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Abstract: A general approach to the computation of exact correlation functions of lattice quantum

integrable models proposed recently is reviewed. It is based on the resolution of the so-called quantum

inverse scattering problem, namely, the reconstruction of local operators in terms of the (operator)

entries of the quantum monodromy matrix obeying a Yang-Baxter algebra. The application of this

method to the XXZ Heisenberg spin- 12 chain in a magnetic field leads to multiple integral representa-

tions of its n-point correlation functions. For zero magnetic field, it gives a proof, in both the massless

and massive (anti-ferromagnetic) regimes, of the formulas obtained from the q-deformed KZ equations

(massless regime) and the representation theory of the quantum affine algebra Uq(ŝl2) together with
the corner transfer matrix approach (massive regime).

1. Introduction

In the last twenty years considerable progress

have been achieved in our understanding of clas-

sical and quantum integrable models of field the-

ory and statistical mechanics [1–6]. New con-

cepts and methods have emerged from this do-

main, leading to major breakthroughs not only

in theoretical physics but also in mathematics.

In this context, one of the main challenge of the

theory of quantum integrable models remained

largely open until now despite the great amount

of remarkable works which have been devoted to

its resolution: computing exact and manageable

expressions for their correlation functions. This

is a fundamental problem, both to enlarge the

range of applications of these models, for exam-

ple in the realm of condensed matter physics, and

also to understand in a deeper way their under-

lying mathematical structures.

For a long time, only very few models were

known for which correlation function can be com-

puted in an exact and explicit way. The typ-

ical examples are the Ising model [14–16], re-
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lated to free fermions, and conformal field the-

ories dealing with critical or massless systems in

the continuum [17,18]. Besides these models (for

which series of formidable works have been nec-

essary to obtain exact correlation functions), in

the class of integrable models solvable by means

of Bethe ansatz, and in particular for integrable

lattice models, two different but complementary

approaches have been considered to solve this

problem.

One of them relies on the study of infinite

dynamical symmetries of integrable models di-

rectly in the infinite volume limit. It started

with the solution of bootstrap equations for S-

matrices and form factors of (massive) relativistic

quantum field theories [4,19–21] and merged with

representation theory of the associated Yangians

or quantum affine symmetries [22–28]. Using the

additionnal ideas coming from two-dimensionnal

statistical models resolution (like the Baxter cor-

ner transfer matrix method) [1, 29–31], it leads

(using however some hypothesis) to multiple in-

tegral representations of correlation functions of

the XXZ Heisenberg spins chains (at zero tem-

perature and zero magnetic field) in the massive

regime [6,32,33]. These functions being there re-
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lated to trace of products of q-deformed vertex

operators satisfying q-deformed KZ-equations, it

also led to conjectures for other regimes (gap-

less region) for which the corner transfer matrix

approach is not available. More general mod-

els have been considered since then using this

method.

Another approach, described essentially in

the book [5], is based on the algebraic Bethe

ansatz analysis [1,2,5,12] of these lattice models

in the finite volume. However due to the com-

plicated combinatorial structure of Bethe eigen-

states and of the scalar products of general states,

it did not succeed in obtaining explicit and man-

ageable expressions for the correlation functions

for generic models. Instead, this method seems

to give insights into the long distance asymp-

totics of correlation functions [34].

The aim of this lecture is to review an ap-

proach proposed recently in [7–9] (see also [10,

11] for associated works) to compute correlation

functions of lattice quantum integrable models

using the algebraic Bethe ansatz method [1, 2,

5, 12] and the explicit resolution of the quan-

tum inverse scattering problem [7, 13], namely,

the reconstruction of the local quantum opera-

tors (the correlation functions of which we want

to calculate) in terms of the elements of the mon-

odromy matrix of the model satisfying a Yang-

Baxter algebra and containing in particular cre-

ation/annihilation operators of the Bethe eigen-

states. Although this method has been devel-

oped first in the example of the Heisenberg spin-
1
2 XXZ chain [7], it is clear already that the

basic tools and techniques used there can be ap-

plied in principle to generic quantum integrable

lattice models (see [13] for a solution of the quan-

tum inverse scattering problem for a large class

of integrable lattice models).

2. General approach to correlation

functions

Correlation functions of a certain product of local

operators denoted generically by O is defined by,
trH
(
O e−H/kT

)
trH
(
e−H/kT

) , (2.1)

where T is the temperature, k the Boltzmann

constant and H is the Hamiltonian of the model

acting in the quantum space H. In the zero tem-
perature limit, only the groundstate |ψg 〉 of H
contributes to the above trace, and the correla-

tion function reduces to,

〈ψg | O |ψg 〉
〈ψg |ψg 〉

. (2.2)

Let us first review the two main difficulties in

trying to compute such a quantity. The first

problem to solve is of course the determination

of the ground state |ψg 〉. For interacting the-
ories, this is already an highly non-trivial (and

in general non-perturbative) problem. For in-

tegrable models solvable by means of algebraic

Bethe ansatz [1, 2, 5, 12], it admits a solution in

terms of creation (resp. annihilation) operators

which are elements of the associated quantum

monodromy matrix Ti(λ) ∈ End(Vi) ⊗ H satis-
fying the Yang-Baxter algebra [35,36],

R12(λ, µ) T1(λ) T2(µ) =

= T2(µ) T1(λ) R12(λ, µ), (2.3)

with the usual tensor notations T1(λ) = T (λ)⊗Id
and T2(µ) = Id⊗T (µ), R being a linear operator
in the tensor product of two two-dimensional lin-

ear spaces V1 ⊗ V2 and obeying the Yang-Baxter
equation,

R12(λ1, λ2) R13(λ1, λ3) R23(λ2, λ3) =

= R23(λ2, λ3) R13(λ1, λ3) R12(λ1, λ2),

(2.4)

In the most simple cases the monodromy matrix

is a 2 × 2 matrix in the auxiliary space V , with
operator valued entries acting in H,

T (λ) =

(
A(λ) B(λ)

C(λ) D(λ)

)
(2.5)

The Hamiltonian is then obtained as a member of

the commuting set of operators generated by the

transfer matrix A(λ) + D(λ), namely the trace

of the above monodromy matrix, which are com-

muting operators for arbitrary values of the spec-

tral parameter λ. The ground state is then con-

structed by the multiple action of the B opera-

tors on a known reference state | 0 〉 as for exam-
ple, B(λ1) . . . B(λN )| 0 〉 (and for the dual state,
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〈 0 |C(λ1) . . . C(λN )) which is a common eigen-
state of the transfer matrices if the set of spectral

parameters {λj}16j6N is a solution of the Bethe
equations [37],

a(λj)

d(λj)

N∏
k=1
k 6=j

b(λj , λk)

b(λk, λj)
= 1, 1 6 j 6 N,

(2.6)

where a(λ) and d(λ) are the eigenvalues of opera-

tors A(λ) and D(λ) respectively on the reference

state | 0 〉 and b(λ, µ) is a function of two param-
eters given by the R-matrix.

The second problem is to express in a com-

pact way the action of any product of local oper-

ator O on such Bethe eigenstates. This question
remained open for many years. The reason is

the following. Although the operators B(λ) sat-

isfy together with the other elements of the mon-

odromy matrix a nice quadratic algebra (2.3),

they are highly non-local quantities in terms of

the local operators defining the model. Hence,

there was until recently no way to obtain the

needed algebra between local operators and the

monodromy matrix operator entries. It turns out

that for almost all known lattice quantum inte-

grable models, this problem has a simple and ex-

plicit solution: it is to reconstruct local operators

in terms of the monodromy matrix entries, or in

other words to solve explicitly the so-called quan-

tum inverse scattering problem. We will give in

the following the formulas corresponding to the

particular case of the XXZ spin- 12 Heisenberg

finite chain [7]. However, the simplicity of the

result and of its proof opened the way for gen-

eralisation to almost all known lattice integrable

models [13]. This reconstruction of the local op-

erators will give the key to the computation of

the correlation functions.

To achieve this goal, our method will be de-

composed into the following main steps:

1 - Construction of the groundstate |ψg 〉 in
the algebraic Bethe ansatz framework as, 〈ψg | =
〈 0 |
∏
i∈I

C(λi) and |ψg 〉 =
∏
i∈I

B(λi)| 0 〉, | 0 〉 being

some reference state, and the parameters λi, i ∈
I, satisfying Bethe equations.

2 - Algebraic solution of the quantum inverse

scattering problem for local operators, namely

their reconstruction in terms of the monodromy

matrix operator entries.

3 - Expression of the action on the ground

state of any product of local operators using their

expression in terms of the monodromy matrix

and the Yang-Baxter algebra it satisfies, as mul-

tiple sums,

〈ψg |O =
∑
j∈J

αj〈 0 |
∏
k∈Kj

C(λk), with some com-

putable coefficients αj and sets J and Kj de-

pending on O and 〈ψg |.

4 - Compute the correlation function as (mul-

tiple) sums of scalar products of states one of

them being the ground state, 〈ψg |O|ψg 〉 =
=
∑
j∈J

αj〈 0 |
∏
k∈Kj

C(λj)
∏
i∈I

B(λi)| 0 〉. Such scalar

products can be computed using for example a

new basis of the space of states induced by the

so-called factorizing F -matrices (see [10]) and in

which the operators B and C simplify drastically,

hence allowing for a direct computation (for the

XXZ model it is given as a ratio of two deter-

minants [7]).

5 - Take the thermodynamic limit (the limit

of infinite lattice) of the above results where mul-

tiple sums leads to multiple integral representa-

tions of the correlation functions.

The above steps 1, 2, 3 can be achieved for

a very general class of lattice integrable models.

Steps 4 and 5 need more developments at the mo-

ment for the general models. However, F basis

has been determined for higher spin Heisenberg

models in [11], using the functional Bethe ansatz

technique of Sklyanin [38], and other models have

been considered very recently in [39–41]. This

gives some hope for a general solution of step 4.

In the following sections, I will outline the

application of this general method to the repre-

sentative example of theXXZ Heisenberg spin- 12
in a magnetic field. Multiple integral represen-

ations of its correlation functions have been ob-

tained in [9]. This approach gives for this model a

proof of the zero magnetic field expressions given

by Jimbo, Miwa and their collaborators [6].
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3. The XXZ spin-1
2
Heisenberg chain

The Hamiltonian of the XXZ spin-12 Heisenberg

chain of finite length M [37, 42] is given by,

HXXZ =

M∑
m=1

{
σxmσ

x
m+1 + σ

y
mσ
y
m+1 +

+∆(σzmσ
z
m+1 − 1)

}
,

(3.1)

We impose periodic boundary conditions and σam,

a = x, y, z, are the Pauli spin operators acting in

the local quantum spin-12 space Hm at site m.
The anisotropy parameter ∆ defines the phys-

ical nature of the model: when ∆ 6 −1, the
ground state of the Hamiltonian is ferromagnetic,

whereas its magnetization is equal to zero when

∆ > −1. We shall focus our attention on this
last domain, which itself decomposes into a mas-

sive regime (for ∆ > 1), and a gapless regime

(for −1 < ∆ < 1) in the thermodynamic limit

(M →∞).
The R-matrix of the XXZ model is,

R(λ, µ) =



1 0 0 0

0 b(λ, µ) c(λ, µ) 0

0 c(λ, µ) b(λ, µ) 0

0 0 0 1


 (3.2)

where the functions b(λ, µ) and c(λ, µ) are de-

fined as,

b(λ, µ) =
sinh(λ− µ)
sinh(λ− µ+ η) ,

c(λ, µ) =
sinh η

sinh(λ− µ+ η) .

The parameter η is here related to the anisotropy

parameter ∆ of the Hamiltonian by,

∆ =
1

2
(q + q−1), with q = eη.

The R-matrix is a linear operator in the ten-

sor product of two two-dimensional linear spaces

V1 ⊗ V2, where each Vi is isomorphic to C2, and
depends generically on two spectral parameters

λ1 and λ2 associated to these two vector spaces.

It is denoted by R12(λ1, λ2). Such an R-matrix

satisfies the Yang-Baxter equation (2.4). More-

over, it is unitary, except for a finite number

of values of the spectral parameter, namely if

b(λ1, λ2) 6= ±c(λ1, λ2) we have,

R12(λ1 − λ2) R21(λ2 − λ1) = 1, (3.3)

and reduces to the permutation operator for the

particular value (zero) of the spectral parameter,

R12(0) = P12.

Identifying one of the two vector spaces of

the R-matrix with the quantum space Hm, one
defines the quantum L-operator of the inhomo-

geneous chain at site m as,

Lm(λ, ξm) = R0m(λ− ξm), (3.4)

where ξm is an arbitrary inhomogeneity parame-

ter attached to the site m. Here R0m acts in V0⊗
Hm, where V0 is an auxiliary space isomorphic to
C2. The monodromy matrix is constructed as an

ordered product of such L-operators:

T0(λ) ≡ T0,1...N (λ; ξ1, . . . , ξN )

= R0N (λ− ξN ) . . . R01(λ− ξ1),
(3.5)

and can be represented in the auxiliary space V0
as a 2× 2 matrix,

T (λ) =

(
A(λ) B(λ)

C(λ) D(λ)

)
, (3.6)

whose matrix elements A, B, C, D are linear

operators on the quantum space of states of the

chain H =
N
⊗
n=1
Hn.

The transfer matrix T (λ) is defined as the
trace A(λ) + D(λ) of the monodromy matrix.

Transfer matrices commute with each other for

different values of the spectral parameter λ. They

commute also with the Hamiltonian (3.1) in the

homogeneous case where all ξm are equal as the

Hamiltonian can be reconstructed in terms of the

transfer matrix by means of the following “trace

identity”:

HXXZ = 2 sinh η ∂λ log T (λ)|λ=ξj + const.
(3.7)

Common eigenstates of the transfer matri-

ces (and thus of the Hamiltonian (3.1) in the
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homogeneous case) can be constructed by suc-

cessive actions of operators B(λ) on the refer-

ence state | 0 〉, which is the ferromagnetic state
with all the spins up. More precisely, the state

B(λ1) . . . B(λN )| 0 〉 is a common eigenstate of
the transfer matrices if the set of spectral pa-

rameters {λj}16j6N is a solution of the Bethe
equations,

a(λj)

d(λj)

N∏
k=1
k 6=j

b(λj , λk)

b(λk, λj)
= 1, 1 6 j 6 N,

(3.8)

where a(λ) = 1 and d(λ) =
∏M
i=1 b(λ, ξi) are

the eigenvalues of operators A(λ) and D(λ) re-

spectively on the reference state | 0 〉. The corre-
sponding eigenvalue for the transfer matrix T (µ)
is then,

τ(µ, {λj}) = a(µ)
n∏
j=1

b−1(λj , µ) +

+ d(µ)

n∏
j=1

b−1(µ, λj). (3.9)

The Bethe equations can also be written in

a logarithmic form (1 6 j 6 N):

Mp0tot(λj) +

N∑
k=1

θ(λj − λk) = 2πnj ,

(3.10)

where nj are integers for N odd and half integers

forN even. The bare momentum p0tot(λ) and the

scattering phase θ(λ) are defined as,

p0tot(λ) =
i

M
ln
d(λ)

a(λ)

=
1

M

M∑
k=1

p0(λ− ξk +
η

2
),

p0(λ) = i ln
sinh(λ− η2 )
sinh(λ+ η2 )

,

θ(λ) = i ln
sinh(η + λ)

sinh(η − λ) .

In the thermodynamic limit (M → ∞), these
Bethe equations for the ground state become an

integral equation for the quasi-particle density ρ

in the rapidity representation (Lieb equation) [43,

44]:

ρtot(α) +

∫ Λ
−Λ

K(α− β)ρtot(β) dβ =

=
p′0tot(α)
2π

,

(3.11)

where the new real variables α are defined in

terms of general spectral parameters λ differently

in the two domains:

α = λ for − 1 < ∆ < 1,

α = iλ for ∆ > 1.

The density ρ is defined as the limit of the quan-

tity 1
M(αj+1−αj) ,K(α) and p

′
0tot(α) are the deriva-

tives with respect to α of the functions − θ(λ(α))2π

and p0tot(λ(α)):

K(α) =
sin 2ζ

2π sinh(α+ iζ) sinh(α − iζ)

p′0(α) =
sin ζ

sinh(α+ i ζ2 ) sinh(α − i
ζ
2 )

for −1 < ∆ < 1, with ζ = iη and,

K(α) =
sinh 2ζ

2π sin(α+ iζ) sin(α− iζ)

p′0(α) =
sinh ζ

sin(α + i ζ2 ) sin(α− i
ζ
2 )

for ∆ > 1, with ζ = −η, and where βk = ξk in

the domain −1 < ∆ < 1, and βk = iξk in the

domain ∆ > 1. The integration limit Λ is equal

to π2 for ∆ > 1, and to +∞ for −1 < ∆ < 1.

The solution for the Lieb equation (3.11) in

the homogeneous model where all parameters ξk
are equal to η/2, that is the density for the ground

state of the Hamiltonian (3.1) in the thermo-

dynamic limit, is given by the following func-

tion [44]:

ρ(α) =
1

2ζ cosh(πα
ζ
)
for − 1 < ∆ < 1,

(3.12)

ρ(α) =
1

2π

+∞∑
n=−∞

e2inα

cosh(nζ)
for ∆ > 1.

(3.13)
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For technical convenience, we will also use in the

following the solution of the inhomogeneous Lieb

equation, that is the function,

ρtot(α) =
1

M

M∑
i=1

ρ(α− βk − i
ζ

2
). (3.14)

It will be also convenient to consider, without any

loss of generality, that the inhomogeneity param-

eters are contained in the region −ζ < Imβj < 0.
Let us mention at last that the ground state

of the XXZ model in the region ∆ > 1 is degen-

erated in the thermodynamic limit (M → ∞),
namely there are two states with the same energy

(and characterized by the same density (3.13)),

which we will call the ground state |Ψ1 〉 and
the quasi-ground state |Ψ2 〉 (on the finite lattice,
these states possess different energy). In this do-

main, the correlation function at zero tempera-

ture is thus half of the trace on these two states,

that is of the sum of the two corresponding ma-

trix elements. In the domain −1 < ∆ < 1, the

ground state is not degenerated.

4. The quantum inverse scattering

problem

The solution of this problem was a dream dur-

ing many years for most of us working in the

domain of quantum integrable models. It was

shown for the first time in [7] that the explicit

solution of the quantum inverse scattering prob-

lem (namely the reconstruction of any local spin

operator at any site of the chain in terms of the

elements of the quantum monodromy matrix sat-

isfying a Yang-Baxter algebra, and containing

creation/annihilation operators of Bethe eigen-

states of the Hamiltonian) can be solved for the

XXZ spin- 12 model in a very simple and purely

algebraic way.

The elementary nature of the answer in this

very representative example among the models

solvable by means of the algebraic Bethe ansatz

method, was quite unexpected. The algebraic

Bethe ansatz method, also called quantum in-

verse scattering method, appeared twenty years

ago as a quantum analogue of the classical in-

verse scattering problem approach to non-linear

wave equations having soliton solutions, in or-

der to solve quantum integrable models in two

dimensions. The essential tools of this method

are the quantum monodromy matrix satisfying

quadratic commutation relations (Yang-Baxter

algebra) which structures constants are given by

the corresponding R-matrix solving the Yang-

Baxter (cubic) equation [1, 35]. It has been de-

signed to diagonalize the corresponding Hamilto-

nians simultaneously with their associated com-

muting family of integrals of motion [12,45]. This

method is in fact the quantum analogue of the di-

rect part of the classical inverse scattering prob-

lem method in its Hamiltonian formulation [46],

in which the Lax matrix is used to construct the

monodromy matrix containing the action-angle

variables which linearize the dynamics. However,

the inverse scattering problem part of the classi-

cal theory, namely, the reconstruction of the local

classical field variables contained in the Lax ma-

trix in terms of the elements of the monodromy

matrix (and hence in terms of the action-angle

variables) using the Gel’fand-Levitan-Marchenko

equations [47–49], being already a quite difficult

problem to solve, it was not at all obvious to find

a direct way to extend it to the quantum situa-

tion, although the motivations (form factors and

correlation functions) were clear from the very

beginning [50–52].

The very remarkable feature of the solution

to this problem given in [7] was not only that

the quantum inverse scattering problem can be

solved explicitely, but also that both its result-

ing expressions (reconstruction of the local spin

operators at any site of the chain in terms of a

simple product of the quantum monodromy ma-

trix elements) and their proofs are very elemen-

tary. In turn, it essentially relies on the fact that

the quantum R-matrix R(λ, µ) solving the Yang-

Baxter equation reduces to the permutation op-

erator when the two spectral parameters λ and

µ are equal.

This fact being almost a consequence of the

Yang-Baxter equation itself, and hence satisfied

for very generic cases, it immediatly suggested

that the quantum inverse scattering problem can

indeed be solved for almost all known quantum
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integrable (lattice) models. This is achieved for

a large class of integrable lattice models in [13].

It is to be compared to the tentatives of solving

the corresponding problem directly for the con-

tinuum quantum integrable field theories such as

the Sine-Gordon model, using a quantization of

the Gel’fand-Levitan-Marchenko equations, which

appeared to be an extremely difficult problem

to handle, due in particular to the presence of

boundstates [4].

Let us now describe the solution for theXXZ

spin- 12 model [7,13]. The result and its proof can

be easily extended to very general lattice models,

including the so-called fundamental lattice mod-

els, but also the models with impurities and the

fusion models (see [13]).

Theorem 1. Local spin operators at a given site

i of the inhomogeneous XXZ Heisenberg chain

are given by

σ−i =
i−1∏
α=1

(A+D) (ξα) · B(ξi) ·

·
i∏
α=1

(A+D)−1 (ξα),

(4.1)

σ+i =
i−1∏
α=1

(A+D) (ξα) · C(ξi) ·

·
i∏
α=1

(A+D)−1 (ξα),

(4.2)

σzi =

i−1∏
α=1

(A+D) (ξα) · (A−D)(ξi) ·

·
i∏
α=1

(A+D)−1 (ξα).

(4.3)

Note that the case of homogeneous models

where all ξ are equal is also included in this result

by just taking the wanted specific equal values for

the ξj .

5. From the inverse scattering prob-

lem to correlation functions

Using the above solution to the quantum inverse

scattering problem for local spins, we can com-

pute the correlation functions. For this we need

three more ingredients, which are the computa-

tion of generic actions of local operators on the

ground state using Yang-Baxter commutation re-

lations, the scalar product of states, one of them

being a Bethe state, and finally a simple proce-

dure to take the thermodynamic limit. These

tools are given in the next subsections.

5.1 Action of operators A, B, C, D on a

general state

We want now to express the action of any local

operator on a state constructed by action of C

operators on the reference state. This is given in

turn from the solution of the quantum inverse

scattering problem by the successive action of

some product of A, B, C, D operators. Action

of A, B, C, D on such a state are well known

(see for example [5]), but we recasted them [9]

in a more convenient form for our purpose.

The action of the operators A(λ) and D(λ)

on the states constructed by successive actions

of operators C(λ) can be written in the following

form:

〈 0 |
N∏
k=1

C(λk)A(λN+1) =

N+1∑
a′=1

a(λa′) ·

·

N∏
k=1

sinh(λk − λa′ + η)

N+1∏
k=1
k 6=a′

sinh(λk − λa′)
〈 0 |

N+1∏
k=1
k 6=a′

C(λk);

(5.1)

〈 0 |
N∏
k=1

C(λk)D(λN+1) =

N+1∑
a=1

d(λa) ·

·

N∏
k=1

sinh(λa − λk + η)

N+1∏
k=1
k 6=a

sinh(λa − λk)
〈 0 |

N+1∏
k=1
k 6=a

C(λk).

(5.2)

The action of the operator B(λ) is more compli-

cated and involved a double sum (see [9]), but

in the case which is interesting for the computa-

tion of the correlation functions when λN+1 = ξk
and hence d(λN+1) = 0, we obtain a more simple

7
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result:

〈 0 |
N∏
k=1

C(λk)B(λN+1) =

N∑
a=1

d(λa) ·

·

N∏
k=1

sinh(λa − λk + η)

N+1∏
k=1
k 6=a

sinh(λa − λk)

N+1∑
a′=1
a′ 6=a

a(λa′ ) ·

·

N∏
j=1
j 6=a

sinh(λj − λa′ + η)

N+1∏
j=1

j 6=a,a′

sinh(λj − λa′)
〈 0 |

N+1∏
k=1
k 6=a,a′

C(λk).

(5.3)

It should be mentioned that the action of B is

similar to the successive action of D and A. Us-

ing these formulae, one can reduce any expres-

sions for general correlation functions to (multi-

ple) sums of scalar products of a Bethe state with

an arbitrary state constructed by successive ac-

tions of B operators on the reference state.

5.2 Scalar products

The next step of the computation is to find an ex-

plicit and convenient expression for scalar prod-

ucts of two states one of them being a Bethe

eigenstate. Usual Bethe ansatz techniques, based

only on the use of commutation relations, gener-

ally generate huge sums which are difficult to sum

up. In [7], a direct computation in a new basis

(F -basis) [10] has been performed and leads to

an explicit expression for such scalar products as

a determinant of usual functions of the model:

Theorem 2. Let {λ1, . . . , λN} be a solution of
the Bethe equations (2.6) and {µ1, . . . , µN} be
an arbitrary set of parameters. Then the scalar

product,

SN ({µj}, {λk}) = 〈 0 |
N∏
j=1

C(µj) ·

·
N∏
k=1

B(λk) | 0 〉 (5.4)

can be represented as a ratio of two determinants,

SN ({µj}, {λk}) = SN ({λk}, {µj})

=
detT ({µj}, {λk})
detV ({µj}, {λk})

,

(5.5)

of the following N ×N matrices T and V :

Tab = ∂λaτ(µb, {λk}),

Vab =
1

sinh(µb − λa)
, 1 6 a, b 6 N,

(5.6)

where τ(µb, {λk}) is the eigenvalue of the transfer
matrix T (µb) corresponding to the Bethe state∏N
k=1B(λk) | 0 〉 given by (3.9).

This result is equivalent to the scalar product

formula obtained in [53].

When particularizing this formula in the case

when the two states are equal, one obtains the

Gaudin formula for the norm of a Bethe state:

〈 0 |
N∏
j=1

C(λj)
N∏
k=1

B(λk) | 0 〉 = sinhN η ·

·
∏
α6=β

sinh(λα − λβ + η)
sinh(λα − λβ)

detΦ′({λa}),

(5.7)

where Φ′ is a N×N matrix the elements of which
are given by:

Φ′ab = −∂λb ln
(
a(λa)

d(λa)

N∏
k=1
k 6=a

b(λa, λk)

b(λk, λa)

)
.

(5.8)

By means of this expression for the scalar

product, general correlation functions for the fi-

nite chain can now be expressed as sums of de-

terminants.

5.3 Thermodynamic limit

The last step of our method, to obtain the gen-

eral correlation functions in the infinite volume

limit, is to take the thermodynamic limit of the

expressions obtained for the finite chain. In the

thermodynamic limit M → ∞, the Bethe equa-
tions for the ground state become the integral

8
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Lieb equation (3.11) for the density. In a more

general way, for any C∞ function f (π-periodic in
the domain ∆ > 1), sums over all the values of f

at the point αj , 1 6 j 6 N , parameterizing the

ground state, can be replaced in the thermody-

namic limit by an integral involving the density

ρ solution of the Lieb equation [8]:

1

M

N∑
j=1

f(αj) =

∫ Λ
−Λ

f(α)ρtot(α) dα+

+ O(M−∞).

(5.9)

Thus, sums over determinants will become mul-

tiple integrals.

These properties enabled us in [8] to obtain

the expression of the Gaudin matrix elements

(5.8) in the thermodynamic limit:

Φ′ab(α) = −2iπM
{
δabρtot(αa) +

+
1

M
K(αa − αb)

}
+O(M−∞)

for − 1 < ∆ < 1, (5.10)

Φ′ab(α) = 2πM
{
δabρtot(αa) +

+
1

M
K(αa − αb)

}
+O(M−∞)

for ∆ > 1. (5.11)

These expressions will be useful in the follow-

ing to compute the determinants which appear

in the formulae for the correlation functions in

the thermodynamic limit. Finally, we will ob-

tain correlation functions as multiple integrals of

usual functions of the model.

6. Correlation functions

The general formula for the correlation functions

of the XXZ Heisenberg spin- 12 chain in a mag-

netic field were given in [9]. Here, I will sim-

ply describe the structure of such a formula in

terms of multiple integrals for the generic build-

ing blocks of correlation functions defined by,

Fm({εj, ε′j}) =
〈ψg |

m∏
j=1

E
ε′j,εj
j |ψg 〉

〈ψg |ψg〉
. (6.1)

where, E
ε′m,εm
m are the elementary operators act-

ing on Hm at site m as the 2×2 matrices Eε
′,ε
lk =

δl,ε′δk,ε, and
m∏
j=1

E
ε′j ,εj
j is any product of such

elementary operators from site one to m. Any

n-point correlation function can be obtained as

sums of these building blocks. To calculate this

product we use the solution of the quantum in-

verse scattering problem, representing the local

elementary matrices in terms of the correspond-

ing monodromy matrix elements:

E
ε′j ,εj
j =

j−1∏
k=1

(
A(ξk) +D(ξk)

)
·

· Tεj,ε′j (ξj)
j∏
k=1

(
A(ξk) +D(ξk)

)−1
.

Thus we reduce the problem to the compu-

tation of the ground state mean value of an arbi-

trary ordered product of the monodromy matrix

elements,

Fm({εj , ε′j}) = φm({λ}) ·

·
〈ψg |Tε1,ε′1(ξ1) . . . Tεm,ε′m(ξm)|ψg 〉

〈ψg |ψg〉
, (6.2)

where φm({λ}) is the ground state eigenvalue of
the corresponding product of the transfer matri-

ces:

φm({λ}) =
m∏
j=1

N∏
a=1

sinh(λa − ξj)
sinh(λa − ξj + η)

.

Now to calculate these mean values we use

the commutation relations of the monodromyma-

trix elements. An arbitrary product of the mon-

odromymatrix elements can be treated in a rather

general way. One should consider the two follow-

ing sets of indices:

α+ = {j : 1 6 j 6 m, εj = 1},
maxj∈α+(j) ≡ j′max,minj∈α+(j) ≡ j′min,

α− = {j : 1 6 j 6 m, ε′j = 2},
maxj∈α−(j) ≡ jmax,minj∈α−(j) ≡ jmin.

(6.3)

We also note card(α+) = s′ and card(α−) = s.

It should be mentioned that in a general case the

intersection of these two sets is not empty and

corresponds to the operators B(ξj).

Consider now the action of an arbitrary prod-

uct of monodromy matrix elements on a state

9
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constructed by the action of the operators C(λ),

〈 0 |
N∏
k=1

C(λk)Tε1,ε′1(λN+1) . . .

. . . Tεm,ε′m(λN+m),

applying one by one the formulae (5.1)-(5.3). For

all the indices j from the sets α+ and α− one ob-
tains a summation on the corresponding indices

a′j (for j ∈ α+, corresponding to the action of the
operators A(λ) or B(λ)) or aj (for j ∈ α−, corre-
sponding to the action of the operators D(λ) or

B(λ)). As the product of the monodromy matrix

elements is ordered these summations are also

ordered and the corresponding indices should be

taken from the following subsets of integers b,

1 6 b 6 N +m:

Aj ={b : b 6= ak, a′k, k < j},
A′j ={b : b 6= a′k, k < j, b 6= ak, k 6 j}.

Thus the action of a product of the monodromy

matrix elements can be written as the following

sum:

〈 0 |
N∏
k=1

C(λk)Tε1,ε′1(λN+1) . . .

. . . Tεm,ε′m(λN+m) =
∑
{aj ,a′j}

G{aj ,a′j}(λi)×

×〈 0 |
∏

b∈Am+1
C(λb) (6.4)

The summation is taken over the indices aj for

j ∈ α− and a′j for j ∈ α+ such that:

1 6 aj 6 N + j, aj ∈ Aj ,
1 6 a′j 6 N + j, a′j ∈ A′j .

The functions G{aj ,a′j}(λ1, . . . λN+m) can be eas-
ily obtained from the formulae (5.1)-(5.3) taking

into acount that λa = ξN−a for a > N :

G{aj ,a′j}(λ1, . . . , λN+m) =

∏
j∈α−

d(λaj )

N+j−1∏
b=1
b∈Aj

sinh(λaj − λb + η)

N+j∏
b=1
b∈A′j

sinh(λaj − λb)
×

×
∏
j∈α+

a(λa′j )

N+j−1∏
b=1
b∈A′j

sinh(λb − λa′j + η)

N+j∏
b=1

b∈Aj+1

sinh(λb − λa′j )
.

(6.5)

Now to calculate the normalized mean value

(6.2) we apply the representation for the scalar

product (5.5) and the Gaudin formula (5.7). Go-

ing to the thermodynamic limit, multiple sums

become multiple integrals, and finally, we ob-

tained the expression of these correlation func-

tions in the homogeneous limit where all ξ are

equal. It is given as a m fold integral over con-

tours Chj which are depending on the value of j,

on the regime considered and also on the value

of the magnetic field. The general answer can be

written as [9],

Fm(h, {εj , ε′j}) =
m∏
j=1

∫
Chj

dλj ·

· Ωm({λj}, {εj, ε′j}) detSh({λ}). (6.6)

where Ωm({λj}, {εj , ε′j}) is a purely algebraic
quantity, not depending on the regime or on the

magnetic field, while Sh({λ}) is a matrix depend-
ing on the density function ρh(λ) describing the

ground state, solution of the Lieb equation, and

hence which depends both on the regime and on

the value of the magnetic field h.

7. Conclusions

We have described a general approach to com-

pute correlation functions of lattice quantum in-

tegrable models, with the XXZ Heisenberg spin-
1
2 chain in a magnetic field as a typical exam-

ple. The main ingredients are the solution of the

quantum inverse scattering problem [7, 13] and

the scalar product formula [7, 53].

10
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Our method should now be extended to tem-

perature and time dependent correlation func-

tions. Another very important problem concerns

the long distance asymptotics and the scaling

limit (the limit in which the lattice spacing goes

to zero, while the number of sites N goes to infin-

ity, their product being kept fixed). This would

open the possibility to consider also the quantum

integrable field theory models. Another route to-

wards this goal would be to solve the quantum

inverse problem directly for the lattice versions

of quantum integrable field theory models, along

the lines described in [13] for higher spin Heisen-

berg chains. In this context, we will have to deal

with quantum Lax operators having infinite di-

mensional representation auxiliary space. I ex-

pect the resulting reconstruction expressions for

the local quantum fields, at least for the most

simple cases, to be given by formulas very simi-

lar to the infinite spin limit of the result for spin-s

Heisenberg chains [13].
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