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Abstract: I discuss the connection between neutrino masses and leptogenesis. I use three prime
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1. Origin of Neutrino Mass

Recent neutrino experiments [1, 2, 3], which are

most naturally explained by neutrino oscillations,

are strong indications that neutrinos are massive

and mix with one another. So where do neu-

trino masses come from? In the minimal Stan-

dard Model, neutrinos appear only as left-handed

fields in three electroweak doublets (νi, li)L, where

i = 1, 2, 3 is the family index. Charged leptons

li have right-handed components which are sin-

glets, but not neutrinos. Hence neutrinos are

massless two-component fermions, as long as there

is no physics beyond the minimal Standard Model.

Otherwise, there may be an effective dimension-5

operator [4]

1

Λ
(νiφ

0 − liφ+)(νjφ0 − ljφ+), (1.1)

where (φ+, φ0) is the standard Higgs doublet and

Λ is a large mass, which yields a nonvanishing

Majorana neutrino mass matrix as φ0 acquires a

nonzero vacuum expectation value in the sponta-

neous breaking of the SU(2)× U(1) electroweak
gauge symmetry.

All models of neutrino mass with the same

low-energy particle content as that of the mini-

mal Standard Model differ only in the way the

above effective operator is realized [5]. The most

well-known such model by far is the canonical

seesaw model [6], where three right-handed neu-

trino singlets with large Majorana masses are

added. This amounts to inserting a heavy inter-

nal fermion line between the two singlet factors

of Eq. (1.1). The corresponding diagram can be

read off to obtain the neutrino mass matrix as

(Mν)ij =
fifj〈φ0〉2
mN

, (1.2)

where fi are the Yukawa couplings linking νi
with the heavy singlet N with mass mN . Obvi-

ously, we need threeN ’s to obtain three naturally

small seesaw masses for νe, νµ, and ντ . On the

other hand, other mechanisms are available [5],

the simplest alternative being the addition of a

heavy scalar triplet [7]. This is easily recognized

if we rewrite Eq. (1.1) as

1

Λ
[νiνjφ

0φ0−(νilj+liνj)φ0φ++liljφ+φ+], (1.3)

hence an insertion of the heavy scalar triplet

ξ = (ξ++, ξ+, ξ0) (1.4)

into the above yields a neutrino mass matrix given

by

(Mν)ij =
2fijµ〈φ0〉2

m2ξ
, (1.5)

where fij are the Yukawa couplings of ξ to the

lepton doublets and µ is its coupling (with the

dimension of mass) to the scalar doublets. Note

that Eq. (1.5) can also be interpreted as due to

〈ξ0〉, i.e. [7]

〈ξ0〉 = µ〈φ0〉2
m2ξ

<< mξ. (1.6)

This shows explicitly that the vacuum expecta-

tion value of a heavy scalar field may in fact be

very small.

mailto:ma@phyun8.ucr.edu
http://jhep.sissa.it/stdsearch?keywords=neutrino_mass+leptogenesis+$R$_parity


Third Latin American Symposium on High Energy Physics by Ernest Ma

2. Leptogenesis

Given that lepton number is not conserved in

models of Majorana neutrino masses, the attrac-

tive possibility exists that a primordial lepton

asymmetry may be created in the early Universe,

which then gets converted into the present ob-

served baryon asymmetry through the B + L

violating, but B − L conserving interactions of
the electroweak sphalerons [8]. In the canoni-

cal seesaw model, this is accomplished [9] by the

decays of Ni. Being Majorana fermions, N1,2
may decay into either l−φ+ with L = 1 or l+φ−

with L = −1. Consider now the amplitude for
N1 → l+φ−. It is the sum of 3 terms: the ob-
vious tree graph, the one-loop vertex correction

with

N1 → l−φ+ → φ−l+ (2.1)

through the exchange of N2, and the one-loop

self-energy correction with

N1 → l−φ+ → N2 → l+φ−. (2.2)

Let this amplitude be denoted by A+ iB, where

B is the absorptive part, i.e. from putting the

intermediate state l−φ+ on the mass shell. Then
the lepton asymmetry from the decay of N1 is

proportional to

|A+ iB|2 − |A∗ + iB∗|2 = 4Im(A∗B). (2.3)

This means that CP violation is essential and

that the presence of a different N , i.e. N2, in the

loop is necessary for leptogenesis.

Since 1995, there has been a resurgence of

activity [10] in this topic. Consider N1,2 and the

mass matrix linking (N1L, N2L, N1RN2R) with

(N1L, N2L, N1R, N2R):

MN =

[
0 M
M̃ 0

]
, (2.4)

where

M =

[
M1 +H11 H12

H12 M2 +H22

]
, (2.5)

M̃ =

[
M1 +H11 H̃12

H̃12 M2 +H22

]
, (2.6)

and

H12 = [M1
∑
α

h∗α1hα2 +M2
∑
α

hα1h
∗
α2]

×
[
gdispα12 −

i

32π

]
, (2.7)

H̃12 = [M1
∑
α

hα1h
∗
α2 +M2

∑
α

h∗α1hα2]

×
[
gdispα12 −

i

32π

]
, (2.8)

Hjj = 2Mj
∑
α

|hαj |2
[
gdispαjj −

i

32π

]
. (2.9)

Note that H̃12 6= H∗12 because of the absorptive
contribution, hence MN is not hermitian. This

is analogous to K−K or B−B mixing when the
decay of the particles is also taken into account.

The self-energy correction to MN implies that

mass eigenstates need not be CP eigenstates, i.e.

indirect CP violation as exemplified by the ε pa-

rameter. The vertex correction to MN implies

that CP may be violated in the decay itself, i.e.

direct CP violation as exemplified by the ε′ pa-
rameter. N1 − N2 oscillations may also occur.

However, all these things happen in an expand-

ing Universe, i.e in a dense, hot medium which is

changing with time, hence the exact details are

complicated and are still being worked out [10].

The primordial lepton asymmetry is gener-

ated from the decay of the lightest N , i.e. N1:

δ ' GF

2π
√
2

1

(m†DmD)11

∑
j=2,3

Im(m†DmD)
2
1j

M1

Mj
,

(2.10)

where mD is the Dirac mass matrix linking ν

with N , and M1 << Mj has been assumed.

This expression [11] can then be used to study

neutrino masses and mixing from atmospheric

[1] and solar [2] neutrino oscillations and to ex-

tract information [13] on N1. The range 10
9 −

1013 GeV for M1 is found to be consistent with

nB/g∗nγ ∼ 10−10. Since the self-energy contri-
bution is proportional to M1/(M2 −M1), δ may
be enhanced if M2 −M1 << M1, but the limit

M2−M1 → 0 is not singular [12], as it is bounded
by the decay width of N1.

3. Triplet Higgs Model

If neutrino masses come from heavy triplet scalars

[7], then the mixing of ξ1 and ξ2 through their

absorptive parts, i.e. self-energy contributions,

leads to the physical mass eigenstates ψ1 and ψ2
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which are not CP eigenstates. Their decay asym-

metries are given by

δi '
Im[µ1µ

∗
2

∑
k,l f1klf

∗
2kl]

8π2(M2
1 −M2

2 )

Mi

Γi
, (3.1)

and forM1,2 ∼ 1013 GeV, realistic neutrino masses
and leptogenesis are possible.

4. Neutrino Masses from R Parity

Violation

I now come to my third example which is the

generation of neutrino masses through R parity

violation in supersymmetry [14]. The well-known

superfield content of the Minimal Supersymmet-

ric Standard Model (MSSM) is given by

Qi = (ui, di)L ∼ (3, 2, 1/6), (4.1)

uci ∼ (3∗, 1,−2/3), (4.2)

dci ∼ (3∗, 1, 1/3), (4.3)

Li = (νi, li)L ∼ (1, 2,−1/2), (4.4)

lci ∼ (1, 1, 1); (4.5)

H1 = (φ̄
0
1,−φ−1 ) ∼ (1, 2,−1/2), (4.6)

H2 = (φ
+
2 , φ

0
2) ∼ (1, 2, 1/2). (4.7)

Given the above transformations under the stan-

dard SU(3) × SU(2) × U(1) gauge group, the

corresponding superpotential should contain in

general all gauge-invariant bilinear and trilinear

combinations of the superfields. However, to for-

bid the nonconservation of both baryon number

(B) and lepton number (L), each particle is usu-

ally assigned a dicrete R parity:

R ≡ (−1)3B+L+2j, (4.8)

which is assumed to be conserved by the allowed

interactions. Hence the MSSM superpotential

has only the terms H1H2, H1Lil
c
j , H1Qid

c
j , and

H2Qiu
c
j . Since the superfield ν

c
i ∼ (1, 1, 0) is ab-

sent, mν = 0 in the MSSM as in the minimal

Standard Model. Neutrino oscillations [1, 2, 3]

are thus unexplained.

Phenomenologically, it makes sense to require

only B conservation (to make sure that the pro-

ton is stable), but to allow L violation (hence

R parity violation) so that the additional terms

LiH2, LiLj l
c
k, and LiQjd

c
k may occur. Note that

they all have ∆L = 1. Neutrino masses are now

possible [15] with Eq. (1.1) realized in two ways.

From the bilinear terms

−µH1H2 + εiLiH2, (4.9)

a 7 × 7 neutralino-neutrino mass matrix is ob-
tained:


M1 0 −g1v1 g1v2 −g1ui
0 M2 g2v1 −g2v2 g2ui

−g1v1 g2v1 0 −µ 0

g1v2 −g2v2 −µ 0 εi
−g1ui g2ui 0 εi 0



,

(4.10)

where v1,2 = 〈φ01,2〉/2 and ui = 〈ν̃i〉/2, with
i = e, µ, τ . Note first the important fact that

a nonzero εi implies a nonzero ui. Note also that

even if ui/εi is not the same for all i, only one

linear combination of the three neutrinos gets a

tree-level mass [16]. From the trilinear terms,

neutrino masses are also obtained, but now as

one-loop radiative corrections. Note that these

occur as the result of supersymmetry breaking

and are suppressed by m2d or m
2
l .

5. L Violation and the Universe

As noted earlier, the R parity violating interac-

tions have ∆L = 1. Furthermore, the particles

involved have masses at most equal to the super-

symmetry breaking scale, i.e. a few TeV. This

means that their L violation together with the

B + L violation by sphalerons [8] would erase

any primordial B or L asymmetry of the Uni-

verse [17]. To avoid such a possibility, one may

reduce the relevant Yukawa couplings to less than

about 10−7, but a typical minimum value of 10−4

is required for realistic neutrino masses. Hence

the existence of the present baryon asymmetry

of the Universe is unexplained if neutrino masses

originate from these ∆L = 1 interactions. This is

a generic problem of all models of radiative neu-

trino masses where the L violation can be traced

to interactions occuring at energies below 1013

GeV or so.

6. Leptogenesis from R Parity Vio-

lation

Once the notion of R parity violation is intro-
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duced, there are many new terms to be added in

the Lagrangian. Some may be responsible for re-

alistic neutrino masses and may even participate

in the erasure of any primordial B or L asymme-

try of the Universe, but others may be able to

produce a lepton asymmetry on their own which

then gets converted into the present observed

baryon asymmetry of the Universe through the

sphalerons. A recent proposal [18] shows how

this may happen in a specific model.

Consider the usual 4×4 neutralino mass ma-
trix in the (B̃, W̃3, h̃

0
1, h̃

0
2) basis:




M1 0 −sm3 sm4
0 M2 cm3 −cm4

−sm3 cm3 0 −µ
sm4 −cm4 −µ 0


 , (6.1)

where s = sin θW , c = cos θW , m3 = MZ cosβ,

m4 = MZ sinβ, and tanβ = v2/v1. The above

assumes that εi and ui are negligible in Eq. (4.10),

which is a good approximation because neutrino

masses are so small. We now choose the special

case of

m3, m4 << M2 < M1 < µ. (6.2)

As a result, the two higgsinos h̃01,2 form a heavy

Dirac particle of mass µ and the other two less

heavy Majorana fermion mass eigenstates are

B̃′ ' B̃ +
scδr1

M1 −M2 W̃3 + ..., (6.3)

W̃ ′
3 ' W̃3 − scδr2

M1 −M2 B̃ + ..., (6.4)

where δ =M2
Z sin 2β/µ, and

r1,2 =
1 +M1,2/µ sin 2β

1−M2
1,2/µ

2
. (6.5)

We now observe that whereas B̃ couples to

both l̄L l̃L and l̄
c
Ll̃
c
L, W̃3 couples only to l̄Ll̃L be-

cause lcL is trivial under SU(2)L. On the other

hand, R parity violation implies that there is

l̃L−h− mixing as well as l̃cL−h+ mixing. There-
fore, both B̃′ and W̃ ′

3 decay into l
±h∓ and may

be the seeds of a lepton asymmetry in such a

scenario.

Let the l̃L− h− mixing be very small (which
is a consistent assumption for realistic neutrino

masses from bilinear R parity violation). Then

W̃ ′
3 decays only through its B̃ component. Hence

the decay rate of the LSP (Lightest Supersym-

metric Particle), i.e. W̃ ′
3, is very much suppressed,

first by δ and then by the l̃cL − h+ mixing which
will be denoted by ξ. Our construction is aimed

at satisfying the out-of-equilibrium condition:

Γ(W̃ ′
3 → l±h∓) < H = 1.7

√
g∗(T 2/MPl) (6.6)

at the temperature T ∼M2, whereH is the Hub-
ble expansion rate of the Universe with g∗ the
effective number of massless degrees of freedom

and MPl the Planck mass. This implies

(
ξ|δ|r2

M1 −M2

)2
1

M2
< 1.9× 10−14GeV−1, (6.7)

where we have used g∗ = 102 and MPl = 1018

GeV.

The lepton asymmetry generated from the

decay of W̃ ′
3 has both vertex and self-energy loop

contributions from the insertion of B̃′. However,
the coupling of B̃′ to l±h∓ is suppressed only
by ξ and not by δ, thus a realistic asymmetry

may be established if ξ is not too small. Let

x ≡ M2
2 /M

2
1 , then the decay asymmetry of W̃

′
3

is given by

ε =
αξ2

2 cos2 θW

Imδ2

|δ|2
√
xg(x)

1− x , (6.8)

where

g(x) = 1 +
2(1− x)

x

[(
1 + x

x

)
ln(1 + x) − 1

]
.

(6.9)

The phase of δ comes from the relative phase

between M1 and M2.

To make sure that at T ∼ M2, the L violat-

ing processes l±h∓ ↔ l∓h± through B̃′ exchange
do not erase ε, we require

(
2e2ξ2

cos2 θW

)2
1

M2
1

T 3

32π

f(x)

(1− x)2 < H (6.10)

at T ∼M2, where

f(x) = 1 +
2(1− x)
x2

[(1 + 3x) ln(1 + x)

− x(1 + x)], (6.11)

which implies

ξ4

M2

xf(x)

(1− x)2 < 2.6× 10
−14GeV−1. (6.12)
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A sample solution is

M1 = 3 TeV,
δ

M1 −M2 = 8.3× 10
−4,

M2 = 2 TeV, ξ = 2× 10−3. (6.13)

In that case,

ε = 3.6× 10−8 Imδ2/|δ|2, (6.14)

and

nB

g∗nγ
∼ ε

3g∗
∼ 10−10 Imδ

2

|δ|2 . (6.15)

Hence realistic leptogenesis is possible if ξ ∼ 10−3
can be obtained.

The origin of l̃cL − h+ mixing in R parity vi-
olation is usually the term H1L̃l̃

c, which is very

small because 〈ν̃〉 has to be very small. To ob-
tain ξ ∼ 10−3, we need to add the nonholomor-
phic [19] term H†2H1 l̃

c which is generally uncon-

strained.

7. Conclusion

Given a mechanism for generating small Majo-

rana neutrino masses, it is often a bonus to find

that leptogenesis is possible at the same time.

In the canonical seesaw and triplet Higgs mod-

els, the same new physics is responsible for both.

In R parity nonconserving supersymmetry, they

may come from different sectors of the theory.
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