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Abstract: The level-crossing probability, local and global adiabaticity conditions are

discussed for 2-flavour neutrino oscillations in matter with arbitrary mixing angles ϑ.

Different approximations for the survival probability of supernova neutrinos are compared.

Results of a combined likelihood analysis of the observed SN 1987A neutrino signal and of

the latest solar neutrino data including the recent SNO CC measurement are presented.

1. Neutrino evolution: resonance and adiabaticity conditions, maximal

violation of adiabaticity

We consider neutrino oscillations in a two flavour scenario and label the heavier neutrino

mass eigenstate with “2”. Then ∆ = m22 −m21 is positive and the vacuum mixing angle ϑ
is in the range [0:π/2]. As starting point for our discussion, we use the evolution equation

for the medium states ψ̃ [1]

d

dϑm

(
ψ̃1
ψ̃2

)
=

(
i ∆m4Eϑ′m

−1
1 −i ∆m4Eϑ′m

)(
ψ̃1
ψ̃2

)
, (1.1)

where ∆m = {(A−∆cos 2ϑ)2+(∆ sin 2ϑ)2}1/2 denotes the difference between the effective
masses of the two (active) neutrino states in matter, E is their energy and A = 2EV =

2
√
2GFNeE is the induced mass squared for the electron neutrino. Furthermore, ϑm is the

mixing angle in matter and ϑ′m = dϑm/dr. Since anti-neutrinos feel a potential V with
the opposite sign than neutrinos, formulae derived below for neutrinos become valid for

anti-neutrinos after the substitution ϑ→ π/2− ϑ.
The traditional condition for an adiabatic evolution of a neutrino state along a certain

trajectory is that the diagonal entries of the Hamiltonian in Eq. (1.1) are large with respect

to the non-diagonal ones, |∆m| � |4Eϑ′m|. This condition measures indeed how strong
adiabaticity is locally violated. Therefore, the point of maximal violation of adiabaticity

(PMVA) is given by the minimum of ∆m/ϑ
′
m. In the following, we will concentrate on
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Figure 1: Change of the survival probability dp(r)/dr of a neutrino produced at r = 0 as ν̃2
together with the point of maximal violation of adiabaticity (dot) and the resonance point (star)

for a power law profile A ∝ r−3. The height of the different curves is rescaled.

power-law like potential profiles, A ∝ rn. This type of profile does not only contain the

case n ≈ −3 typical for supernova envelopes, but also the exponential profile of the sun in
the limit n → ±∞. Moreover, it allows discussing which features of neutrino oscillations
are generic and which ones are specific for the linear profile n = 1 usually discussed. For

A(r) ∝ rn, the minimum of ∆m/ϑ′m is at
cot(2ϑm − 2ϑ) + 2 cot(2ϑm) (1.2)

− 1
n
[cot(2ϑm − 2ϑ)− cot(2ϑm)] = 0 .

For n = 1, the PMVA is indeed at ϑm = π/4 for all ϑ. Thus, in the region where the

resonance point ϑm = π/4 is well-defined, they coincide. In the general case, n 6= 1, the
PMVA agrees however only for ϑ = 0 with the resonance point.

In Fig. 1, we show the the change of the survival probability, dp(r)/dr = d|ψ̃2(r)|2/dr
for a neutrino produced at r = 0 as ν̃2, together with the PMVA predicted by Eq. (1.2) and

the resonance point for a power law profile A ∝ r−3. The resonance condition predicts a
transition in lower-density regions than the PMVA, until for ϑ = π/4 the resonance point

reaches r =∞ and the concept of a resonant transition breaks down completely. Moreover,
the crossing probability becomes less and less localized near the PMVA for larger mixing

angles ϑ.

Let us now discuss the condition for the adiabatic evolution of a neutrino state along

a trajectory from the core of a star to the vacuum. While the condition |∆m| � |4Eϑ′m|
indicates whether adiabaticity is locally violated, we need now a global criterion that mea-

sures the cumulative non-adiabatic effects along the trajectory from ϑm ≈ π/2 to ϑ. For a
non-adiabatic evolution of the neutrino state we require that∣∣∣∣

∫ ϑ
π/2
dϑm ψ̃1

∣∣∣∣ = ε
∣∣∣∣
∫ ϑ
π/2
dϑm

4Eϑ′m
∆m

ψ̃2

∣∣∣∣ (1.3)
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Figure 2: Contours of constant anti-neutrino survival probability (dashed) together with the

borderline Eq. (1.4) between adiabatic and non-adiabatic regions using Eq. (1.5) with n = −3
(solid) and n → ±∞ (dash-dotted) in f(ϑ) for the SN profile given in the text; the dotted line
shows the borderline for neutrinos.

with ε� 1. Then the border between the adiabatic and non-adiabatic regions is given by

∆

E
=

{
ε

f(ϑ)

sin2(2ϑ)(1 − sinϑ)
2n(2V0)

1/n

R0

} n
n+1

, (1.4)

with

f(ϑ) = |
∫ ϑ
π/2
dϑm sinϑm [sin(2ϑm)]

2+1/n

× [sin(2ϑm − 2ϑ)]1−1/n | . (1.5)

Fig. 2 shows the excellent agreement between our prediction for the border between the

non-adiabatic and adiabatic regions for anti-neutrinos with energy E = 20 MeV and a

profile typical for supernova envelopes, V (r) = 1.5 × 10−9 eV (109 cm/r)3, and the one
following from the contours of constant survival probability Pee (dashed lines) of the neu-

trino eigenstate ν̃2 obtained by solving the Schrödinger equation (1.1). A comparison of

the solid (n = −3) and the dash-dotted line (n→ ±∞) shows moreover that f(ϑ) depends
only weakly on n.

2. The crossing probability in the WKB formalism

The leading term to the crossing probability PLSZ within the WKB formalism is in the

ultra-relativistic limit and omitting an overall phase given by

lnPLSZ = − 1
E
=
∫ x2(A2)
x1(A1)

dx∆m , (2.1)
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where A2 = ±∆e2iϑ are the branch points of ∆m in the complex x plane and and x2 can
be chosen arbitrarily either on the positive or negative real x axis. The usual choice, A1 =

∆C, allows to express lnPLSZ as the product of the adiabaticity parameter γ evaluated

at the resonance point and a correction function Fn [2] that can be represented as a
hypergeometric function 2F1 [3].

Another representation for the crossing probability which is valid for all ϑ uses as

integration path in the complex x plane the part of a circle of radius ∆ centred at zero and

starting from A1 = ∆ and ending at A2 = ∆e
2iϑ. For A = A0(r/R0)

n, one can factor out

the ϑ dependence of PLSZ into functions Gn [3],

lnPLSZ = −κnGn(ϑ) , (2.2)

where

κn =

(
∆

E

) (
∆

A0

)1/n
R0 (2.3)

is independent of ϑ and

Gn(ϑ) =
∣∣∣∣∣ <
∫ 2ϑ/n
0

dϕ eiϕ
[(
einϕ − C)2 + S]1/2

∣∣∣∣∣ (2.4)

with C = cos 2ϑ and S = sin 2ϑ.

3. Neutrino oscillations in supernova envelopes

In the analysis of neutrino oscillations, the potential profile A(r) of supernova (SN) en-

velopes is often approximated by a power law with n ≈ −3, and V (r) = 1.5 × 10−9 eV
(109 cm/r)3. A comparison of the results of a numerical solution of the Schrödinger equa-

tion (1.1) with the analytical calculation of Pēē using the G−3 functions shows very good
agreement for this profile; only tiny deviations in the region ∆/(2E) ∼ 10−17 eV have
been found in [4]. By contrast, all other approximations used hitherto in the literature

fail in some part of the tan2 ϑ–∆ plane: while the use of F1 = 1 together with A ∝ r−3

describes correctly the crossing probability for small mixing in the resonant region, the

errors become larger for larger mixing until this approximation fails completely in the non-

resonant region. The correction function F∞ used for n = −3 describes quite accurately
the most interesting region of large mixing as well as the non-resonant region, but does not

reproduce the correct shape of the MSW triangle.

More important is however to check how strong deviations of the true SN progenitor

profile V (r) from a power-law profile may affect the analytical results. Realistic progenitor

profiles differ in two aspects from a simple 1/r3 behaviour. First, the outer part of the

envelope has an onion like structure, and its chemical composition, Ye(r), and thus also

V (r) changes rather sharply at the boundaries of the various shells. Second, the density

drops faster in the outermost part of the envelope, becoming closer to an exponential

decrease. We calculated numerically Pēē using profiles for different progenitor masses and

stellar evolution models. We found that Pēē is well approximated only in the non-resonant
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Figure 3: Comparison of the contours of constant survival probability Pēē calculated numeri-

cally for a M = 20M� progenitor star (dotted lines) and calculated for A ∝ r−3 with the PLSZ
approximation (solid lines).

part by our analytical results for the 1/r3 profile, independently of the details of the

progenitor profile, while Pēē depends strongly on the details of the progenitor profile in

the resonant region. As an example, we compare in Fig. 3 the Pēē calculated numerically

for a 20M� profile with the analytical results for our standard SN profile. Therefore a
numerical solution of the Schrödinger equation (1.1) should be performed in the resonant

region, using a realistic profile for the particular progenitor star considered. However, a

1/r3 profile together with the WKB crossing probability is sufficient for the analysis of

anti-neutrino oscillations in the phenomenologically most interesting region tan2 ϑ <∼ 5
independent of the details of the progenitor envelope.

Next we present the results of a combined statistical analysis of the neutrino signal of

SN 1987A and of the complete set of solar neutrino experiments [4]. Since the two data

sets are statistically independent and functions of the same two fit parameters, they can

be trivially combined,

χ2tot(ϑ,∆) = χ
2
�(ϑ,∆) + χ

2
SN(ϑ,∆) . (3.1)

Contours of constant confidence level (C.L.) are defined relative to the minimum of χ2tot,

where χ2�(ϑ,∆) was calculated in Ref. [5] for the solar data and χ2SN = −2L(ϑ,∆) in
Ref. [6] for the SN 1987A data. We consider the astrophysical parameters as known and

minimize only the two parameters ϑ and ∆.

In Fig. 4 we show the C.L. contours of the combined fit for a rather representative

set of astrophysical parameters, namely binding energy Eb = 3 × 1053 erg and 〈Eν̄e〉 =
14 MeV. In this case, the impact of the SN 1987A data on the standard solutions to the

solar neutrino problem is rather dramatic: the LOW-QVAC and VAC solutions disappear

for both assumed τ = 〈Eν̄h〉/〈Eν̄e〉 values; they are excluded at more than 99.98% even
for τ = 1.4. Moreover the size of the LMA–MSW solution decreases with increasing τ .

The part of the LMA–MSW solution which is most stable against the addition of the

– 5 –



P
r
H
E
P
 
h
e
p
2
0
0
1

International Europhysics Conference on HEP M. Kachelrieß

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-4 10-3 10-2 10-1 1 10

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-4 10-3 10-2 10-1 1 10

Figure 4: The 90, 95, 99 and 99.73% C.L. contours of the combined fit of solar and SN 1987A

data (coloured/grey) together with the contours of the solar data alone (solid lines); for τ =

〈Eν̄h 〉/〈Eν̄e〉 = 1.4 (top) and τ = 1.7 (bottom). All figures forEb = 3×1053 erg and 〈Eν̄e〉 = 14 MeV.

supernova data corresponds to the lowest ∆ and tan2 ϑ values, since these are favoured by

Earth matter regeneration effects. On the other hand the SMA–MSW region re-appears

extending, for increasing τ , as a funnel towards the VAC solution along the hypotenuse of

the solar MSW triangle. The combined best-fit point (star) moves from the LMA–MSW

region for τ = 1.4 to the SMA–MSW solution for τ = 1.7.

In Fig. 5 we illustrate in a global way the relative status of various oscillation after

adding the SN 1987A data. For each ∆ value we have optimized the χ2 with respect to

ϑ in the top and with respect to ∆ in the bottom panel. The solid curve indicates χ2�,
the non-solid curves correspond to the case where the SN 1987A data are included. The

dash-dotted line is for Eb = 3× 1053 erg, τ = 1.4 and 〈Eν̄e〉 = 14 MeV. The dashed line is
for Eb = 3×1053 erg, τ = 1.4 and 〈Eν̄e〉 = 12 MeV. The dotted line is for Eb = 3×1053 erg,
τ = 1.7 and 〈Eν̄e〉 = 14 MeV. Here we have adjusted an arbitrary constant which appears
when combining the minimum likelihood-type SN 1987A analysis with the solar χ2 data
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Figure 5: The solid curve indicates the χ2� of the solar neutrino data. The non-solid curves
illustrate the effect of adding the SN 1987A data, which worsens the status of large mixing-type

solutions; marginalized with respect to ϑ (top) and to ∆ (bottom), respectively.

analysis in such a way that the SMA solution gets unaffected by the SN 1987A data. One

notices that the effect of adding SN 1987A data is always to worsen the status of the large-

mixing angle solutions. Within each such curve one can compare the relative goodness of

various solutions, however different curves should not be qualitatively compared.

4. Summary and Discussion

We have discussed non-adiabatic neutrino oscillations in general power-law potentials A ∝
xn. We found that the resonance point coincides only for a linear profile with the point

of maximal violation of adiabaticity. We presented the correct boundary between the

adiabatic and non-adiabatic regime for all ϑ and n as well as a new method to calculate

the crossing probability also in the non-resonant regime.

Performing a combined likelihood analysis of the observed neutrino signal of SN 1987A

and solar neutrino data including the SNO CC measurement, we found that the supernova
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data offer additional discrimination power between the different solutions of the solar neu-

trino puzzle. Unless all relevant supernova parameters lie close to their extreme values

found in simulations, the status of the LMA solutions deteriorates, although the LMA–

MSW solution may still survive as the best combined fit for acceptable choices of astro-

physical parameters. In particular, SN 1987A data generally favour its part with smaller

values of ϑ and ∆. In contrast the vacuum or “just-so” solution is excluded and the LOW

solution is significantly disfavoured for most reasonable choices of astrophysics parameters.

The SMA–MSW solution is absent at about the 3σ-level if solar data only are included

but may reappear once SN 1987A data are added, due to the worsening of the LMA type

solutions.

Finally, one should not forget that in the solar case, a well-tested standard solar model

exists whose errors are accounted for in the fit. In contrast there is no “standard model” for

type II supernovae and therefore also no well-established average values and error estimates

for the relevant astrophysical parameters.
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