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Abstract: We present an exact supersymmetric solution of 5-dimensional supergravity. We show

that it represents the RG flow from N=4 SYM deformed with a mass term for the fermions to an IR

N=1 super Yang-Mills theory. We discuss the properties of the solution and we briefly comment on

the fate of the singularity. We also compare the supergravity results with the expectations of an N=1

SYM at strong coupling.

1. Introduction

The AdS/CFT can be interestingly extended to

the analysis of non-conformal field theory. For

example, it is possible to construct the super-

gravity duals of RG flows [1]-[14]. RG flows in a

d-dimensional QFT correspond to type II or M-

theory supergravity backgrounds that break the

full O(d, 2) invariance while preserving at least

d-dimensional Poincaré invariance, and that are

asymptotically AdS. Many results have been ob-

tained upon reduction to a d+1-dimensional ef-

fective theory, where the RG flow can be studied

in terms of a theory of scalar fields coupled to

gravity. In this picture flows between CFTs are

given by kinks solutions interpolating between

two AdSd+1 vacua, while flow to non-conformal

IR field theories are given by solutions with only

one asymptotic AdS region and approaching in-

finity on the other side.

Flows to non-conformal theories are actually

the most problematic. Since it is very rare to

have the full analytical solution, it is not always

clear what is their QFT interpretation: deforma-

tions of an UV fixed point versus the same the-

ory in a different vacuum [15, 16]. Another im-

portant point is the reliability of these solutions,

which all present a (typically naked) singularity

in the IR region of the flow. Since the curva-

ture and the kinetic terms for the scalars typi-

∗The work presented in this talk was done in collabo-
ration with L. Girardello, M. Porrati and A. Zaffaroni.

cally diverge in the IR region, large corrections

to supergravity may be expected. By itself, this

does not immediately implies that all the other

non-conformal solutions should be discarded.

It is therefore interesting to study examples

where comparisons with the field theory results

can be made.

Here we focus on the flow from N=4 SYM to

pure N=1 SYM1 Despite the singularity, super-

gravity results are in good qualitative agreement

with quantum field theory expectations: quarks

confine, monopoles are screened, and there is a

gaugino condensate.

2. The flow to N=1 SYM

Consider a deformation of N=4 Super Yang-Mills

theory with a supersymmetric mass term for the

three fermions in the chiral N=1 multiplets. In

N=1 notations, this is a mass term for the three

chiral superfields Xi
∫
d2θmijTrXiXj + c.c., (2.1)

where mij is a complex, symmetric matrix.

The theory flows in the IR to pure N=1 Yang-

Mills, which confines. To obtain the standard

N=1 pure Yang-Mills with fixed scale Λ, we need

a fine tuning of the UV parameters, in which

1A more general and complete discussion of the 5d

approach to RG flows can be found in A. Zaffaroni’s talk

at this conference.
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the mass m diverges while the ’t Hooft coupling

constant, x, goes to zero as an (inverse) loga-

rithm of m. This is outside the regime of va-

lidity of supergravity, which requires a large x.

We can think of m as a regulator for N=1 SYM.

When embedded in N=4 SYM, the theory is fi-

nite. To get a well defined N=1 SYM, we re-

move the cut-off (m → ∞) with a fine tuning
of the coupling (x(m) → 0). However, if we use
supergravity, we are in the large x regime. The

massive modes have a mass comparable with the

scale of N=1 SYM and they do not decouple.

We can think of this as a theory with an ultravi-

olet cut-off. A good analogy is with lattice gauge

theory. 1/m corresponds to the lattice spacing.

The continuum limit is obtained with a fine tun-

ing a → 0, g(a) → 0. However we can study

the lattice theory at strong coupling, far from

the continuum limit. A standard computation at

strong coupling (by Wilson) gives the area law.

We are just doing analogous computations with

supergravity. Qualitative features of the theory

should hold also at strong coupling.

We want now to construct the five-dimensio-

nal supergravity solution corresponding to this

deformation. The 5-dimensional action for the

scalars [17]

L =
√−g

[
−R
4
− 1
24
Tr (U−1∂U)2 + V (U)

]
,

(2.2)

is written in terms of a 27× 27 matrix U , trans-
forming in the fundamental representation of E6
and parametrising the coset E6/USp(8). In a

unitary gauge, U can be written as U = eX , X =∑
a λaTa, where Ta are the generators of E6 that

do not belong to USp(8). This matrix has ex-

actly 42 real independent parameters, which are

the scalars of the supergravity theory. They trans-

form in the following SO(6) representations: 10c,

20, and 1c. The supersymmetric mass term for

the chiral multiplets, mij , transforms as the 6 of

SU(3) ∈ SU(4) (SO(6) ∼ SU(4)), and the cor-

responding supergravity mode appears in the de-

composition of the 10→ 1+6+3 of SU(4) under
SU(3)×U(1). The term 1 in this decomposition
corresponds instead to the scalar σ dual to the

gaugino condensate in N=1 SYM. In principle,

a generic non-zero VEV for mij will induce non-

zero VEVs for other scalars as well, due to the

existence of linear couplings of m to other fields

in the potential. However, if we further impose

SO(3) symmetry, by taking mij proportional to

the identity matrix, a simple group theory exer-

cise shows that all the remaining fields can be

consistently set to zero. This is true also if we

consider a two-parameter Lagrangian depending

on both m and σ. This felicitous circumstance

makes an apparently intractable problem very

simple and exactly solvable.

The actual computation is reported in [11].

The result for the action for m and σ (the reason

why we are considering both modes will be clear

very soon) is

L =
√−g{−R

4
+
1

2
(∂m)2 +

1

2
(∂σ)2 +

−3
8
[(cosh

2m√
3
)2 + 4 cosh

2m√
3
cosh 2σ

−(cosh 2σ)2 + 4]}. (2.3)

In ref. [8, 18] the conditions for a supersymmetric

flow were found. For a supersymmetric solution,

the potential V can be written in terms of a su-

perpotential W as

V =
1

8

n∑
a=1

∣∣∣∣∂W∂λa
∣∣∣∣
2

− 1
3
|W |2 , (2.4)

where W is one of the eigenvalues of the ten-

sor Wab defined in [17]. As usual, a solution for

which the fermionic shifts vanish, automatically

satisfies the equations of motion. Moreover, this

shortcut reduces the second order equations to

first order ones

λ̇a =
1

2

∂W

∂λa
, (2.5)

φ̇ = −1
3
W. (2.6)

The action has the supersymmetric form (2.4)

with W = − 34
(
cosh 2m√

3
+ cosh 2σ

)
. The first

order equations (2.6) read

φ̇ =
1

2

(
1 + cosh

2m√
3

)
(2.7)

ṁ = −
√
3

2
sinh

2m√
3
, (2.8)

σ̇ = −3
2
sinh 2σ. (2.9)
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One interesting feature of the solution is that the

equations can be analytically solved. To the best

of our knowledge, there is only another exam-

ple of analytically solvable flow, describing the

Coulomb branch of N=4 SYM [9]. The solution

in our case is:

φ(y) =
1

2
log[2 sinh(y − C1)] +

+
1

6
log[2 sinh(3y − C2)], (2.10)

m(y) =

√
3

2
log

[
1 + e−(y−C1)

1− e−(y−C1)
]
, (2.11)

σ(y) =
1

2
log

[
1 + e−(3y−C2)

1− e−(3y−C2)
]
. (2.12)

Here y is the fifth coordinate of AdS5, which we

interpret as an energy scale [19, 20]: y → ∞
corresponds to the UV regime while y → −∞ to
the IR. The metric has a singularity at y = C1
(A = 1/2)

ds2 = dy2 + |y − C1|dxµdxµ. (2.13)

Around this point m behaves as

m ∼ −
√
3

2
log(y − C1) + const. (2.14)

Here we assumed that C2 ≤ 3C1, so that at the
point where m is singular, σ is still finite.

2.1 Properties of the solution

Let us discuss the qualitative properties of the

N=1 SYM solution.

It is easy to see that the solution corresponds

to a true deformation of the gauge theory. In-

deed, m approaches the boundary in the UV

(y → ∞) as m ∼ e−y, which is the required be-
haviour of a deformation2. On the other hand, σ

has the UV behaviour appropriate for a conden-

sate σ ∼ e−3y. Let us stress that this behaviour
is enforced by the requirement of N=1 super-

symmetry along the flow. The interpretation of

the solution is therefore the following: upon per-

turbation with a mass term for the three chiral
2The field theory interpretation of a supergravity so-

lution depends on its asymptotic UV behaviour. Solu-

tions asymptotic to e−(4−∆)y describe deformations of
a CFT with the operator O(x), while solutions asymp-

totic to e−∆y correspond to the same theory in a differ-
ent vacuum where the operator O(x) has a non-zero VEV

[15, 16].

fields, the N=4 SYM theory flows in the IR to

pure N=1 SYM in a vacuum with a non-zero

gaugino condensate. The existence of a gaug-

ino condensate is one of the QFT expectations

for N=1 SYM.

We also expect the gauge theory to exhibit

confinement in the IR. We can easily compute a

two-point function for a minimally-coupled scalar

in the background with σ = 0. In our example,

the Schroedinger potential is

V (z) =
6 cos(2z) + 9

sin2(2z)
. (2.15)

It is obvious from the figure, that there is mass

gap and a discrete spectrum.

The AdS boundary

Figure 1: The potential for

the N=1 SYM flow.

is at z = 0 and the

singularity at z =

π/2. The 2-point

function for the mass-

less scalar correspond-

ing to F 2 can be

explicitly computed

[21]:

〈F 2(k)F 2(0)〉 ∼ k2(k2 + 4)Reψ(2 + ik). (2.16)

It approaches the conformal expression k4 log k

in the UV and it is analytic for small k, as ap-

propriate for a confining theory. It has poles for

M2 = −k2 = n2, n = 2, 3, ..., corresponding to

the F 2 glueball states in the spectrum.

Despite the presence of a singularity that in-

validates the supergravity approximation in the

IR, the qualitative properties of the solution agree

with the QFT expectations. There is however a

disturbing point: our solution depends on two

independent parameters C1 and C2. The first

one fixes the position of the singularity and it is

related to the magnitude of the mass deforma-

tion. The second one is instead related to the

magnitude of the gaugino condensate. We have

a chirally-symmetric vacuum and, more disturb-

ing, a continuous degeneracy of vacua with ar-

bitrary small condensate. We certainly expect

that the correct treatment of the singularity and

its resolution in string theory fixes the relation

between C1 and C2 in agreement with field the-

ory expectations. We do not still known how

3
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to resolve or deal with the singularity, therefore

we limit ourself to a brief discussion of the QFT

expectations and possible interpretations of the

singularity.

2.2 QFT and string expectations

Strong coupling QFT results for N=1 SYM have

been recently obtained and differ considerably

from the weak coupling ones [22]. At weak cou-

pling, spontaneous breaking of the chiral sym-

metry ZN gives N vacua that only differ for the

phase of the gaugino condensate< λλ >∼ e2πik/NΛ3N=1.
In the large N limit, we obtain a circle of vacua.

The magnitude of the gaugino condensate is fixed

in terms of the SYM scale ΛN=1 ∼ me−1/3Ng
2

.

At strong coupling instead, it was shown in [22]

that there is, at least for θ = 0, a distribution of

vacua with condensate < λλ >∼ m3x3/j2, j =

1, 2, ... with zero phase. The weakly coupled cir-

cle is lost, the condensate magnitude is not fixed

and the vacua have an accumulation point at

the origin (zero condensate). However, we no-

tice that the structure of vacua found in [22] has

many similarities with our supergravity result.

As independently noticed in [23], it is tempting

to identify the solution with C2 = 3C1 with the

j = 1 vacuum in [22]. The other solutions with

C2 ≤ 3C1 should correspond to the j 6= 0 vacua.
To see how the continuum of vacua in supergrav-

ity is reduced to a discrete numerable set, we

should understand how to include string correc-

tions in our computation. Notice that the so-

lution with σ = 0, which is not appealing on

the ground of weak coupling intuition, could be

nevertheless used as a (reasonable?) approxima-

tion for the many vacua with small condensate

at strong coupling.

The knowledge of the full 10 dimensional so-

lution would greatly help in understanding the

properties of the RG flow and in studying pos-

sible resolutions of the singularity. It may even

happen that the singularity is an artifact of the

dimensional reduction, that disappears in 10d.

This happens, for example, in the case of the

Coulomb branch of N=4 SYM [9], where the 10

dimensional background is just a regular continu-

ous distribution of D3-branes. A ten-dimensional

interpretation of the N=1 solution in terms of a

background with also D5-branes has been pro-

posed in [24]. We only notice that the ingredi-

ents in this interpretation (D5 and NS-branes)

have been independently suggested in [22] on the

basis of the strong coupling QFT analysis. Fi-

nally, we mention that a mechanism for resolving

singularities in distributions of branes which may

help, after the 10d lifting, has been proposed in

[25].

2.3 The Wilson loop

A complementary approach for checking confine-

ment is the computation of a Wilson loop, which

should manifest an area law behaviour. We need

to minimise the action for a string whose end-

points are constrained on a contour C on the

boundary. The detailed computation is reported

in [6, 11]. In the coordinates used in those pa-

pers, the quark-antiquark energy reads

E = S/T =

∫
dx
√
(∂xu)2 + f(u). (2.17)

where f(u) = T 2(u)e4φ(u). The phase of the the-

ory can be inferred by the IR behaviour of this

function (see [6] for a review of the various cases).

T (u) is the tension of the fundamental (in the

case of a quark) or of the D1 string (monopole)

in five dimensions, which in general is a non-

trivial function of the scalar fields. The 5d N=8

gauged supergravity has an SL(2, Z) symmetry

that allows to discriminate electric and magnetic

strings. They should couple to the 5d antisym-

metric tensors BIαµν , transforming in the (6, 2) of

SO(6) × SL(2, Z). The SO(6) index should ac-
count for the orientation of the strings on the

five-sphere, while the SL(2, Z) index should iden-

tify electric and magnetic quantities. On the ba-

sis of naive dimensional reduction from ten di-

mensions, the tensions can be read from the coef-

ficients of the kinetic term for the antisymmetric

tensors. In 10 dimensions, the tension of the fun-

damental string (or the D1-string) can be read

from the coefficient of the kinetic term for the

NS-NS (or R-R) antisymmetric tensor in the La-

grangian evaluated in the Einstein frame,

1

T 2F1
H2NS-NS +

1

T 2D1
H2R-R. (2.18)

A simple Weyl rescaling shows that this property

is valid also in the five-dimensional theory in the

Einstein frame.

4
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The kinetic terms for the anti-symmetric ten-

sors can be computed for the N=1 SYM solution

and behave asymmetrically in the SL(2, Z) in-

dices [11]. The final result for the tensions T (u)

of the fundamental strings and of the D1-strings

are, respectively,

T 2F1 = 4

(
cosh

4m√
3
+ cosh

2m√
3

)
, (2.19)

T 2D1 = 8

(
cosh

m√
3

)2
, (2.20)

so that the asymptotic behaviour of the corre-

sponding functions f(u) is

f(qq̄)(u) ∼ 1, f(mm̄)(u) ∼ |u− C1| . (2.21)

It is easy to check that f(qq̄)(u) is bounded

from below. It follows that the energy E ≥
cL, where L is the quark distance. It can be

easily proven that it is in fact E = cL, imply-

ing an area law behaviour for the Wilson loop,

as expected for a confining theory. The IR be-

haviour of f(mm̄)(u) implies, on the other hand,

that monopoles are screened (see [6] for a re-

view).

There is an apparent contradiction in the

previous reasoning. The 5d dilaton is not run-

ning in our solution. If the 10d dilaton were also

constant, the tension for a fundamental string

would be proportional to the tension of a D1-

string and the same would be true also after di-

mensional reduction to 5 dimensions. The 5d

tensions would be then complicated functions of

the scalars, but invariant under SL(2, Z). We

instead find an SL(2, Z) asymmetric result from

the N=8 gauged supergravity evaluated along our

solution. A possible way out is to assume that,

against naive expectations, the 10d dilaton is not

constant. We do not know of any argument that

rules out this possibility. Since we are not ex-

pert in reconstructing 10d solutions from 5d ones,

we just limit ourselves to consider this option

and perform some very preliminary check on the

equations of motion.

The 10d dilaton equation of motion is

∂2φ ∼ GMNPGMNP . (2.22)

Therefore, a non-vanishing anti-symmetric ten-

sor is a source for the dilaton. We can per-

form a check on our solution at the linearised

level. Consider a generic fluctuation of the anti-

symmetric tensor Bab = fI(y)Y
I±
[ab]. We refer

to [26] for notations and useful equations. Here

Y I±[ab], a, b = 1, ..., 5 are harmonic functions on the
five-sphere, transforming in the representation I

of SO(6). They satisfy εabcde∂cY[de] = ±2i(k +
2)Y[ab], where k is an integer labelling the har-

monic degree. It is then easy to check that

∂2φ ∼ 1
3
((∂yf)

2 − (k + 2)2f2)Y[ab]Y[ab] (2.23)

In our case (I = 10) k = 1. Since we are consider-

ing a deformation of the UV fixed point, f ∼ e−x,
we see that the dilaton must run. Notice that in-

stead, considering a different vacuum of the UV

theory, one has f ∼ e−3x, and the dilaton re-
mains constant (at least at the first perturbative

order).

We still need to check that Y[ab]Y[ab] 6= 0.
There is at least one example where Y[ab]Y[ab] =

0: the SU(3)×U(1) critical point of the N=8 su-
pergravity, whose 10d solution is explicitly known

[27]. In the product 10× 10 = 20 + ..., only the
indicated term contains scalar terms (SO(5) ∈
SO(6) singlets). It is easy to check that, decom-

posing 10 = 1+ 3+ 6 under SU(3)×U(1), the 1
term (related to the SU(3)×U(1) critical point)
has vanishing square. The N=1 mass term 6,

however, has non vanishing square.

This argument is certainly not a proof that

the 10d dilaton runs. However, we find this op-

tion appealing. A running of the 10d dilaton

would agree with an interpretation of our solu-

tion that includes branes others than the D3s.

In many respects, the knowledge of the explicit

10d solution would help us in understanding the

system, from the constituent branes to the fate

of the singularity. Using a D3-brane probe in the

10d background we could also explicitly compute

the running of the gauge coupling along the flow.
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