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Abstract: We report a strong method to generate various equations which have Lax

representations on noncommutative (1 + 1) and (2 + 1)-dimensional spaces. The gener-

ated equations contain noncommutative integrable equations obtained by using bicomplex

method and by reductions of noncommutative anti-self-dual Yang-Mills equation. This

suggests that noncommutative Lax equations would be integrable.

1. Introduction

Non-Commutative (NC) gauge theory has been studied intensively for the last several years

and succeeded in revealing various aspects of the gauge theory in the presence of background

magnetic field [1]. The noncommutativity is characterized by the commutation relations

[xi, xj] = iθij, (1.1)

of the space-time coordinates, where θij are real constants. This commutation relation can

be extended to the associative ?-product

f ? g(x) ≡ exp
(
i

2
θij∂

(x′)
i ∂

(x′′)
j

)
f(x′)g(x′′)

∣∣∣
x′=x′′=x,

(1.2)

of functions f and g on the space-time, where ∂i ≡ ∂

∂xi
and ∂j ≡ ∂

∂xj
. The ?-product

reduces to the ordinary product in the limit θij → 0, which is called the commutative
limit. And this relation (1.1) looks like the canonical commutation relation in quantum

mechanics and leads to “space-space uncertainty relation”. Hence the singularity which

exists on commutative spaces could resolve on NC spaces. This is one of the distinguished

∗This talk is based on collaboration with Dr. Masashi Hamanaka (University of Tokyo,
Japan).
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features of NC theories and gives rise to various new physical objects. For example, even

when the gauge group is U(1), instanton solutions exist [2] because of the resolution of the

small instanton singularities of the complete instanton moduli space [3].

NC gauge theories are naively realized from ordinary commutative theories just by

replacing all products of the fields with the ?-product (1.2). In this context, NC theories

are considered to be a deformed theories from commutative ones and look very close to

commutative ones. Under the deformation, anti-self-dual Yang-Mills (ASDYM) equation

could be considered to preserve the integrability in the same sense as commutative case

[4]. On the other hand, with regard to typical integrable equations such as Kadomtsev-

Petviasfvili (KP) equation [5], the naive NC extension generally destroys the integrability.

There is known to be a method, bicomplex method, to yield NC integrable equations which

have many conserved quantities [6].

On the other hand, a NC extension method of wider class of integrable equations has

been discussed in [7]. The generated equations on NC spaces are expected to preserve their

integrability. And it is very easy to propose higher dimensional equations by the method.

In this paper, we will report the construction of NC equations by the method. All the

results here are consistent and we can expect that the NC equations would be integrable.

This paper is organized as follows. In Sec.2, we review a strong method to give rise

to NC Lax pairs and construct equations on NC (1 + 1) dimensions. Next we extend

the associated NC Lax pair for the NC KdV equation to (2 + 1) dimensions and propose

equations on NC (2 + 1) dimensions. In Sec.4, conclusion and discussion are given.

2. On Lax-Pair Generating Technique

On commutative spaces, Lax representations are common in many of known integrable

equations. In this section we briefly introduce how to find Lax representations on NC

spaces [7].

2.1 Lax-Pair Generating Technique and NC KdV equation

An integrable equation on commutative spaces which has the Lax representation can be

rewritten as the following equation

[L, T ] ≡ LT − TL = 0, (2.1)

where ∂t ≡ ∂
∂t
. This equation and the pair of operators (L, T ) are called the Lax equation

and the Lax pair, respectively. The NC version of the Lax equation (2.1), or the NC Lax

equation, is easily defined just by replacing the product of the operators L and T with the

?-product (1.2). Namely it is given by

[L, T ]? ≡ L ? T − T ? L = 0. (2.2)

The modification of the product makes the ordinary coordinate “noncommutative,” which

means

[xi, xj ]? = x
i ? xj − xj ? xi = iθij. (2.3)

– 2 –
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In this paper, we shall look for NC Lax pairs whose the operators L are differential

operators. In order to make this study systematic, we set up the following problem :

Problem : For a given operator L, find the corresponding operator T

which satisfies the NC Lax equation (2.2).

It is in general very difficult to solve the problem. However if we put an ansatz on the

operator T , then we can get the answer for wide class of the Lax pair including NC case.

The ansatz for the operator T is of the following type:

Ansatz for the operator T :

T = ∂ni L+ T
′ + ∂t, (2.4)

where n = 1, 2, · · · .

Then the problem for an associated operator T reduces to that for an unknown operator

T ′. This ansatz is very simple, however, very strong to determine the unknown operator
T ′, which is called Lax-pair generating technique in this paper.

In order to explain it more concretely, let us consider in detail the Korteweg-de Vries

(KdV) equation on (1 + 1) dimensional NC spaces, referred as the NC KdV equation [8].

In this section the noncommutativity relation is defined by [t, x] = iθ. The operator L is

given by

LKdV = ∂
2
x + u(t, x). (2.5)

The ansatz for the operator T is given by

TKdV = ∂xLKdV + T
′
KdV + ∂t, (2.6)

which is the case for n = 1 and ∂i = ∂x in the general ansatz (2.4). Here is

∂xLKdV = ∂
3
x + u∂x + ux. (2.7)

The ansatz (2.4) is very simple and, however, becomes very strong. Let us show the power

of it.

The NC Lax equation (2.2) gives an equation for the unknown operator T ′KdV

[LKdV, TKdV]? = −ux∂2x − (ut + ux ? u) + [LKdV, T ′KdV]? = 0, (2.8)

where ux ≡ ∂u
∂x
and so on. Here we want to delete the term ux∂

2
x in the RHS of (2.8) so

that this equation finally reduces to a differential equation. Therefore the operator T ′KdV
could be taken as

T ′KdV = A∂x +B, (2.9)

– 3 –
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where A and B are polynomials of u, ut, ux, uxx etc. Hence equation (2.8) becomes

[LNEW, T
′
NEW]? = 2Ax∂

2
x+

(
Axx + [u, A]? + 2Bx

)
∂x

−
(
A ? ux −Bxx − [u, B]?

)
. (2.10)

Now one can obtain A, B and C of the unknown operator T ′KdV (2.9) from equation (2.8)
as follows. The coefficients of ∂2x and ∂x give, respectively,

A =
1

2
u, B = −1

4
ux, (2.11)

where two integral constants can be taken zero without loss of generality1 [7]. So we get

the operator TKdV

TKdV = ∂
3
x +
3

2
u∂x +

3

4
ux. (2.12)

Then the NC Lax equation (2.2) reads the NC KdV equation

ut +
1

4
uxxx +

3

4
(u ? u)x = 0, (2.13)

which was derived in [8].

We have reviewed the Lax-Pair Generating Technique taking the NC KdV equation

as an example. The KdV hierarchy on NC spaces can be also constructed by the method.

Next let us show that.

2.2 NC KdV hierarchy –NC 5th-KdV equation–

In this subsection we shall propose the KdV hierarchy on NC spaces. The operator L is

LKdV-h = LKdV, and the ansatz (2.4) is the following

TKdV-h = ∂
2n−1
x LKdV-h + T

′
KdV-h + ∂t. (2.14)

Then the NC Lax equation (2.2) gives the (2n+1)th-KdV equation on NC spaces, namely

NC KdV hierarchy. We report lower two equations of the NC KdV hierarchy as follows.

• For n = 1, the NC Lax equation (2.2) gives the NC (3th-)KdV equation (2.13).

• For n = 2, the NC Lax equation (2.2) gives the NC 5th-KdV equation. The NC Lax
pair is given by

L5th = LKdV and T5th = ∂
3
xL5th + T

′
5th + ∂t, (2.15)

1We will always take integral constants zero in this paper.

– 4 –
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where

∂3xL5th = ∂
5
x + u∂

3
x + 3ux∂

2
x + 3uxx∂x + uxxx. (2.16)

Then the NC Lax equation (2.2) gives an operator T ′5th

T ′5th =
3

2
u∂3x +

3

4
ux∂

2
x+

(
1

2
uxx +

15

8
u ? u

)
∂x

−
(
1

4
uxxx − 15

16
(u ? u)x − 1

8
[u, ux]?

)
, (2.17)

and the NC 5th-KdV equation

ut +
1

4
uxxxxx +

1

16
(u ? u)xx +

1

2
u ? uxxx − 15

8
u ? ux ? u+

1

8
[u, uxxx]?

−13
16

[
u, [u, ux]?

]
?

= 0. (2.18)

• For n ≥ 3, we can obtain the NC KdV hierarchy (7th, 9th, · · · ), similarly.

We can generate many other NC Lax pairs in the same method and construct NC

(1 + 1) dimensional equations2. The NC modified KdV equation can be also constructed

[7].

On commutative case, it is widely known that the strong and useful method reported

here can be applied to find more wider class of the Lax pairs in higher dimensions [9]. Next

we will reported extensions of this method to higher dimensions on NC case.

3. Extensions to higher dimensions

On commutative spaces, the Lax pair plays a key role in studying higher dimensional

integrable equations from lower dimensional integrable equations. That is, we can generate

wide class of Lax pairs including higher dimensional integrable equations [9]. For example

L = LKdV + ∂y, (3.1)

gives rise to the KP equation for u = u(t, x, y) with an additional spacial coordinate y,

respectively by the same ansatz (2.6) for T . If we take L = LKdV and the ansatz for

∂i = ∂z, that is,

T = ∂zLKdV + T
′ + ∂t, (3.2)

then we get the Bogoyavlenskii-Calogero-Schiff (BCS) equation for u = u(t, x, z) with an

additional spacial coordinate z [10]. The KP and BCS equations are of (2+1) dimensional

2See Appendix. We will display our results there.
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KdV equations. Good news here is that this method is also applicable to other soliton

equations [11].

In this section we shall present three results on NC case by using the Lax-pair gener-

ating technique as same as (1 + 1) dimensions. We focus on three extensions of the NC

Lax pair for the NC KdV equation (2.13) to (2 + 1) dimensions . In this section, let us

suppose that the noncommutativity should be introduced only in the spacial directions.

3.1 NC KP equation

The noncommutativity relation here is defined by [x, y] = iθ. Taking the operator L

LKP = ∂
2
x + u(t, x, y) + ∂y ≡ L̃KP + ∂y, (3.3)

and the ansatz for the operator T (for ∂i = ∂x):

TKP = ∂xL̃KP + T
′
KP + ∂t, (3.4)

as the Lax pair for the NC KP equation, the NC Lax equation (2.2) reads

[LKP, TKP]? = −ux∂2x + uy∂x − (ut − uxy + ux ? u) + [LKP, T ′KP]? = 0. (3.5)

Then we find

T ′KP =
1

2
u∂x − 1

4
ux − 3

4
∂−1x uy, (3.6)

and the NC KP equation [12]

ut +
1

4
uxxx +

3

4
(u ? u)x +

3

4
∂−1x uyy +

3

4
[u, ∂−1x uy]? = 0, (3.7)

where ∂−1x f(x) :=
∫ x
dx′f(x′). There is seen to be a nontrivial deformed term [u, ∂−1x uy]?

in the equation (3.7), which vanishes in the commutative limit. In [12] the multi-soliton

solution was found by the first order to small θ expansion, which suggested that this

equation would be considered as an integrable equation. And the NC KP hierarchy can

be constructed. However they have many terms. So we do not display explicitly. The NC

modified KP equation can be also derived [7].

3.2 NC BCS equation

The noncommutativity relation here is defined by [x, z] = iθ. We take the operator L

LBCS = ∂
2
x + u(t, x, z), (3.8)

and the ansatz for the operator T (for ∂i = ∂z)

TBCS = ∂zLBCS + T
′
BCS + ∂t, (3.9)

where

∂zLBCS = ∂
2
x∂z + u∂z + uz. (3.10)

– 6 –
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Then the NC Lax equation (2.2) yields

[LBCS, TBCS]? = −uz∂2x − (ut + uz ? u) + [LBCS, T ′BCS]? = 0. (3.11)

After calculation, we find

T ′BCS =
1

2
(∂−1x uz)∂x −

1

4
uz − 1

4
∂−1x

(
[u, ∂−1x uz]?

)
, (3.12)

and obtain a new NC equation

ut +
1

4
uxxz +

1

2
(u ? u)z +

1

4

(
u ? (∂−1x uz) + (∂

−1
x uz) ? u

)
x

+
1

4

[
u, ∂−1x

(
[u, ∂−1x uz]?

)]
?

= 0, (3.13)

which is called here the NC BCS equation. Note that a non-trivial term ∂−1x

(
[u, ∂−1x uz]?

)
is found even in the operator T . And the NC BCS hierarchy can be constructed. However

they have many terms. So we do not display explicitly.

3.3 NC extended BCS equation

NC KdV (2.13) (x, t) - NC KP (3.7) (x, y, t)

?

(3.2) (z)

?

(3.1)

(y)

NC BS (3.13) (x, z, t) - New (x, y, z, t)

Figure 1: There are two directional routes of the extensions for the Lax pair. One leads us to

the NC KP equation with an additional spacial coordinate y and the other does to the NC BCS

equation with an additional spacial coordinate z. By the combination of the extensions, ”NEW”

equation seems to be possible a NC equation in (3 + 1) dimensions.

On commutative case, it is known that (2+1) dimensional integrable equations is given

by combinating the extension (3.1) with the extension (3.2) [13, 14, 15]. We would like to

study here the combination on NC case. In this subsection, [x, y] = iθ1 and [x, z] = iθ2
give the noncommutativity. Figure 1 means the schemes of the dimensional extension of

the NC KdV equation to (2 + 1) dimensions. Here we take the operator L as

LNEW = ∂
2
x + u(t, x, y, z) + ∂y ≡ L̃NEW + ∂y. (3.14)

– 7 –
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And by the ansatz (2.4), an associated operator T is taken as

TNEW = ∂zL̃NEW + T
′
NEW + ∂t, (3.15)

where

∂zL̃NEW = ∂
2
x∂z + u∂z + uz. (3.16)

The operators LNEW and TNEW seem to give an equation in (3 + 1) dimensions. However

(3 + 1) dimensions have to reduce to (2 + 1) dimensions as we shall see soon. The NC Lax

equation (2.2) for the operators LNEW and TNEW reads

[LNEW, TNEW]? = −uz∂2x + uy∂z − (ut − uyz + uz ? u) + [LNEW, T ′NEW]? = 0. (3.17)

Now the operator T ′ could be taken as

T ′NEW = A∂
2
z +B∂x + C, (3.18)

where A, B and C are polynomials of u, ux, uxy, etc. Then we get

[LNEW, T
′
NEW]? = 2Ax∂x∂

2
z + 2Bx∂

2
x+

(
Axx +Ay + [u, A]?

)
∂2z

+

(
Bxx +By + [u, B]? + 2Cx

)
∂x − 2A ? uz∂z

−
(
A ? uzz +B ? ux − Cxx − Cy − [u, C]?

)
. (3.19)

By the relations (3.17) and (3.19), we can obtain A, B and C as follows. The coefficients

of ∂x∂
2
z , ∂

2
x, ∂

2
z and ∂x give, respectively,

A = α, B =
1

2
∂−1x uz and C = −

(
1

2
uz +

1

4
∂−2x uyz +

1

2
∂−1x [u, ∂

−1
x uz]?

)
, (3.20)

where α is an arbitrary constant. And then the coefficient of ∂z yields

uy = 2αuz , (3.21)

that is,

y =
1

2α
z. (3.22)

This relation (3.22) means (3 + 1) dimensions reduce to (2 + 1) dimensions. Now the field

u is a function of three coordinates t, x and z. So the unknown operator T ′NEW is expressed
as

T ′NEW = α∂
2
z +
1

2
(∂−1x uz)∂x−

(
1

4
uz +

α

2
∂−2x uzz +

1

2
∂−1x [u, ∂

−1
x uz]?

)
. (3.23)

– 8 –
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Therefor we propose a new equation on NC spaces

ut +
1

4
uxxz + u ? uz +

1

2
ux ? (∂

−1
x uz) + α

2∂−2x uzzz + ∂
−1
x

(
[u, ∂−1uz]?

)
z

+
1

2

[
u, uz + α∂

−2
x uzz + ∂

−1
x [u, ∂

−1
x uz]?

]
?

= 0. (3.24)

In the commutative limit, equation (3.24) reads the extended BCS equation, which has

soliton solutions [13]. So we refer to equation (3.24) as the NC extended BCS equation.

All of the NC integrable equations derived from bicomplex method are also obtained by

our method. Bicomplex method guarantees the existence of the many conserved topological

quantities. These results suggest that NC equations presented in his paper would possess

the integrability.

4. Conclusion and Discussion

A natural problem in the integrable systems is whether we can find new higher dimensional

integrable equations from already known (1 + 1) dimensional integrable ones. On commu-

tative spaces, it is well known that the Lax representation is a powerful tool to do so. In

the present paper, we derived (1+1) and (2+1) dimensional equations on NC spaces using

a powerful method or Lax-Pair Generating Technique to find the NC Lax pairs. There are

expected to be integrable. The simple, but mysterious, ansatz (2.4) plays an important

role and actually gives rise to various new NC Lax pairs.

Let us note here about reduction of ASDYM equation on NC spaces. In commutative

case, it is widely known that many of integrable equations could be derived from symmetry

reduction of (2 + 2) dimensional ASDYM equation, which is first conjectured by R.Ward

[16]. And it is also known that ASDYM equation on NC spaces is given integrable equations

on NC spaces [7, 17].

Now there would be mainly three methods to gives NC integrable equations

• Lax-pair generating technique,
• Bicomplex method,
• Reduction of ASDYM equation on NC spaces.

An interesting point is that all the results are consistent at least for the known Lax pairs,

which suggests the existence and the uniqueness of NC deformations of integrable equations

which preserve the integrability.

Though we can get many new NC Lax pairs, there need to be more discussions so that

such study should be fruitful as integrable systems. First, we have to clarify whether the

– 9 –
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NC Lax pairs are really good equations in the sense of integrability, that is, the existence of

many conserved quantities, of multi-soliton solutions and so on. All of the previous studies

including our works strongly suggest that this would be true. Second, we have to reveal

the physical meaning of such equations. If such integrable theories can be embedded in

string theory, there would be fruitful interaction between the both theories, just as between

ASDYM equation on NC spaces and D0-D4 brane system (in the background of NS-NS B

field).

It has been shown in this paper that the Lax-Pair Generating Technique is also a very

powerful tool for introducing higher dimensional equations, which we believe integrable.

We believe that any higher dimensional integrable equations on Commutative spaces and

Non-commutative ones can be obtained from several lower dimensional integrable ones by

extending the Lax pairs to higher dimensions. We have a dream such as constructing (3+1)

dimensional integrable equations on Commutative spaces and Non-commutative ones (if

there exist). Further study on this topic is continued.

Acknowledgments

The author would like to express his sincere thanks to Dr. M. Hamanaka for collaboration,

and the Organisers for the hospitality and financial support during ”Workshop on Integrable

Field Theories, Solitons and Duality”. Many fruitful discussions with Prof. T. Inami, Prof.

T. Koikawa, Prof. M. Omote, Prof. S. Saito, Dr. T. Tsuchida and Dr. Yu Song-JU are

also acknowledged. Finally he also thanks the Yukawa Institute for Theoretical Physics at

Kyoto Univ. for useful Discussions to complete this work during the YITP workshop YITP-

W-02-04 on ”QFT2002” and YITP-W-02-16 on ”Development of Superstring Theory”.

A. Some results in (1 + 1) dimensions

In this Appendix, we will propose some results for u = u(t, x) in (1 + 1) dimensions by

the Lax-Pair Generating Technique. The noncommutativity relation here is defined by

[t, x] = iθ.

A.1 NC Burgers equation

The Lax pair is given by

L = ∂x + u, (A.1)

and

T = ∂2x + 2u∂x + (α+ 1)ux + βu
2 + ∂t. (A.2)

Then the NC Lax equation (2.2) gives the NC Burgers equation

ut − αuxx + (1− α− β)u ? ux + (1 + α− β)ux ? u = 0, (A.3)

where α and β are arbitrary constants. In the commutative limit, equation (A.3) is reduced

to the Burgers equation [18]. Equation (A.3) and exact solutions will be reported in [19].

– 10 –
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A.2 NC shallow water-wave equation

The Lax pair is given by

L = ∂2x + u, (A.4)

and

T = ∂2x∂t + (u+ 1)∂t +
1

2
(∂−1x ut)∂x +

3

4
ut − 1

4
∂−1x

(
[u, ∂−1x ut]?

)
. (A.5)

Then the NC Lax equation (2.2) gives a NC equation

ut +
1

4
uxxt +

1

2
(u ? u)t +

1

4

(
u ? (∂−1x ut) + (∂

−1
x ut) ? u

)
x

+
1

4

[
u, ∂−1x

(
[u, ∂−1x ut]?

)]
?

= 0. (A.6)

In the commutative limit, equation (A.6) is reduced to the Shallow Water-Wave equation

[20]. Hence we would like to call equation (A.6) NC Shallow Water-Wave equation.

A.3 NC Boussinesq equation

The Lax pair is given by

L = ∂3x +
3

2
u∂x +

3

4
ux − 3

4
∂−1x ut, (A.7)

and

T = ∂2x + u+ ∂t. (A.8)

Then the NC Lax equation (2.2) gives a NC equation

utt +

(
[u, ∂−1x ut]?

)
x

+ (u ? u)xx +
1

3
uxxxx = 0. (A.9)

In the commutative limit, equation (A.9) is reduced to the two directional KdV or
Boussinesq equation [21]. Hence we would like to call equation (A.9) NC Boussinesq
equation.
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“noncommutative instantons via dressing and splitting approaches,” hep-th/0211041.

[5] B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Doklady 15 (1970) 539.

[6] A. Dimakis and F. Muller-Hoissen, J. Phys. A 33 (2000) 957 [math-ph/9908015]; Int. J.

Mod. Phys. B 14 (2000) 2455 [hep-th/0006005]; J. Phys. A 33 (2000) 6579

[nlin.si/0006029]; “A noncommutative version of the nonlinear Schroedinger equation,”

hep-th/0007015; J. Phys. A 34 (2001) 9163 [nlin.si/0104071]; M. T. Grisaru and S.

Penati, “The noncommutative sine-Gordon system,” hep-th/0112246.

[7] M. Hamanaka and K. Toda, “Towards Non-commutative Integrable Systems,”

hep-th/0211148.

[8] A. Dimakis and F. Muller-Hoissen, “Non-commutative Korteweg-de-Vries equation,”

hep-th/0007074.

[9] K. Toda and S-J. Yu, Inverse Problems 17 (2001) 1053; J. Nonlinear Math. Phys. Suppl.

8 (2001) 272 and references therein.

[10] O. I. Bogoyavlenskii, Math. USSR Izv. 34 (1990) 245; F. Calogero, Lett. Nuovo Cim. 14

(1975) 443. J. Schiff, “Integrability of Chern-Simons-Higgs vortex equations and a reduction

of the selfdual Yang-Mills equations to three-dimensions,” Presented at NATO Adv. Res.
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