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Abstract:Wick rotation of supersymmetric theories is studied. In order to do this a comprehensive

prescription for the Wick rotation of spinor fields is presented. This allows the consistent Wick

rotation of the supersymmetry algebra and leads eventually to the Wick rotation of supersymmetric

field theories. Two complementary descriptions of the Euclidean theory are found. Either it involves

“doubled” spinor fields and is manifestly covariant under the Euclidean tangent space group or the

spinor fields are subject to a nonlocal projection which recovers the physical degrees of freedom but

breaks the tangent space symmetry group. This procedure is then applied to the Wess-Zumino model

and eleven-dimensional supergravity.

1. Introduction

Wick rotation has its history in the regularisa-

tion of quantum field theories. The path integral

weights paths with e−iS where S =
∫
d4xL(x) is

the action. Paths which correspond to large ac-

tion are suppressed as the exponential becomes

highly oscillatory. A Wick rotation is an analytic

continuation of the time co-ordinate

t→ −it . (1.1)

The aim is to make the action imaginary so that

the analytic continuation of e−iS has a real, nega-
tive exponent so that the path integral converges.

An area of much recent interest is instan-

ton physics. Instantons are defined in Euclidean

space so in order to perform instanton calcula-

tions in a “realistic” field theory, one must first

Wick rotate the theory. A particular example

which has generated much interest recently is in-

stanton cosmology [1]. This describes the cre-

ation of a universe as an instanton which, at a

certain size, continues into a Lorentzian space-

time. It is tempting to try to create this scenario

inside M-theory in which case one needs to know

the Wick rotation of 11-dimensional supergravity

to Euclidean space. There is no standard treat-

ment of Wick rotation in the literature. Indeed,
∗Work done in collaboration with K. S. Stelle

one can sometimes see different parts of the same

theory Wick rotated in different ways. Our aim

here is to present a clear prescription for Wick

rotation in the presence of supersymmetry.

The difficulty in performing a Wick rotation

on a theory containing spinors is that the rep-

resentations of spinors change as the signature

of the spacetime changes. The Wick rotation of

spinors was first considered by Osterwalder and

Schrader [2] from the point of view of construc-

tive QFT. Their aim was to directly construct a

field theory in Euclidean space which reproduced

the Green’s functions of a Minkowski space the-

ory, that is to look for a Euclidean spinor Ψ such

that

〈Ψα(x)Ψ∗β(y)〉 = 〈Tψα(x)ψδ(y)〉γ0δβ . (1.2)

This is not possible as the right hand side is not

Hermitian. To solve this they introduced two

Euclidean spinors Ψ(1) and Ψ(2) which are inde-

pendent and correspond to the Wick rotation of

ψ and ψ respectively. This is the phenomenon

of “fermion doubling” which we return to be-

low. This work was extended by Nicolai [3] who

used their treatment of Dirac spinors to define

Euclidean Majorana spinors. As supersymmet-

ric theories typically contain Majorana fermions

this allowed Nicolai to define Euclidean super-
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symmetric field theories.

There have been several other approaches

to Euclideanisation of theories involving spinors.

Most of these have at their heart the notion of

analytically continuing the time co-ordinate in

a continuous manner. Thus (1.1) would be re-

placed by

t→ e−iθt ,

where θ runs from 0 (Minkowski space) to π/2

(Euclidean space). These days we would describe

this as a T-duality in a timelike direction, effec-

tively embedding the D-dimensional Minkowski

theory in a space of signature (1, D) and rotating

to a theory in the D spacelike dimensions. This

approach was initially described by Mehta [4] and

more recently has been studied in [5]. These

papers consider the example of N = 2 super-
Yang-Mills in four dimensions, rotating this the-

ory to obtain a supersymmetric theory in four

Euclidean dimensions which involves Dirac spi-

nors. From the Kaluza-Klein point of view this

is all well known; both these theories are dimen-

sional reductions of the N = 1 super-Yang-Mills
theory in D = 5 + 1 dimensions. This proce-

dure is a valid means to arrive at a supersym-

metric Euclidean theory (one which was first pre-

sented by Zumino [6]). However we would argue

that the aim of Wick rotation is to produce a

theory which is a Euclidean-space description of

Minkowski-space physics. In this respect, these

approaches fail. One clear example of this is that

in Zumino’s theory there are two scalars which

have kinetic terms of opposite sign. This clearly

cannot represent Minkowski space physics as the

vacuum would be unstable with respect to one of

these scalars.

In this paper, we shall investigate the process

of Wick rotation in the presence of spinors. In or-

der to do this we start by introducing some of the

ideas in the relatively simple setting of a scalar

field theory. We then proceed to study spinors

in the Wick-rotated theory, following the work of

Osterwalder and Schrader and Nicolai. We focus

on Majorana spinors as we are interested eventu-

ally in the Wick rotation of supersymmetric field

theories. We analyse the supersymmetry algebra

in Euclidean space and show how this generates

supersymmetry in the Wick-rotated theory. Fi-

nally we apply these ideas to two theories. The

Wess-Zumino model is used as a simple exam-

ple of a supersymmetric theory. We also discuss

Wick rotation of 11-dimensional supergravity. A

more detailed exposition of the results presented

here will be given in [9].

2. Wick rotation and the tangent

space group

Scalar field in two dimensions

In general we will consider spacetimes with co-

ordinates x = (t,x). In this section, we will work

in two dimensions so the co-ordinates are x =

(t, x1). The metric is

ηµν =

(−1 0
0 1

)
, ηµνx

µxν = −t2 + x21 .

The basic operation of Wick-rotation is to ana-

lytically continue the time co-ordinate as

t→ −it . (2.1)

Under this, the canonical inner product becomes

ηµνx
µxν = −t2 + x21 → t2 + x21 = η̃µνx

µxν ,

which involves the expected “Euclidean” metric,

η̃µν = diag(1, 1).

The simplest example of Wick rotation, but

one which still has many interesting properties,

is the real scalar field φ(t, x). Under a Wick ro-

tation this becomes

φ(t, x1)→ Φ(t, x1) = φ(−it, x1) . (2.2)

We will define an operation # which is com-

plex conjugation followed by a Euclidean time-

reversal. As φ is real, the Euclidean field Φ has

the following “reality” condition

[Φ(x)]# ≡ [Φ(θx)]∗ = Φ(x) , (2.3)

where we have introduced the notation θx =

(−t, x1). This condition follows directly from the
reality condition in Minkowski space. What hap-

pens if we apply an SO(2) transformation? Con-

sider the simple example φ(x) = t + x1. The

Euclidean field is Φ(x) = −it + x1. Under the
infinitesimal SO(2) transformation

Û : x→ Ux = x+ δx , (2.4)

t→ t+ εx1 , x1 → x1 − εt , (2.5)
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the scalar field transforms into

Φ′(x) = ÛΦ(x) = Φ(Ux)

= −i(t+ εx1) + (x1 − εt) . (2.6)

We see that our naive “reality” condition (2.3) is

not consistent with the action of SO(2) in that

[Φ′(x)]# 6= Φ′(x) .

At a general point on the SO(2) orbit the only

“reality” condition we can impose is

[Û−1Φ′(x)]# = [Û−1Φ′(x)] . (2.7)

In section 3 we will see how to form a covariant

version of this condition.

Wick rotation: general prescription

We shall work inD dimensions. The co-ordinates

are (t,x) and we shall analytically continue t as

in (2.1). This procedure requires a choice of t

and breaks Lorentz covariance. Hence the only

part of the SO(1,D-1) tangent space group which

commutes with Wick rotation is the SO(D-1)

group which preserves t. The implication of this

is that the process of Wick-rotation should be

viewed in the following way:

• Start from a theory in D-dimensional Min-
kowski space with co-ordinates xµ,

SO(1,D-1) symmetry and metric

ηµν = diag(−1, 1, . . . , 1).

• Choose a preferred time co-ordinate t such
that we have co-ordinates (t, xk). This is

a gauge-fixing up to the SO(D-1) group

which acts on the xk.

• Perform the Wick-rotation t→ −it.
• The result is a theory inD-dimensional Eu-
clidean space but a theory which is gauge-

fixed. By this we mean that the only al-

lowed tangent space rotations are the

SO(D-1) group inherited from the Minkow-

ski theory.

However, this is clearly not the full story. The in-

ner product η̃µνx
µxν = δµνx

µxν is invariant un-

der SO(D) whereas the prescription above only

gives us an SO(D-1) symmetry group. In the

next section we will show how, by introducing

extra degrees of freedom, this can be extended

to the full SO(D) group required for a covariant

Euclidean theory. We shall now work in four di-

mensions, although the generalisation to higher

dimension is clear.

3. Spinor fields

The added complexity when dealing with spinors

is that one has to be careful which representa-

tions are allowed. In 3+1 dimensions, the mini-

mal spinor can be chosen to be Majorana or Weyl

while in four Euclidean dimensions we only have

a Weyl spinor. See the Appendix for Clifford al-

gebra and spinor conventions.

Dirac spinors

To define Dirac spinors in the Euclidean theory,

we start from the Minkowski spinor ψ and its

conjugate ψ = ψ†γ0. Using properties of the
γ-matrices we can see that the SO(1,D-1) sym-

metry of the Minkowski theory acts on these as

δψ =
1

4
ωµνγ

µγνψ , δψ = −ψ1
4
ωµνγ

µγν .

(3.1)

Let us consider the analytic continuation of ψ

and ψ separately:

ψ(t, x) → Ψ(1)(t, x) = ψ(−it, x) ,
ψ(t, x) → Ψ(2)(t, x) = [ψ(it, x)]†γ0 .

Before applying a Lorentz transformation we have

Ψ(2)(x) =
[
Ψ(1)(x)

]#
γ0 =

[
Ψ(1)(θx)

]†
γ0 .

(3.2)

Following the treatment of the scalar field, we

have defined the action of # on spinors as Her-

mitian conjugation followed by a Euclidean time-

reversal. This relationship is not SO(4)-covariant.

In order to proceed to an SO(4) covariant theory,

let us define the operator I by

IΨ(2)α (x) =
[
Ψ
(1)
β (θx)

]†
γ0βα ,

IΨ(1)α (x) =
[
Ψ
(2)
β (θx)

]†
γ0βα .

I is simply an operator which rewrites Ψ(2) in

terms of Ψ(1) and vice versa. At a general point

3
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on the SO(4) orbit given by x′ = Ux, the rela-

tionship (3.2) must be generalised to

Û−1Ψ(2)(x′) =
[
Û−1Ψ(1)(x′)

]#
γ0 . (3.3)

Bearing this in mind, we define an involution op-

erator Θ by

Θ ≡ Û ◦ I ◦ Û−1 . (3.4)

In terms of this, we have the discrete symmetry

ΘΨ(2)(x) =
[
Ψ(1)(x)

]#
γ0 , (3.5)

where θ(t,x) = (−t,x). The operator Θ is the
Osterwalder-Schrader involution operator. The

property Θ2 = 1 is evident from the definition

(3.4). Let us write an SO(4) element U which

rotates x into x′ by U(x′, x). The action of Θ is

ΘU(x′, x) = U(θx′, θx), (3.6)

ΘΦ(x) = [Φ(x)]
#
= [Φ(θx)]

∗
,

ΘΨ(1)α (x) =
[
Ψ
(2)
β (x)

]#
γ0βα ,

ΘΨ(2)α (x) =
[
Ψ
(1)
β (x)

]#
γ0βα .

Included above is the covariant treatment of the

real scalar field which was mentioned in section 2.

We now have two different descriptions of Wick

rotated spinor fields. On one hand, we can work

with doubled spinors, where Ψ(1) and Ψ(2) are

the Wick rotation of ψ and ψ and have a the-

ory which is manifestly SO(4) covariant in the

manner described above. On the other hand,

we can impose the involution (3.6) as a nonlo-

cal projection on the fields, for example setting

Ψ
(1)
α (x) =

[
Ψ
(2)
β (x)

]#
γ0βα. This halves the de-

grees of freedom (recovering the degrees of free-

dom of the Minkowski spinors) but breaks SO(4)

covariance.

Hermiticity of the action

In general, a theory in Minkowski space will have

a Hermitian action. We have seen above that

when a theory is mapped into Euclidean space

using a Wick rotation, Hermiticity is lost. The

corresponding symmetry of the Euclidean action

is Osterwalder-Schrader positivity, generated by

the involution Θ. Using the action of Θ defined

by (3.6), the statement of Osterwalder-Schrader

positivity of the Euclidean action is

ΘL(x) = [L(x)]# = [L(θx)]† . (3.7)

As an example of this, we know that, in Minkow-

ski space, the combination ψφψ is real and could

appear as a Yukawa interaction term in a La-

grangian. In the Euclidean theory, we have the

corresponding result

Θ
[
Ψ(2)(x)Φ(x)Ψ(1)(x)

]
=
[
Ψ(2)(θx)Φ(θx)Ψ(1)(θx)

]†
.(3.8)

Of course, all this discussion is using the doubled,

SO(4)-covariant spinor fields. If we are prepared

to break SO(4) covariance then, after imposing

the nonlocal projection on all fields, we have the

reality condition [L(x)]# = L(x).

Majorana spinors

We wish eventually to perform Wick rotations

on supersymmetric field theories. Such theories

typically contain Majorana spinors. These are

defined by equation (A.4) which can be written

(in Minkowski space) as

ψ†γ0 = ψTC . (3.9)

Now we need to define our Wick-rotated spinor

fields. Using the spinor fields at imaginary time

defined above, we see that the Wick rotation of

the Majorana condition as originally given by

Nicolai [3] is

Ψ(2)α (x) = Ψ
(1)
β (x)Cβα . (3.10)

The Majorana condition is a reality condition on

spinor fields. Following the discussion for Dirac

spinors, we see that the action of Θ is given by

ΘΨ(1)α (x) = γ
0
αβC

†
βγΨ

(1)
γ (θx) . (3.11)

This is the covariant version of the reality con-

dition one would obtain by simply performing a

Wick rotation of (3.9).

4. Supersymmetry algebras

Having defined the image of spinors under Wick

rotation, we are now in a position to investigate
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supersymmetry. In four dimensional Minkowski

space, the most general supersymmetry algebra

is

{Qα, Qβ} = 2γµαβ∂µ + Zµν (γµγν)αβ , (4.1)

where the central charge Zµν is real and antisym-

metric. There are 10 real degrees of freedom on

each side of (4.1).

In Euclidean space, supersymmetry will be

generated by a “Euclidean Majorana spinor”. -

Before we impose the Osterwalder-Schrader pro-

jection, this is a Dirac spinor Q(1) with Q(2) =

Q(1)
T
C. We now have a familiar story. Clearly,

only half of the degrees of freedom in Q(1) can

be physical but there is no SO(4)-covariant way

to identify these degrees of freedom. This means

that given a physical state |χ〉 there is no SO(4)-
covariant way to decompose the 8 supersymm-

etry generators as

Q→ {QM ,QN} ,M,N = 1 . . . 4

QM |χ〉 = 0 , QM |χ〉 6= 0 .
We are again faced with a choice between SO(4)

covariance and doubled spinors or physical spin-

ors which break this symmetry.

The most general supersymmetry algebra ge-

nerated by a Dirac spinor in Euclidean space is

(omitting the spinor component labels){
Q,Q†

}
= 2γ̃µ∂µ + iZ

(0)1+ Z(2)µν γ̃
µγ̃ν

+iZ(3)µνργ̃
µγ̃ν γ̃ρ + Z(4)γ̃5 , (4.2)

where all the central charges are real and Z(2)

and Z(3) are antisymmetric. There are 16 real de-

grees of freedom on each side of (4.2). Translat-

ing into Osterwalder-Schrader spinors gives the

commutator of two Euclidean supersymmetry

transformations with parameters ε
(1)
1 and ε

(1)
2 as

(c.f. equation 4.1 of [3])

[δ1, δ2] = ε
(1)T
2 C

(
2γ̃µ∂µ + iZ

(0)1+ Z(2)µν γ̃
µγ̃ν

+iZ(3)µνργ̃
µγ̃ν γ̃ρ + Z(4)γ̃5

)
ε
(1)
1 .

This algebra looks rather different to the super-

symmetry algebra in Minkowski space (4.1).

However, as this is supposed to be a represen-

tation of supersymmetry in a Wick-rotated the-

ory, we must impose positivity under the Oster-

walder-Schrader involution Θ. This condition

sets Z(0), Z(3) and Z(4) to zero, giving the al-

gebra

[δ1, δ2] = ε
(1)T
2 C

(
2γ̃µ∂µ + Z

(2)
µν γ̃

µγ̃ν
)
ε
(1)
1 .

(4.3)

This now looks very similar to (4.1) and indeed

has 10 real degrees of freedom on the right hand

side. However, the supersymmetry parameter is

a Dirac spinor ε(1) which has twice as many de-

grees of freedom as a (Majorana) supersymme-

try parameter in Minkowski space. Only half

of these degrees of freedom can be physical but,

as mentioned above, there is no SO(4)-covariant

way of identifying the physical supersymmetry

generators. Following the familiar argument, we

would like to impose a non-local projection on

the spinors to recover the degrees of freedom of

the original Minkowski theory. At first sight, this

looks inconsistent; the supersymmetry parame-

ter is constant so the Osterwalder-Schrader pro-

jection is simply

ε(1)
T
C = ε(1)

†
γ0 , (4.4)

but this projection is not consistent with the ac-

tion of SO(4) given by (3.1). However, we know

that after imposing the Osterwalder-Schrader pro-

jection we arrive at a gauge-fixed theory (that is a

theory which explicitly breaks SO(4) covariance

by involving a reflection in a specific direction

labelled by t). The residual tangent space sym-

metry is the SO(3) group which preserves t. This

is generated by the transformations

δψ =
1

4
ωjkγ

jγkψ , j, k = 1, 2, 3 . (4.5)

These transformations are consistent with the

projection (4.4). Hence we see that this projec-

tion is consistent as long as we remember that we

end up in a gauge-fixed theory where the only al-

lowed tangent group transformations are those of

the form (4.5).

After performing an Osterwalder-Schrader

projection, the supersymmetry algebra (4.3) has

the correct number of degrees of freedom (Majo-

rana spinors on the left, 10 real degrees of free-

dom on the right).

5. The Wess-Zumino model

The Wess-Zumino model is defined in Minkowski

5
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space by the Lagrangian

L = 1
2

[
(∂µA)

2 + (∂µB)
2 + ψγµ∂µψ − F 2 −G2

]
+ g
[
F (A2 −B2) + 2GAB + ψ(A− γ5Bψ]

+m

[
FA+GB +

1

2
ψψ

]
. (5.1)

The spinor is Majorana, that is ψ = ψTC =

ψ†γ0. This is invariant under the supersymmetry
transformations

δA = εψ , δF = −εγµ∂µψ ,
δB = εγ5ψ , δG = −εγ5γµ∂µψ ,
δψ = ∂µ(A− γ5B)γµε− (F + γ5G)ε .

Now let us Wick rotate this theory. We will use

the “Euclidean Majorana spinors” Ψ(1) and ε(1),

with Ψ
(2)
α = CαβΨ

(1)
β and ε

(2)
α = Cαβε

(1)
β . There

is no reality condition on Ψ(1) or ε(1). The La-

grangian becomes

L̃ = 1
2

[
(∂µA)

2 + (∂µB)
2

+Ψ(2)γ̃µ∂µΨ
(1) − F 2 −G2

]
+m

[
FA+GB +

1

2
Ψ(2)Ψ(1)

]
+ g
[
F (A2 −B2) + 2GAB

+Ψ(2)(A− γ5B)Ψ(1)
]
. (5.2)

where γ̃µ = (−iγ0, γk) are the Euclidean Dirac
matrices. This Lagrangian is invariant under

δA = ε(2)Ψ(1) , δF = −ε(2)γ̃µ∂µΨ(1) ,
δB = ε(2)γ̃5 , δG = −ε(2)γ̃5γ̃µ∂µΨ(1) ,
δΨ(1) = ∂µ(A− γ̃5B)γ̃µε(1) − (F + γ̃5G)ε(1) .

Now there are some important points to make

• There are twice as many degrees of free-
dom in the “Euclidean Majorana spinors”

Ψ(1) and ε(1) as in a Majorana spinor in

Minkowski space.

• In Euclidean space, the supersymmetry va-
riations of A, B, F , G are not real so it

makes more sense to regard these as com-

plex scalar fields. Hence all fields have been

“doubled” under the Wick rotation.

• The Lagrangian is supersymmetric under
the Euclidean transformations. In fact, de-

monstrating invariance under these trans-

formations is equivalent algebraically to de-

monstrating supersymmetry of the Mink-

owski Lagrangian. This is because the fun-

damental relation ψε = εψ among Majo-

rana spinors holds as

Ψ(2)ε(1) = ε(2)Ψ(1) ,

among Euclidean Majorana spinors.

• The Lagrangian is manifestly SO(4)-cov-
ariant and maps as L̃(x)→ [L̃(θx)]† under
Θ.

Following the familiar argument, we can impose a

non-local reality condition (Majorana condition)

on the scalars (spinors) to recover the degrees of

freedom of the original Minkowski theory.

Finally we should look at representations of

the supersymmetry algebra in the Wick-rotated

theory. Each Euclidean field has double the de-

grees of freedom of its Minkowski counterpart.

As this is true for the supersymmetry parame-

ter ε(1) we would expect the representations of

supersymmetry to be twice as large in the Eu-

clidean case. This happens in a rather unusual

way; every state in the supersymmetry algebra is

“complexified” so that the whole algebra is con-

structed in terms of complex degrees of freedom.

6. Eleven-dimensional supergravity

We will now briefly discuss the application of this

work to 11 dimensional supergravity [7]. We have

seen above that Majorana spinors can be consis-

tently treated under a Wick rotation. With this

in mind, we leave the details to [9] and concen-

trate for now on the bosonic sector. The bosonic

sector of eleven dimensional supergravity is

L = − e

4κ2
R− e

48
Fµ1...µ4F

µ1...µ4

+
2κ

(12)4
εµ1...µ11Fµ1...µ4Fµ5...µ8Aµ9µ10µ11 .(6.1)

In this, e is the determinant of the elfbein, A is

a three-form field and

Fµ1...µ4 = 4∂[µ1Aµ2µ3µ4] .

6
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This Lagrangian is Hermitian and so is the ac-

tion S =
∫
d11xL(x). This action would appear

inside a path integral as exp(−iS). We now per-
form aWick rotation t→ −it as described above.
In the non-covariant formulation (after the non-

local projection has been carried out) we have a

Euclidean Lagrangian L̃ which satisfies[
L̃(θx)

]†
= L̃(x) . (6.2)

Under the Wick rotation we find

−iS → −S̃ = −i
∫ ∞
−∞
(−idt)

∫
d10xL̃(x)

= −
∫ ∞
−∞

dt

∫
d10xL̃(x) .

Given that L̃ satisfies (6.2) we see that whether a
given term of L̃ gives a real or purely imaginary
contribution to S̃ depends on its properties under

time-reflection. Let us look closely at two terms

in the action. The term FµνστF
µνστ is positive

under time-reversal and hence its contribution to

S̃ is real. The Chern-Simons term

εµ1...µ11Fµ1...µ4Fµ5...µ8Aµ9µ10µ11

is negative under a time-reversal and hence its

contribution to S̃ is imaginary. This has an im-

portant physical meaning; we want gauge trans-

formations to be quantised in both Lorentzian

and Euclidean settings. This corresponds to the

Chern-Simons term contributing to the path in-

tegral as e−iSCS where SCS is real. We have seen
that this is indeed the case. Whereas the kinetic

term picks up a factor of −i under Wick rota-
tion, the Chern-Simons term in the exponent of

e−iS is purely imaginary in both Lorentzian and
Euclidean cases.

7. Conclusion

We have shown how to treat supersymmetry un-

der a Wick rotation. The key to this is the cor-

rect treatment of spinors. There are two possible

Euclidean-space descriptions of the Wick rotated

theory. One has explicit SO(4) covariance but

involves doubled spinors. A Lagrangian which is

Hermitian in Minkowski space has Osterwalder-

Schrader positivity when Wick rotated. The oth-

er is obtained by halving the spinors by a nonlo-

cal projection. This recovers the physical degrees

of freedom of the Minkowski theory but breaks

the SO(4) symmetry. We have shown how the

supersymmetry algebra is consistent with this

prescription for Wick rotation. We have pre-

sented a Wick rotated version of 11 dimensional

supergravity. It would be interesting to examine

the role, discussed in the introduction, that this

might play in cosmology.
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A. Spinors in four dimensions

Much of this paper draws on examples in four

dimensions. In this Appendix, we list briefly our

conventions for spinors in both Minkowski and

Euclidean four dimensional space. We use the

Clifford algebra conventions of [8] and refer the

reader to this paper for more information. In

all four-dimensional calculations, Greek indices

µ, ν, . . . run from 0 to 3 (1 to 4) when the space-

time is Minkowski (Euclidean). Latin indices

i, j, k, . . . run from 1 to 3.

Minkowski space

The Clifford algebra in four-dimensional Mink-

owski space is

{γµ, γν} = 2ηµν = 2diag(+1,−1,−1,−1)µν .
(A.1)

The Dirac matrices γµ may be chosen such that

γ0† = γ0 , γk† = −γk , k = 1, 2, 3 . (A.2)

In a theory with Majorana spinors, there exist

matrices B and C such that

γµ∗ = BγµB−1, B†B = 1, BT = B ,

γµT = −CγµC−1, C†C = 1, CT = −C .

and BT = Cγ0. The Dirac equation is

(iγµ∂µ +m)ψ(x) = 0 . (A.3)

7
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We can see from the above definitions that if ψ is

a solution of this equation then so is B−1ψ∗. We
can then equate B−1ψ∗ and ψ via the Majorana
condition

ψ∗ = Bψ . (A.4)

This can be rewritten as an equality between the

Dirac and Majorana conjugates

ψ
D
= ψ†γ0 = ψTC = ψ

M
. (A.5)

Imposing the Majorana condition clearly halves

the number of degrees of freedom of a spinor.

Euclidean space

The Clifford algebra in four-dimensional Euclid-

ean space is generated by {γ̃µ} where

γ̃k = γk for k = 1, 2, 3, γ̃4 = iγ0 . (A.6)

The algebra is

{γ̃µ, γ̃ν} = −2δµν . (A.7)

We have γ̃µ† = −γ̃µ for all µ. The matrix γ̃5 =
iγ̃1γ̃2γ̃3γ̃4 is diagonal and antiHermitian.

The charge conjugation matrix is the same

as that for Minkowski space and hence satisfies

C†C = 1, CT = −C and γ̃µT = −Cγ̃µC−1.
The Majorana condition is not consistent in Eu-

clidean space as B∗B = −1.
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