, 0, 0) , (2.7)

where E = m/
√
1− β2 (in units with c = 1) is the energy of each particle (so that:

s = 4E2). We now introduce the hyperbolic angle ψ [in the plane (x0, x1)] of the trajectory

of W
(T )
p1 : it is given by β = tanhψ. We can give the explicit form of the Minkowskian

four–vectors p1 and p2 in terms of the hyperbolic angle ψ:

p1 = m(coshψ, sinhψ, 0, 0) ,

p2 = m(coshψ,− sinhψ, 0, 0) . (2.8)

Clearly, p21 = p
2
2 = m

2 and

p1 · p2 = m2 cosh(2ψ) = m2 coshχ , (2.9)

– 5 –
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where χ = 2ψ is the hyperbolic angle [in the plane (x0, x1)] between the two trajectories

of W
(T )
p1 and W

(T )
p2 .

Analogously, in the Euclidean theory we choose a reference frame in which the spatial

vectors ~p1E and ~p2E = −~p1E are along the x1–direction and, moreover, p21E = p22E = m2;

that is:

p1E = m(sinφ, 0, 0, cos φ) ;

p2E = m(− sinφ, 0, 0, cos φ) , (2.10)

where φ is the angle formed by each trajectory with the x4–axis. The value of φ is between

0 and π/2, so that the angle θ = 2φ between the two Euclidean trajectories W̃
(T )
p1E and W̃

(T )
p2E

lies in the range [0, π]: it is always possible to make such a choice by virtue of the O(4)

symmetry of the Euclidean theory. From (2.10) we derive that:

p1E · p2E = m2 cos θ . (2.11)

[A short remark about the notation: we have denoted everywhere the scalar product by

a “·”, both in the Minkowskian and the Euclidean world. Of course, when A and B are
Minkowskian four–vectors, then A · B = AµBµ = A0B0 − ~A · ~B; while, if AE and BE are
Euclidean four–vectors, then AE ·BE = AEµBEµ = ~AE · ~BE +AE4BE4.]
It has been proved in Ref. [10] that, if we denote with M(χ; T ; t) the value of

M(p1, p2; T ; t) for p1 and p2 given by Eq. (2.8) and we also denote with E(θ; T ; t) the

value of E(p1E , p2E ; T ; t) for p1E and p2E given by Eq. (2.10), the following relation holds

(reminding that φ = θ/2 and ψ = χ/2):

E(θ; T ; t) =M(χ→ iθ; T → −iT ; t) . (2.12)

Let us consider, now, the Wilson–line’s renormalization constants ZM (p; T ) in the Min-

kowskian theory and ZE(pE ; T ) in the Euclidean theory, defined by Eqs. (2.3) and (2.6)

respectively.

From the definition (2.3), ZM (p; T ), considered as a function of a general four–vector

p, is a scalar function constructed with the only four–vector u ≡ p/m. In a perfectly

analogous way, from the definition (2.6) in the Euclidean case, ZE(pE ; T ), considered as

a function of a general Euclidean four–vector pE , is a scalar function constructed with the

only Euclidean four–vector uE ≡ pE/m. It has been proved in Ref. [10] that, if we denote
with ZW (T ) the value of ZM (p1; T ) or ZM (p2; T ) for p1 and p2 given by Eq. (2.8) and we

also denote with ZWE(T ) the value of ZE(p1E ; T ) or ZE(p2E ; T ) for p1E and p2E given

by Eq. (2.10), the following relation holds:

ZWE(T ) = ZW (−iT ) . (2.13)

Combining this identity with Eq. (2.12), we find that the Minkowskian and the Euclidean

amplitudes, defined by Eqs. (2.1) and (2.4), with p1 and p2 given by Eq. (2.8) and p1E
and p2E given by Eq. (2.10), i.e.,

gM (χ; T ; t) ≡
M(χ; T ; t)

[ZW (T )]2
, gE(θ; T ; t) ≡

E(θ; T ; t)

[ZWE(T )]2
, (2.14)

– 6 –
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are connected by the following relation [10]:

gE(θ; T ; t) = gM (χ→ iθ; T → −iT ; t) ;
or : gM (χ; T ; t) = gE(θ → −iχ; T → iT ; t) . (2.15)

The relation (2.15) of analytic continuation has been derived for a non–Abelian gauge

theory with gauge group SU(Nc). It is clear, however, from the derivation fully reported

in Ref. [10], that the same result is valid also for an Abelian gauge theory (QED).

Moreover, even if the result (2.15) has been explicitly derived for the case of the

quark–quark scattering, it is immediately generalized to the more generale case of the

parton–parton scattering, where each parton can be a quark, an antiquark or a gluon. In

fact, as explained in the Introduction, one simply has to use a proper Wilson line for each

parton: Wp(b), the Wilson string in the fundamental representation T
a, for a quark;W ∗

p (b),

the Wilson string in the complex conjugate representation T ′a = −T ∗a , for an antiquark;
and Vk(b), the Wilson string in the adjoint representation T (adj)a , for a gluon. The proof

leading to Eq. (2.15) is then repeated step by step, after properly modifying the definitions

(2.2) and (2.5) of the Wilson lines. [If the parton is a gluon, one must substitute the quark

mass m appearing in all previous formulae with an arbitrarily small mass µ→ 0. The IR
cutoff appears in all expressions in the form of the ratio T/µ for a gluon and T/m for a

quark/antiquark.]

The relation (2.15), originally derived in Ref. [10], completely generalizes the results

of Ref. [9], where we derived a relation of analytic continuation between the amplitudes

gM (χ; t) and gE(θ; t), in the Minkowskian and the Euclidean world, using infinite Wilson

lines, i.e., directly in the limit T →∞ and assuming that the amplitudes were independent
on T . In other words, we can claim that the results of Ref. [9] apply to the cutoff–

independent part of the amplitudes, while Eq. (2.15) is a relation of analytic continuation

between IR–regularized amplitudes at any T .

The result (2.15) can be used to evaluate the IR–regularized high–energy parton–

parton scattering amplitude directly in the Euclidean theory. In fact, the IR–regularized

high–energy scattering amplitude is given (e.g., for the case of the quark–quark scattering)

by

Tfi = 〈ψiα(p′1)ψkγ(p′2)|T̂ |ψjβ(p1)ψlδ(p2)〉 ∼s→∞−i · 2s · δαβδγδ · gM (χ→∞; T →∞; t) ,
(2.16)

where the quantity gM (χ; T ; t), defined by Eq. (2.1), is essentially a correlation function

of two IR–regularized Wilson lines forming a certain hyperbolic angle χ in Minkowskian

space–time. For deriving the dependence on s one exploits the fact that the hyperbolic

angle χ is a function of s. In fact, from s = 4E2, E = m/
√
1− β2, and β = tanh(χ/2) [see

Eqs. (2.7), (2.8) and (2.9)], one immediately finds that:

s = 2m2(coshχ+ 1) . (2.17)

Therefore, in the high–energy limit s → ∞ (or χ →∞, i.e., β → 1), the hyperbolic angle
χ is essentially equal to the logarithm of s/m2 (for a non–zero quark mass m):

χ ∼
s→∞ log

( s

m2

)
. (2.18)

– 7 –
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The quantity gM (χ; T ; t) is linked to the corresponding Euclidean quantity gE(θ; T ; t),

defined by Eq. (2.4), by the analytic continuation (2.15) in the angular variables and in the

IR cutoff T . Therefore, one can start by evaluating gE(θ; T ; t), which is essentially a cor-

relation function of two IR–regularized Wilson lines forming a certain angle θ in Euclidean

four–space, and then one can continue this quantity into Minkowskian space–time by ro-

tating the Euclidean angular variable clockwise, θ → −iχ, and the IR cutoff (Euclidean
proper time) anticlockwise, T → iT : in such a way one reconstructs the Minkowskian

quantity gM (χ; T ; t). As was pointed out in [16], one should note that a priori there is

an ambiguity in making such an analytic continuation, depending on the precise choice

of the path. This phenomenon does not appear when the Euclidean correlation function

gE(θ; T ; t) has only simple poles in the complex θ–plane, but in some cases the analyticity

structure can contain branch cuts in the complex plane, which must be taken into account:

we refer the reader to Ref. [16] for a full discussion about this point.

3. From Wilson lines to Wilson loops

We want to conclude by making a remark about the problem of the IR divergences which

appear in the high–energy scattering amplitudes.

A well–known feature of the parton–parton scattering amplitude is its IR divergence,

which, as we have already said in the Introduction, is typical of 3 + 1 dimensional gauge

theories and which, in our formulation, manifests itself in the IR singularity of the corre-

lation function of two Wilson lines when T →∞. In many cases these IR divergences can
be factorized out.

As suggested in Ref. [16], an alternative way to eliminate this cutoff dependence is

to consider an IR–finite physical quantity, like the scattering amplitude of two colourless

states in gauge theories, e.g., two qq̄ meson states. It was shown in Ref. [2] that the

high–energy meson–meson scattering amplitude can be approximately reconstructed by

first evaluating, in the eikonal approximation, the scattering amplitude of two qq̄ pairs,

of given transverse sizes ~R1⊥ and ~R2⊥ respectively, and then folding this amplitude with
two proper wave functions ω1(~R1⊥) and ω2(~R2⊥) describing the two interacting mesons. It
turns out that the high–energy scattering amplitude of two qq̄ pairs of transverse sizes ~R1⊥
and ~R2⊥, and impact–parameter distance ~z⊥, is governed by the correlation function of two
Wilson loops W1 and W2, which follow the classical straight lines for quark (antiquark)
trajectories [2, 13]:

W(T )1 (~z⊥, ~R1⊥) → X
µ
±1(τ) = z

µ
t +

pµ1
m
τ ± Rµ1t

2
;

W(T )2 (~0⊥, ~R2⊥) → Xµ±2(τ) =
pµ2
m
τ ± Rµ2t

2
, (3.1)

[where, as usual, zt = (0, 0, ~z⊥) and also R1t = (0, 0, ~R1⊥) and R2t = (0, 0, ~R2⊥)] and close
at proper times τ = ±T .
The same analytic continuation (2.15), that has been derived for the case of Wilson lines, is,

of course, expected to apply also to the Wilson–loop correlators: the proof can be repeated

– 8 –
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going essentially through the same steps (see Ref. [10]), after adapting the definitions

(2.2) and (2.5) from the case of Wilson lines to the case of Wilson loops. However, in

this case the cutoff dependence on T is expected to be removed together with the related

IR divergence which was present for the case of Wilson lines. As an example to illustrate

these considerations, let us consider the simple case of quenched QED. In this case, the

calculation of the correlator of the two Wilson loops given in Eq. (3.1) can be performed

explicitly and one finds the following result, in the Minkowskian space–time:

〈W(T )1 (~z⊥, ~R1⊥)W
(T )
2 (~0⊥, ~R2⊥)〉

〈W(T )1 (~z⊥, ~R1⊥)〉〈W
(T )
2 (

~0⊥, ~R2⊥)〉
'
T→∞

exp

[
−i4e2cotghχ

∫
d2~k⊥
(2π)2

e−i~k⊥·~z⊥
~k2⊥

sin(~k⊥ · ~R1⊥) sin(~k⊥ · ~R2⊥)
]
, (3.2)

where χ is, as usual, the hyperbolic angle between the two Wilson loops. The analogous

calculation in the Euclidean space gives the following result:

〈W̃(T )1E (~z⊥, ~R1⊥)W̃
(T )
2E (

~0⊥, ~R2⊥)〉E
〈W̃(T )1E (~z⊥, ~R1⊥)〉E〈W̃

(T )
2E (

~0⊥, ~R2⊥)〉E
'
T→∞

exp

[
−4e2cotgθ

∫
d2~k⊥
(2π)2

e−i~k⊥·~z⊥
~k2⊥

sin(~k⊥ · ~R1⊥) sin(~k⊥ · ~R2⊥)
]
, (3.3)

where θ is the angle between the two Euclidean Wilson loops. One can see explicitly that

the two quantities (3.2) and (3.3) are indeed IR finite (when T → ∞) and are connected
by the usual analytic continuation in the angular variables (χ→ iθ).

In our opinion, the high–energy scattering problem could be directly investigated on

the lattice using this Wilson–loop formulation. A further advantage of the Wilson–loop

formulation, which makes it suitable to be studied on the lattice, is that, contrary to the

Wilson–line formulation, it is manifestly gauge–invariant. (In the case of the parton–parton

scattering amplitude, gauge invariance can be restored, at least for the diffractive, i.e., no–

colour–exchange, part proportional to 〈Tr[Wp1(zt) − 1]Tr[Wp2(0) − 1]〉, by requiring that
the gauge transformations at both ends of the Wilson lines are the same [1, 7].)

A considerable progress is expected along this line in the near future.
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