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Abstract: In this talk we presented the results of hep-th/9912226, 0001216 and 0005270. The reader

may consult these references. In this very short note, following hep-th/0001216, we express the well

known bosonic brane as a non-linear realisation. References to related work can be found in this paper.

1. The Theory of Non-linear Real-

izations

We first briefly review the theory of non-linear re-

alizations set out by Coleman, Wess and Zumino

and extended by Volkov. Rather than consider a

general group we restrict ourselves to the (super)

group G whose generators can be divided into

the two sets K and H . The sets K and H are

both supgroups of G and H is the automorphism

group, of K. The generators in each of the above

two classes are further divided as K = {K,K ′}
and R = {R,R′}. The generators K and R both
form subalgebras of the Lie (super) algebra G

whose associated groups we denote by K and H

respectively. The generators of H are an auto-

morphisms of K. The division of the generators

of G into these four classes corresponds to:

K, unbroken generators associated with po-

sitions in (super) space-time,

K’ spontaneously broken generators associ-

ated with positions in (super) space-time,

R, unbroken automorphism generators,

R’, spontaneously broken auotmorphism gen-

erators.

The automorphism generators include those

of the Lorentz group or its covering group the

corresponding Spin group, in some cases inter-

nal group generators, but also other generators

which are not usually considered.

¿From now on we will drop the prefix (su-

per), but it is to be understood to be present.

As will be clear, the objects associated with the

group G carry an underlined indices while those

associated with the subgroup G carry no under-

line. The decomposition of the former into the

latter and the remainder is achieved using un-

primed and primed indices respectively.

We wish to consider the coset G/H . For sim-

plicity we will use an exponential description of

group elements and we may then choose the coset

representatives to be

g = eX·KeX
′·K′eφ

′·R′ (1.1)

In this equation · denotes the relavent summation
over the indices. Under any rigid group transfor-

mation g0 we find that

g → g0g = ĝ = e
X̂·KeX̂

′·K′eφ̂
′·R′ho (1.2)

where h0 is an element of H . The Cartan forms

are given by

g−1dg = F ·K + F ′ ·K ′ + ω′ ·R′ + ω ·R (1.3)
Under equation (1.2) the Cartan forms transform

as

ĝdĝ = h0(g
−1dg)h−10 + h0dh

−1
0 (1.4)

It can happen that the Cartan forms carry a re-

ducible representation of H , in which case, cer-

tain of the forms can be set to zero. This is

the so called inverse Higgs effect. It has the ef-

fect of eliminating some of the Goldstone fields
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in terms of the others. The action or equations

of motion are to be constructed from the Cartan

forms in such a way that they are invariant under

the transformations of equation (1.2).

The conventional interpretation of the above

equations is to regard the X as the coordinates of

(super) space-time and to take the fields X ′ and
φ′ to depend on them. This leads to a field theory
on the coset space G/H . This approach has been

almost universally adopted. However, when con-

sidering branes it is instructive to consider a more

general possibility. The brane is moving through

the coset space G/H with tangent group H and

sweeps out a submanifold that has the dimen-

sions of the cosetG/H and a tangent space group

H . We therefore consider the representatives of

the coset G/H of equation (1.2) to depend on

the variables ξ which parametrises the embedded

submanifold. Since the Cartan forms involve the

exterior derivative d they are independent of the

coordinate system used. The Cartan forms asso-

ciated with K are given by F · K = dξ · F · K
and similarly for the other Cartan forms. We

can think of the F in this equation as the viel-

bein on the embedded submanifold. The covari-

ant derivatives of the Goldstone fields associated

with K ′ are defined by

F ′ ·K ′ ≡ F ·∆X ′ ·K ′ = dξ ·F−1 ·F ′ ·K ′. (1.5)

The ∆X ′ are independent of reparamenterisa-
tions in the paprameters ξ. A similar construc-

tion can be made for the covariant derivatives of

φ′. When identifying the fields that can be set
to zero, i.e. use the inverse Higgs mechanism, we

must not only maintain the G invariance of equa-

tion (1.2) and also reparameterisation invariance.

In effect, this means setting only those covari-

ant derivatives of the Goldstone fields in equa-

tion (1.5) that transform in a covariant manner

under h0 to zero. The equations of motion, or

action, are to be constructed from the vielbein

and the covariant derivatives of the Goldstone

fields that remain. In this way one can find a

formulation of brane dynamics that is reparame-

terisation invariant and also invariant under the

rigid G transformations of equation (1.2). From

this approach we can recover the more conven-

tional approach by using the reparameterisation

invariance to choose static gauge, i.e. X = ξ for

those coordinates that lie in the brane directions.

2. Bosonic Branes

In this section we will show that the dynam-

ics of bosonic p-branes in a flat background in

D dimensional space-time arises as a non-linear

realization in the sense of the previous section.

We take G = ISO(D − 1, 1) with K = {Pn}
and H = {Jnm} where n,m = 0, 1 . . . , D − 1
and G = ISO(p, 1) with K = {Pn} and H =
{Jnm, Jn′m′} where n,m = 0, 1, . . . , p + 1 and
n′,m′ = p+ 1, . . . , D− 1. This is to be expected
as the presence of the p-brane clearly breaks the

background space-time group ISO(D − 1, 1) to
ISO(p, 1) × SO(D − p − 1). The Lie algebra of
ISO(D − 1, 1) is given by
[Jnm, Jpq] = −ηnpJmq−ηmqJnp+ηnqJmp+ηmpJnq

(2.1)

[Pn, Jpq] = +ηnpPq − ηnqPp (2.2)

We can write the coset representatives in the

form

g(X,φ) = exp(XnPn +X
n′Pn′)exp(φ

nm′Jnm′)

≡ exp(XnPn)exp(φ · J) (2.3)

We distinguish X from X ′ by the indices they
carry, in other words the prime on the X is un-

derstood to be present and we just write Xn
′
.

We also drop the prime on φ from now on. The

Cartan forms are given by

g−1dg ≡ enPn + fn′Pn′ +Ωnm′Jnm′
+ wn

′m′Jn′m′ + w
nmJnm

(2.4)

which we may express as

g−1dg = exp(−φ · J)(dXnPn)exp(φ · J)
+ exp(−φ · J)dexp(φ · J) (2.5)

A straightforward calculation shows that

en = dXmΦm
n = −2φnm′dXm′ + dXn + . . .

fn
′
= dXmΦm

n′ = −2φn′mdXm + dXn′

Ωnm
′
= dφnm

′

wn
′m′ = (φpn

′
dφ m

′
p − (n′ ↔ m′),

wnm = (φp
′ndφ mp′ − (n↔ m)) (2.6)

2
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where Φn
m is defined by exp(−φ · J)Pnexp(φ ·

J) ≡ ΦnmPm = Pn + 2φ mn Pm + . . . and + . . .
means higher order terms in φnm.

Under a group transformation, g0g(X,φ) =

g(X̂, φ̂)h0, the Cartan forms transform in accord

with equation (1.4). The effect of taking Pn
transformations in g0 is to simply to shift the X

n

while the Cartan forms are left invariant. Writ-

ing h0 = 1 + r
nmJnm, we find that

ên = en − 2epr np , f̂n
′
= fn

′
,

Ω̂nm
′
= Ωnm

′
+ 2rpnΩ m′

p − 2rpm′Ω n
p

(2.7)

ŵnm = wnm − 2(rnpw mp − (n↔ m)) + drnm
(2.8)

to lowest order in rnm. Similar results hold for

Jn′m′ . The fields e
n and fn

′
transform as ex-

pected under the Lorentz group SO(p, 1)×SO(D−
p− 1).
Clearly, we can set fn

′
= 0 and preserve

SO(1,D-1) and reparameterisation symmetry. At

the linearized level, examining equation (2.7) we

find it implies that dXn
′
= 2φn

′
mdX

m or

2φn
′
m =

∂ξp

∂Xm
∂Xn

′

∂ξp
(2.9)

If we choose static gauge this equation becomes,

2φn
′
m =

∂Xn
′

∂Xm
, (2.10)

While solving for fn
′
= 0 to all orders may be

complicated it is clear that its content is to solve

for φn
′
m in terms of ∂mX

n′ .

What is really of interest to us is the non-

linear form of en once we have solved this con-

straint fn
′
= 0. Examining equation (2.7) we

find that the vector fn ≡ (en, fn′) is related by a
Lorentz transformation to the vector (dXn, dXn

′
)

= dXn. As such,

e np ηnme
m
q = ∂pX

n∂qX
mηnm (2.11)

since fn
′
= 0. The above expression is invari-

ant under g0 transformations. A worldvolume

reparameterisation and group invariant action is

therefore given by∫
dpξ dete =

∫
dpξ
√
−det(∂pXn∂qXmηnm)

(2.12)

In other words, the well known generalisation of

the Nambu action for the string to a p-brane fol-

lows in a straightforward consequence of taking

the non-linear realization of ISO(D − 1, 1) with
subgroup SO(p, 1)× SO(D − p− 1).
Clearly, had we not included the Lorentz group

in our coset and introduced the corresponding

Goldstone bosons the veilbein on the brane would

have been trivial and we would not have found

the above action.

Although in this note we have only realised

the bosonic branes as non-linear realisations, the

branes of M- theory follow a similar pattern. For

these branes the Lorentz group is replaced by the

automorphism group of the corresponding super-

symmetry algebra and the field strengths of the

world-volume gauge fields arise as the Goldstone

bosons for some of the genreators in this auto-

morphism group.
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