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Abstract: We summarize the contents of the talk presented at the Workshop on Inte-

grable Theories, Solitons and Duality. A central theme in this lecture was the critical

properties of the integrable Sp(2N) lattice model and its applications to the physics of

the spin-orbital chains and intersecting loop models

The theory of quantum one-dimensional integrable models has turned out to be a fruit-

ful venture since the solution of the Heisenberg model by the Bethe ansatz [1]. One of the

central quantities of quantum integrability is the S-matrix which describes the factorized

scattering of particles of (1+1) quantum field theories and also the statistical weights of

integrable two-dimensional lattice models. Of particular interest are the scattering am-

plitudes preserving bilinear antisymmetric metrics typical of systems with N component

Dirac fermions invariant by the Sp(2N) symmetry. More specifically, the scattering weight

Scdab(λ) of this theory [2] is given by

Scdab(λ) = δa,dδc,b + λδa,cδb,d +
λ

λ+N + 1
εaεcδa,b̄δc,d̄ (1)

where ā = 2N + 1 − a, εa = 1 for 1 ≤ a ≤ N and εa = −1 for N + 1 ≤ a ≤ 2N . The
variable λ denotes the two-particle scattering rapidity.

Although the exact solution of the above system has long been known [3] only recently

the physical content of this model such as the nature of the low-energy behavior of the

ground state and excitations have been unveiled. In general, integrable systems derivable

from fundamental S-matrices such as (1) are expected to be massless and their critical

behaviour is believed to be described in terms of the properties of a Wess-Zumino-Witten

field theory on the respective group [4]. Here, however, we have very different situation and

the criticality of model (1) is governed by the product of N c=1 conformal field theories

which is certainly distinct from the one governed by the Sp(2N) Wess-Zumino-Witten
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theory. The excitations consist of N elementary spinons and N − 1 composite excitations
made by special convolutions between the spinons. The first N−1 excitations behave much
like that of generalized SU(N) spinons while the Nth mode turns out to be a standard s =

1/2 spinon. It should be emphasized that the c = 1 theories are not independent from each

other because one expects the manifestation of the Sp(2N) symmetry in the continuum.

The results for the lowest excitations lead us to conjecture that the additional constraints

on the operator content should follow the rules of the canonical reduction procedure of

Sp(2N). We also remark that though the excitations possess linear dispersion relation

their sound velocities are not all the same and consequently the underlying continuum

theory is not Lorentz invariant. This briefly summarize the main results and the technical

details omitted in the text can be found in ref.[5].

The results discussed above have at least two immediate applications. The first one is

related to the process of surface diffusion which may be described by repeated scattering

of mobile particles by impurities. This problem may be modeled assuming that the lattice

sites are occupied by randomly placed scatterers and that the particle move along the

lattice bonds [6]. In the two-dimensional square lattice the simplest non-trivial scattering

rules one can think of is that the particle, arriving on a node, can be scattered to the left, to

the right or pass freely in the case of absence of a scatterer. For instance, the scatterers can

be viewed as double-sided mirrors allowing right-angle reflections when placed along the

diagonals of the square lattice. Note that the presence of empty sites implies intersections

between trajectories configurations making this loop model very interesting. Considering

periodic boundary conditions each particle follows a closed path and if for every closed

loop we assign a fugacity q, then the partition function Z of the system can be written as

Z =
∑

scatter configurations

wnaa w
nb
b w

nc
c q
#paths (2)

where na,nb and nc are the number of weights wa, wb and wc appearing in a given config-

uration of left mirrors, right mirrors and empty sites, respectively.

The important point here is that the amplitudes (1) realize the scattering rules men-

tioned above providing us a theoretical framework to study the corresponding diffusive

behavior. In fact the weights wi are in one-to-one correspondence with the operators that

generate the scattering amplitudes Scdab(λ). More precisely, the partition function of the

statistical mechanics vertex model associate to the amplitudes (1) has exactly the form (2)

where

wa = 1, wb =
λ

λ+N + 1
, wc = λ, q = −2N (3)

As a consequence of this mapping one can compute exactly the exponent that governs

the probability that two distant sites are visited by the same trajectory. This is the so called

fractal dimension of the path df = 2 − 2h where h is the conformal dimension associated
to a spin-wave (spinon) excitation in the Sp(2N) model. This identification together with

the conformal content of the Sp(2N) model described above lead us to predict that

df = (8−N)/4 (4)
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This result can easily be tested for N = 1. In this case we can rely on the global

isomorphism Sp(2) ∼ SU(2) in order to see that the amplitudes (1) coincide with that of
the isotropic six-vertex model. This system can be related to percolation clusters of a bond

percolation problem and the exponent governing the scaling of single paths is expected to

be df = 7/4 [7] which agrees with our result (4).

Next, our results turn out also to be of utility to one-dimensional systems with coupled

spin and orbital degrees of freedom such as the spin-orbital models [8, 9]. We recall that

the effective spin-isospin Hamiltonian describing these systems may be written in the form

HSO(J0, J1, J2) =

L∑

i=1

2∑

α=0

JαP
(α)
i,i+1 (5)

where Jα are superexchange constants and P
(α)
i,i+1 denote the respective projections on the

singlet, triplet and doublet spin-isospin states in a four dimensional Hilbert space. It is not

difficult to write such projectors in terms of two commuting sets of Pauli matrices leading

us to identify the integrable Sp(4) model with the point J0/J1 = J0/J2 = 1/3.

The interesting feature is that while the spin degrees of freedom are indeed SU(2)

symmetric, the orbital variables possess only U(1) invariance and the system altogether is

both asymmetric and anisotropic in the Heisenberg couplings. It turns out that models

of this sort have been proposed to explain peculiar properties of certain compounds such

as NaV2O5 [10]. The excitations we predicted for the Sp(4) model consist of two spinons

and one additional spinless composite mode representing an extra “charge” excitation. We

also note that one of the spinons travels with different velocity than the composite s = 0

excitation which makes it possible the phenomena of spin-charge separation. Remarkably,

this scenario is in qualitative aggrement with experiments performed in this material [11].

These results suggest the Sp(4) model can be used as a test case to check the reliability

of non-perturbative methods for more general values of the Heisenberg coupling constants.

This study also indicates that the nature of the excitations in spin-orbital systems can be

rather involving. In fact, the isotropic point J0 = J1 = J2 is known to have three basic

excitations [12] and it is the lattice realization of a SU(4) Wess-Zumino-Witten field theory

which has c = 3. On the other hand the anisotropic point J0/J1 = J0/J2 = 1/3 has only

two independent excitations and one composite mode that do not contribute to the low-

energy limit and the total central charge is now c = 2. A natural question one would like to

make is: what is the nature of the excitations of the spin-orbital model (5) in the crossover

regime 1/3 ≤ J0/J1 = J0/J2 ≤ 1?. The other one concerns with the mechanism that made
one of the excitations to become a composite state. Preliminary numerical results suggest

that in the above region all the excitations are gapless leading us to conjecture that the

composite mode should be a goldstone excitation responsible by the crossover c = 3 to

c = 2.

Finally, this work prompts us to ask a question that may open up new interesting

avenues in integrable models. Namely, what is the integrable lattice Sp(2N) model whose

continuum limit corresponds to the Sp(2N) Wess-Zumino-Witten theory?. The answer to

this question has eluded us so far.
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