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Abstract: This is an introductory review of the AdS/CFT correspondence and of the ideas that led

to its formulation. We show how comparison of stacks of D3-branes with corresponding supergravity

solutions leads to dualities between conformal large N gauge theories in 4 dimensions and string

backgrounds of the form AdS5 × X5 where X5 is an Einstein manifold. The gauge invariant chiral
operators of the field theory are in one-to-one correspondence with the supergravity modes, and their

correlation functions at strong coupling are determined by the dependence of the supergravity action

on AdS boundary conditions. The simplest case is when X5 is a 5-sphere and the dual gauge theory

is the N = 4 supersymmetric SU(N) Yang-Mills theory. We also discuss D3-branes on the conifold
corresponding to X5 being a coset space T

1,1 = (SU(2)× SU(2))/U(1). This background is dual to a
certain N = 1 superconformal field theory with gauge group SU(N)× SU(N).

1. Introduction

String theory originated from attempts to under-

stand the strong interactions [1]. However, after

the emergence of QCD as the theory of hadrons,

the dominant theme of string research shifted to

the Planck scale domain of quantum gravity [2].

Although in hadron physics one routinely hears

about flux tubes and the string tension, many

particle theorists gave up hope that string theory

might lead to an exact description of the strong

interactions. Now, however, for the first time

we can say with confidence that at least some

strongly coupled gauge theories have a dual de-

scription in terms of strings. Let me emphasize

that one is not talking here about effective strings

that give an approximate qualitative description

of the QCD flux tubes, but rather about an exact

duality. At weak coupling a convenient descrip-

tion of the theory involves conventional pertur-

bative methods; at strong coupling, where such

methods are intractable, the dual string descrip-

tion simplifies and gives exact information about

the theory. The best established examples of

this duality are (super)conformal gauge theories

where the so-called AdS/CFT correspondence [3,

4, 5] has allowed for many calculations at strong

coupling to be performed with ease. In these

notes I describe, from my own personal perspec-

tive, some of the ideas that led to the formulation

of the AdS/CFT correspondence. For the sake of

brevity I will mainly discuss the AdS5/CFT4 case

which is most directly related to 4-dimensional

gauge theories.

It has long been believed that the best hope

for a string description of non-Abelian gauge the-

ories lies in the ’t Hooft large N limit. A quarter

of a century ago ’t Hooft proposed to generalize

the SU(3) gauge group of QCD to SU(N), and

to take the large N limit while keeping g2YMN

fixed [6]. In this limit each Feynman graph car-

ries a topological factor Nχ, where χ is the Eu-

ler characteristic of the graph. Thus, the sum

over graphs of a given topology can perhaps be

thought of as a sum over world sheets of a hypo-

thetical “QCD string.” Since the spheres (string

tree diagrams) are weighted byN2, the tori (string

one-loop diagrams) – by N0, etc., we find that

the closed string coupling constant is of order

N−1. Thus, the advantage of taking N to be
large is that we find a weakly coupled string the-

ory. It is not clear, however, how to describe
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this string theory in elementary terms (by a 2-

dimensional world sheet action, for example). This

is clearly an important problem: the free closed

string spectrum is just the large N spectrum of

glueballs. If the quarks are included, then we also

find open strings describing the mesons. Thus, if

methods are developed for calculating these spec-

tra, and it is found that they are discrete, then

this provides an elegant explanation of confine-

ment. Furthermore, the 1/N corrections corre-

spond to perturbative string corrections.

Many years of effort, and many good ideas,

were invested into the search for an exact gauge

field/string duality [7]. One class of ideas, ex-

ploiting the similarity of the large N loop equa-

tion with the string Schroedinger equation, even-

tually led to the following fascinating specula-

tion [8]: one should not look for the QCD string

in four dimensions, but rather in five, with the

fifth dimension akin to the Liouville dimension

of non-critical string theory [9]. This leads to a

picture where the QCD string is described by a

two-dimensional world sheet sigma model with a

curved non-compact 5-dimensional target space.

The difficult question is: precisely which target

spaces are relevant to gauge theories? Luckily, we

now do have answers to this question for a vari-

ety of conformal large N gauge models. In these

examples of the gauge field/string duality the

strings propagate in 5 compact dimensions in ad-

dition to the 5 non-compact ones. In fact, these

“gauge strings” are none other than type IIB su-

perstrings propagating in curved 10-dimensional

backgrounds of the form AdS5 ×X5. The AdS5
factor present in the dual description of all con-

formal field theories is the 5-dimensional Anti-de

Sitter space which has constant negative curva-

ture. X5 is a compact positively curved space

which depends on the specific model: the sim-

plest example is when X5 is a 5-sphere leading to

the dual formulation of the N = 4 supersymmet-
ric Yang-Mills theory [3, 4, 5] but other, more in-

tricate, dualities have also been constructed [10,

11, 12]. The route that leads to these results in-

volves an unexpected detour via black holes and

Dirichlet branes. We turn to these subjects next.

2. D-branes vs. Black Holes and p-

branes

A few years ago it became clear that, in addition

to strings, superstring theory contains soliton-

like “membranes” of various internal dimension-

alities called Dirichlet branes (or D-branes) [13].

A Dirichlet p-brane (or Dp-brane) is a p + 1 di-

mensional hyperplane in 9+1 dimensional space-

time where strings are allowed to end, even in

theories where all strings are closed in the bulk

of space-time. In some ways a D-brane is like a

topological defect: when a closed string touches

it, it can open open up and turn into an open

string whose ends are free to move along the D-

brane. For the end-points of such a string the

p + 1 longitudinal coordinates satisfy the con-

ventional free (Neumann) boundary conditions,

while the 9− p coordinates transverse to the Dp-
brane have the fixed (Dirichlet) boundary con-

ditions; hence the origin of the term “Dirich-

let brane.” In a seminal paper [14] Polchinski

showed that the Dp-brane is a BPS saturated

object which preserves 1/2 of the bulk supersym-

metries and carries an elementary unit of charge

with respect to the p + 1 form gauge potential

from the Ramond-Ramond sector of type II su-

perstring. The existence of BPS objects carry-

ing such charges is required by non-perturbative

string dualities [15]. A striking feature of the

D-brane formalism is that it provides a concrete

(and very simple) embedding of such objects into

perturbative string theory.

Another fascinating feature of the D-branes

is that they naturally realize gauge theories on

their world volume. The massless spectrum of

open strings living on a Dp-brane is that of a

maximally supersymmetric U(1) gauge theory in

p+1 dimensions. The 9−p massless scalar fields
present in this supermultiplet are the expected

Goldstone modes associated with the transverse

oscillations of the Dp-brane, while the photons

and fermions may be thought of as providing the

unique supersymmetric completion. If we con-

sider N parallel D-branes, then there are N2 dif-

ferent species of open strings because they can

begin and end on any of the D-branes. N2 is the

dimension of the adjoint representation of U(N),

and indeed we find the maximally supersymmet-

2
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ric U(N) gauge theory in this setting [16]. The

relative separations of the Dp-branes in the 9−p
transverse dimensions are determined by the ex-

pectation values of the scalar fields. We will be

primarily interested in the case where all scalar

expectation values vanish, so that the N Dp-

branes are stacked on top of each other. If N

is large, then this stack is a heavy object embed-

ded into a theory of closed strings which contains

gravity. Naturally, this macroscopic object will

curve space: it may be described by some classi-

cal metric and other background fields including

the Ramond-Ramond p+1 form potential. Thus,

we have two very different descriptions of the

stack of Dp-branes: one in terms of the U(N) su-

persymmetric gauge theory on its world volume,

and the other in terms of the classical Ramond-

Ramond charged p-brane background of the type

II closed superstring theory. The relation be-

tween these two descriptions is at the heart of

the recent progress in understanding connections

between gauge fields and strings that are the sub-

ject of these notes.

2.1 The D1-D5 system

The first success in building this kind of corre-

spondence between black hole metrics and D-

branes was achieved by Strominger and Vafa [17].

They considered 5-dimensional supergravity ob-

tained by compactifying 10-dimensional type IIB

theory on a 5-dimensional compact manifold (for

example, the 5-torus), and constructed a class

of black holes carrying 2 separate U(1) charges.

These solutions may be viewed as generalizations

of the well-known 4-dimensional charged (Reissner-

Nordstrom) black hole. For the Reissner-Nordstrom

black hole the mass is bounded from below by a

quantity proportional to the charge. In general,

when the mass saturates the lower (BPS) bound

for a given choice of charges, then the black hole

is called extremal. The extremal Strominger-

Vafa black hole preserves 1/8 of the supersym-

metries present in vacuum. Also, the black hole

is constructed in such a way that, just as for

the Reissner-Nordstrom solution, the area of the

horizon is non-vanishing at extremality [17]. In

general, an important quantity characterizing black

holes is the Bekenstein-Hawking entropy which is

proportional to the horizon area:

SBH =
Ah

4G
, (2.1)

where G is the Newton constant. Strominger

and Vafa calculated the Bekenstein-Hawking en-

tropy of their extremal solution as a function of

the charges and succeeded in reproducing this

result with D-brane methods. To build a D-

brane system carrying the same set of charges

as the black hole, they had to consider inter-

secting D-branes wrapped over the compact 5-

dimensional manifold. For example, one may

consider D3-branes intersecting over a line or D1-

branes embedded inside D5-branes. The 1 + 1

dimensional gauge theory describing such an in-

tersection is quite complicated, but the degener-

acy of the supersymmetric BPS states can never-

theless be calculated in the D-brane description

valid at weak coupling. For reasons that will be-

come clear shortly, the description in terms of

black hole metrics is valid only at very strong

coupling. Luckily, due to the supersymmetry,

the number of states does not change as the cou-

pling is increased. This ability to extrapolate

the D-brane counting to strong coupling makes

a comparison with the Bekenstein-Hawking en-

tropy possible, and exact agreement is found in

the limit of large charges [17]. In this sense the

collection of D-branes provides a “microscopic”

explanation of the black hole entropy.

This correspondence was quickly generalized

to black holes slightly excited above the extremal-

ity [18, 19]. Further, the Hawking radiation rates

and the absorption cross-sections were calculated

and successfully reproduced by D-brane models

[18, 20]. Since then this system has been re-

ceiving a great deal of attention. However, some

detailed comparisons are hampered by the com-

plexities of the dynamics of intersecting D-branes:

to date there is no first principles approach to

the lagrangian of the 1 + 1 dimensional confor-

mal field theory on the intersection. For this

and other reasons it has turned out very fruit-

ful to study a similar correspondence for sim-

pler systems which involve parallel D-branes only

[21, 22, 23, 24, 25]. We turn to this subject in

the next section.

3
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2.2 Coincident Dp-branes

Our primary motivation is that, as explained above,

parallel Dp-branes realize p+1 dimensional U(N)

SYM theories, and we may learn something new

about them from comparisons with Ramond-Ramond

charged black p-brane classical solutions. These

solutions in type II supergravity have been known

since the early 90’s [26, 28]. The metric and dila-

ton backgrounds may be expressed in the follow-

ing simple form:

ds2 = H−1/2(r)

[
−f(r)dt2 +

p∑
i=1

(dxi)2

]
+

(2.2)

H1/2(r)
[
f−1(r)dr2 + r2dΩ28−p

]
,

eΦ = H(3−p)/4(r) ,

where

H(r) = 1 +
L7−p

r7−p
, f(r) = 1− r7−p0

r7−p
,

and dΩ28−p is the metric of a unit 8 − p dimen-
sional sphere. The horizon is located at r = r0
and the extremality is achieved in the limit r0 →
0. Just like the stacks of parallel D-branes, the

extremal solutions are BPS saturated: they pre-

serve 16 of the 32 supersymmetries present in the

type II theory. A solution with r0 � L is called

near-extremal.

The correspondence between the entropies

of the near-extremal p-brane solutions (2.2) and

those of the p+1 dimensional SYM theories was

first considered in [21, 22]. In contrast to the situ-

ation encountered for the Strominger-Vafa black

hole, the Bekenstein-Hawking entropy vanishes

in the extremal limit: for r � L the longitudinal

part of the metric behaves as (r/L)(7−p)/2
∑p
i=1(dx

i)2

and hence the area of the horizon vanishes. The

same is obviously true on the D-brane side be-

cause the stack of D-branes is in its ground state.

For r0 > 0 the p-brane carries some excess energy

E above its extremal value, and the Bekenstein-

Hawking entropy is also non-vanishing. The Hawk-

ing temperature is then defined by T−1 = ∂SBH/∂E.
A different, but equivalent, way of calculating

the Hawking temperature is to consider a Eu-

clidean continuation of the solutions (2.2). The

Euclidean time takes values on a circle of cir-

cumference β = 1/T . As shown by Gibbons and

Hawking, β has to be chosen in such a way that

the geometry has no conical singularity at the

horizon. We will use this method below to de-

rive T as a function of r0 and R in one step.

Among the solutions (2.2) p = 3 has a special

status: in the extremal limit r0 → 0 the 3-brane
solution

ds2 =

(
1 +

L4

r4

)−1/2 (−dt2 + dx21 + dx22 + dx23)
(2.3)

+

(
1 +

L4

r4

)1/2 (
dr2 + r2dΩ25

)
is perfectly non-singular [29]. One piece of evi-

dence is that the dilaton Φ is constant for p = 3

but blows up at r = 0 for all other extremal so-

lutions. Furthermore, the limiting form of the

extremal metric as r → 0 is

ds2 =
L2

z2

(−dt2 + d~x2 + dz2)+ L2dΩ25 , (2.4)
where z = L2

r
. This describes the direct product

of 5-dimensional Anti-de Sitter space, AdS5, and

the 5-dimensional sphere, S5, with equal radii

of curvature L [29]. To be more precise, the

above metric with z ranging from 0 to∞ does not
cover the entireAdS5 space, but only its Poincare

wedge. This space has a horizon located at in-

finite z (r = 0). After a Euclidean continuation

we obtain the entire Euclidean AdS5 space also

known as the Lobachevsky space L5.

Since both factors of the AdS5 × S5 space

(2.4) are maximally symmetric, we have

Rabcd = − 1
L2
[gacgbd − gadgbc] (2.5)

for the AdS5 directions, and

Rijkl =
1

L2
[gikgjl − gilgjk] (2.6)

for the S5 directions. This shows that near r =

0 the extremal 3-brane geometry (2.3) is non-

singular and, in fact, all appropriately measured

curvature components become small for large L.

Roughly speaking, this geometry may be viewed

as a semi-infinite throat of radius L which for

r � L opens up into flat 9+1 dimensional space.

Thus, for L much larger than the string scale√
α′, the entire 3-brane geometry has small cur-
vatures everywhere and is appropriately described

4
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by the supergravity approximation to type IIB

string theory.

Let us see how the requirement L � √α′
translates into the language of U(N) SYM the-

ory on N coincident D3-branes. To this end it is

convenient to equate the ADM tension of the ex-

tremal 3-brane classical solution to N times the

tension of a single D3-brane. In this fashion we

find the relation [21]

2

κ2
L4Ω5 = N

√
π

κ
, (2.7)

where Ω5 = π3 is the volume of a unit 5-sphere,

and κ =
√
8πG is the 10-dimensional gravita-

tional constant. It follows that

L4 =
κ

2π5/2
N . (2.8)

Since κ = 8π7/2gstα
′2, (2.8) gives L4 = 4πNgstα′2.

In turn, gst determines the Yang-Mills coupling

on the D3-branes through g2YM = 2πgst. Thus,

we have

L4 = 2g2YMNα
′2, (2.9)

i.e. the size of the throat in string units is mea-

sured by the ‘t Hooft coupling! This remark-

able emergence of the ‘t Hooft coupling from

gravitational considerations is at the heart of the

success of the AdS/CFT correspondence. More-

over, the requirement L � √α′ translates into
g2YMN � 1: the gravitational approach is valid
when the ‘t Hooft coupling is very strong and the

traditional field theoretic methods are not appli-

cable.

2.3 Entropy of Near-extremal 3-branes

Now consider the near-extremal 3-brane geome-

try. In the near-horizon region, r � L, we may

replace H(r) by L4/r4. The resulting metric [3]

ds2 =
r2

L2

[
−
(
1− r40

r4

)
dt2 + d~x2

]
(2.10)

+
L2

r2

(
1− r40

r4

)−1
dr2 + L2dΩ25 ,

is a product of S5 with a certain limit of the

Schwarzschild black hole in AdS5 [27]. The Eu-

clidean Schwarzschild black hole is asymptotic

to S1 × S3, and the required limit is achieved

as the volume of S3 is taken to infinity. Thus,

the Euclidean continuation of the metric (2.10)

is asymptotic to S1 × R3. To determine the cir-
cumference of S1, β = 1/T , it is convenient to

set r = r0(1 + L
−2ρ2). For small ρ the relevant

2d part of the Euclidean metric is:

ds2 = dρ2 +
4r20
L4

ρ2dτ2 , τ = it . (2.11)

In order to avoid a conical singularity at the hori-

zon, the period of the Euclidean time has to be

β = πL2/r0.

The 8-dimensional “area” of the horizon can

be read off from the metric (2.10). If the spatial

volume of the D3-brane (i.e. the volume of the

x1, x2, x3 coordinates) is taken to be V3, then we

find

Ah = (r0/L)
3V3L

5Ω5 = π
6L8T 3V3 . (2.12)

Using (2.8) we arrive at the Bekenstein-Hawking

entropy [21]

SBH =
2πAh
κ2

=
π2

2
N2V3T

3 . (2.13)

In [21] this gravitational entropy of a near-extremal

3-brane of Hawking temperature T was compared

with the entropy of the N = 4 supersymmetric
U(N) gauge theory (which lives on N coincident

D3-branes) heated up to the same temperature.

The results turned out to be quite interesting.

The entropy of a free U(N) N = 4 super-
multiplet, which consists of the gauge field, 6N2

massless scalars and 4N2 Weyl fermions, can be

calculated using the standard statistical mechan-

ics of a massless gas (the black body problem),

and the answer is

S0 =
2π2

3
N2V3T

3 . (2.14)

It is remarkable that the 3-brane geometry cap-

tures the T 3 scaling characteristic of a conformal

field theory (in a CFT this scaling is guaranteed

by the extensivity of the entropy and the absence

of dimensionful parameters). Also, the N2 scal-

ing indicates the presence of O(N2) unconfined

degrees of freedom, which is exactly what we ex-

pect in the N = 4 supersymmetric U(N) gauge
theory. On the other hand, the relative factor of

3/4 between SBH and S0 at first appeared mys-

terious. In fact, this factor is not a contradiction

5
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but rather a prediction about the strongly cou-

pled N = 4 SYM theory at finite temperature.
Indeed, as we argued above, the supergravity

calculation of the Bekenstein-Hawking entropy,

(2.13), is relevant to the g2YMN → ∞ limit of
the N = 4 SU(N) gauge theory, while the free
field calculation applies to the g2YMN → 0 limit.
Thus, the relative factor of 3/4 is not a discrep-

ancy: it relates two different limits of the theory.

Indeed, on general field theoretic grounds we ex-

pect that in the ‘t Hooft largeN limit the entropy

is given by [30]

S =
2π2

3
N2f(g2YMN)V3T

3 . (2.15)

The function f is certainly not constant: for ex-

ample, recent calculations [31] show that its per-

turbative expansion is

f(g2YMN) = 1−
3

2π2
g2YMN+

3+
√
2

π3
(
g2YMN

)3/2
+. . .

(2.16)

Thus, the Bekenstein-Hawking entropy in super-

gravity, (2.13), is translated into the prediction

that f(g2YMN →∞) = 3/4.
Furthermore, string theoretic corrections to

the supergravity action may be used to develop

a strong coupling expansion around this limiting

value. The first such correction comes from the

leading higher derivative term in the type IIB

effective action:

I = − 1

16πG

∫
d10x
√
g

[
R− 1
2
(∂φ)2− 1

4 · 5! (F5)
2

(2.17)

+...+ γ e−
3
2φW + ...

]
,

where

γ =
1

8
ζ(3)(α′)3 ,

and W depends only on the Weyl tensor:

W = ChmnkCpmnqC
rsp
h Cqrsk+ (2.18)

1

2
ChkmnCpqmnC

rsp
h Cqrsk .

The value of the supergravity action should be

identified with the free energy of the thermal

gauge theory [27]. The first correction to the free

energy may be found by evaluating O(α′3) term
on the leading order metric (2.10) [30]. Via the

standard thermodynamics relation S = −∂F
∂T this

translates into the following form of the function

f for large ‘t Hooft coupling,

f(g2YMN) =
3

4
+
45

32
ζ(3)(g2YMN)

−3/2 + . . . .
(2.19)

In [30] it was conjectured that f(g2YMN) is actu-

ally a monotonically decreasing function which

interpolates between 1 at g2YMN = 0 and 3/4

at g2YMN = ∞. The monotonicity is consistent
both with the weak coupling behavior (2.16) cal-

culated perturbatively, and with the strong cou-

pling behavior (2.19) found using the dual string

theory.

2.4 From absorption cross-sections to two-

point correlators

A natural step beyond the comparison of en-

tropies is to interpret absorption cross-sections

for massless particles in terms of the D-brane

world volume theories [23] (for 5-d black holes

the D-brane approach to absorption was initi-

ated in [18, 20]). For N coincident D3-branes it

is interesting to inquire to what extent the su-

pergravity and the weakly coupled D-brane cal-

culations agreed. For example, they might scale

differently with N or with the incident energy.

Even if the scaling exponents agreed, the overall

normalizations could differ by a subtle numerical

factor similar to the 3/4 found for the 3-brane

entropy. Surprisingly, the low-energy absorption

cross-sections turn out to agree exactly [23].

To calculate the absorption cross-sections in

the D-brane formalism one needs the low-energy

world volume action for coincident D-branes cou-

pled to the massless bulk fields. Luckily, these

couplings may be deduced from the D-brane Born-

Infeld action. For example, the coupling of 3-

branes to the dilaton Φ, the Ramond-Ramond

scalar C, and the graviton hαβ is given by [23, 24]

Sint =

√
π

κ

∫
d4x

[
tr
(
1
4ΦF

2
αβ − 14CFαβ F̃αβ

)
(2.20)

+ 12h
αβTαβ

]
,

where Tαβ is the stress-energy tensor of the N =
4 SYM theory. Consider, for instance, absorp-

tion of a dilaton incident on the 3-brane at right

6



Quantum aspects of gauge theories, supersymmetry and unification Igor R. Klebanov

angles with a low energy ω. Since the dilaton

couples to 14 trF
2
αβ it can be converted into a pair

of back-to-back gluons on the world volume. The

leading order calculation of the cross-section for

weak coupling gives [23]

σ =
κ2ω3N2

32π
. (2.21)

The factor N2 comes from the degeneracy of the

final states which is the number of different gluon

species.

This result was compared with the absorp-

tion cross-section by the extremal 3-brane geom-

etry (2.3). As discussed above, the geometry is a

non-singular semi-infinite throat which opens up

at large r into flat 10-dimensional space. Waves

incident from the r � L region partly reflect

back and partly penetrate into the the throat re-

gion r � L. The relevant s-wave radial equation

turns out to be [23][
d2

dρ2
− 15
4ρ2
+ 1 +

(ωL)4

ρ4

]
ψ(ρ) = 0 , (2.22)

where ρ = ωr. For a low energy ω � 1/L we find
a high barrier separating the two asymptotic re-

gions. The low-energy behavior of the tunneling

probability may be calculated by the so-called

matching method, and the resulting absorption

cross-section is [23]

σSUGRA =
π4

8
ω3L8 . (2.23)

Substituting (2.8) we find that the supergravity

absorption cross-section agrees exactly with the

D-brane one, without any relative factor like 3/4.

This surprising result needs an explanation.

The most important question is: what is the

range of validity of the two calculations? The su-

pergravity approach may be trusted only if the

length scale of the 3-brane solution is much larger

than the string scale
√
α′. As we have shown,

this translates into Ngst � 1. Of course, the
incident energy also has to be small compared

to 1/
√
α′. Thus, the supergravity calculation

should be valid in the “double-scaling limit” [23]

L4

α′2
= 4πgstN →∞ , ω2α′ → 0 .

(2.24)

If the description of the black 3-brane by a stack

of many coincident D3-branes is correct, then it

must agree with the supergravity results in this

limit, which corresponds to infinite ‘t Hooft cou-

pling in the N = 4 U(N) SYM theory. Since we
also want to send gst → 0 in order to suppress
the string loop corrections, we necessarily have

to take the large N limit.

Although we have sharpened the region of

applicability of the supergravity calculation (2.23),

we have not yet explained why it agrees with

the leading order perturbative result (2.21) on

the D3-brane world volume. After including the

higher-order SYM corrections, the general struc-

ture of the absorption cross-section in the large

N limit is expected to be [25]

σ =
κ2ω3N2

32π
a(g2YMN) , (2.25)

where

a(g2YMN) = 1 + b1g
2
YMN + b2(g

2
YMN)

2 + . . .

For agreement with supergravity, the strong ‘t

Hooft coupling limit of a(g2YMN) should be equal

to 1 [25]. In fact, a stronger result is true: all

perturbative corrections vanish and a = 1 inde-

pendent of the coupling. This was first shown ex-

plicitly in [25] for the graviton absorption. The

absorption cross-section for a graviton polarized

along the brane, say hxy, is related to the discon-

tinuity accross the real axis (i.e. the absorptive

part) of the two-point function 〈Txy(p)Txy(−p)〉
in the SYM theory. In turn, this is determined

by a conformal “central charge” which satisfies

a non-renormalization theorem: it is completely

independent of the ‘t Hooft coupling.

In general, the two-point function of a gauge

invariant operator in the strongly coupled SYM

theory may be read off from the absorption cross-

section for the supergravity field which couples to

this operator in the world volume action [25, 32].

Consider, for instance, scalar operators. For a

canonically normalized bulk scalar field coupling

to the brane through an interaction

Sint =

∫
d4xφ(x, 0)O(x) (2.26)

(φ(x, 0) denotes the value of the field at the trans-

verse coordinates where the D3-branes are lo-

7
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cated) the precise relation is given by

σ =
1

2iω
Disc Π(p)

∣∣∣∣
−p2=ω2+iε

−p2=ω2−iε
(2.27)

Here ω is the energy of the particle, and

Π(p) =

∫
d4xeip·x〈O(x)O(0)〉 (2.28)

which depends only on s = −p2. To evaluate
(2.27) we extend Π to complex values of s and

compute the discontinuity of Π across the real

axis at s = ω2.

Some examples of the field operator corre-

spondence may be read off from (2.20). Thus,

we learn that the dilaton absorption cross-section

measures the normalized 2-point function 〈OΦ(p)OΦ(−p)〉
where OΦ is the operator that couples to the dila-

ton:

OΦ =
1

4
tr(F 2 + . . .) (2.29)

(we have not written out the scalar and fermion

terms explicitly). Similarly, the Ramond-Ramond

scalar absorption cross-sectionmeasures 〈OC(p)OC(−p)〉
where

OC =
1

4
trFαβF̃

αβ + . . . (2.30)

The agreement of these two-point functions with

the weak-coupling calculations performed in [23,

24] is explained by non-renormalization theorems

related by supersymmetry to the non-renorma-

lization of the central charge discussed in [25].

Thus, the proposition that the g2YMN →∞ limit
of the large N N = 4 SYM theory can be ex-
tracted from the 3-brane of type IIB supergravity

has passed its first consistency checks.

It is of further interest to perform similar

comparisons in cases where the relevant non-re-

normalization theorems have not yet been proven.

Consider, for instance, absorption of the dilaton

in the l-th partial wave. Now the angular lapla-

cian on S5 has the eigenvalue l(l + 4) and the

effective radial equation becomes[
d2

dρ2
− l(l + 4) + 15/4

ρ2
+ 1+

(ωL)4

ρ4

]
ψ(ρ) = 0 ,

(2.31)

The thickness of the barrier through which the

particle has to tunnel increases with l, and we

expect the cross-section to become increasingly

suppressed at low energies. Indeed, a detailed

matching calculation [24, 32] gives

σlSUGRA =
π4

24

(l + 3)(l + 1)

[(l + 1)!]4

(
ωL

2

)4l
ω3L8.

(2.32)

Replacing L4 through (2.8) this can be rewritten

as

σl =
N l+2κl+2ω4l+3(l + 3)

3 · 25l+5π5l/2+1l![(l + 1)!]3 . (2.33)

What are the operators whose 2-point functions

are related to these cross-sections? For a single

D3-brane one may expand the dilaton coupling

in a Taylor series in the transverse coordinates

to obtain the following bosonic term [23]:

1

4l!
FαβF

αβX(i1 . . . X il) , (2.34)

where the parenthesis pick out a transverse trace-

less polynomial, which is an irreducible represen-

tation of SO(6). The correct non-abelian gener-

alization of this term is [32]

1

4l!
STr
[
FαβF

αβX(i1 . . . X il)
]
, (2.35)

where STr denotes a symmetrized trace [33]: in

this particular case we have to average over all

positions of the F ’s modulo cyclic permutations.

A detailed calculation in [32] reveals that the 2-

point function of this operator calculated at weak

coupling accounts for 6
(l+2)(l+3) of the semiclas-

sical absorption cross-section (2.33) in the sense

of the relation (2.27). Luckily, (2.35) is not the

complete world volume coupling to the dilaton

in the l-th partial wave. N = 4 supersymme-
try guarantees that there are additional terms

quadratic and quartic in the fermion fields. When

all these terms are taken into account there is ex-

act agreement between the weak and strong cou-

pling calculations of the 2-point functions. This

strongly suggests that the complete l-th partial

wave operators are protected by supersymmetric

non-renormalization theorems. Proving them is

an interesting challenge (for recent progress, see

[34]).

3. The AdS/CFT Correspondence

The circle of ideas reviewed in the previous sec-

tions received an important development by Mal-

dacena [3] who also connected it for the first time

8
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with the QCD string idea. Maldacena made a

simple and powerful observation that the “uni-

versal” region of the 3-brane geometry, which

should be directly identified with the N = 4

SYM theory, is the throat, i.e. the region r� L.1

The limiting form of the 3-brane metric (2.3) is

(2.4) which describes the space AdS5 × S5 with
equal radii of curvature L. One also finds that

the self-dual 5-form R-R field strength has N

units of flux through this space (the field strength

term in the Einstein equation effectively gives a

positive cosmological constant on S5 and a nega-

tive one on AdS5). Thus, Maldacena conjectured

that type IIB string theory on AdS5×S5 should
be somehow dual to the N = 4 supersymmetric
SU(N) gauge theory.

By the same token, identifying, as we did in

the preceding section, the 2-brane and 5-brane

classical solutions of 11-dimensional supergrav-

ity with stacks of M2 and M5 branes respectively

leads to similar dualities in the M-theory context.

In particular, a large N 6-dimensional (2, 0) the-

ory is conjectured to be dual to the AdS7 × S4
background, and a large N maximally supersym-

metric 3-dimensional gauge theory is conjectured

to be dual to the AdS4 × S7 background. In the
following we will discuss only the D3-brane case,

but generalization to the M-branes is straightfor-

ward.

Maldacena’s argument was based on the fact

that the low-energy (α′ → 0) limit may be taken
directly in the 3-brane geometry and is equiva-

lent to the throat (r → 0) limit. Another way to
motivate the identification of the gauge theory

with the throat is to think about the absorption

of massless particles considered in the previous

section. In the D-brane description, a particle in-

cident from the asymptotic infinity is converted

into an excitation of the stack of D-branes, i.e.

into an excitation of the gauge theory on the

world volume. In the supergravity description,

a particle incident from the asymptotic (large r)

region tunnels into the r � L region and pro-

duces an excitation of the throat. The fact that

the two different descriptions of the absorption

process give identical cross-sections supports the

identification of excitations of AdS5 × S5 with

1Related ideas were also pursued in [35].

the excited states of the N = 4 SYM theory.
Another strong piece of support for this iden-

tification comes from symmetry considerations

[3]. The isometry group of AdS5 is SO(2, 4), and

this is also the conformal group in 3 + 1 dimen-

sions. In addition we have the isometries of S5

which form SU(4) ∼ SO(6). This group is identi-
cal to the R-symmetry of theN = 4 SYM theory.
After including the fermionic generators required

by supersymmetry, the full isometry supergroup

of the AdS5×S5 background is SU(2, 2|4), which
is identical to the N = 4 superconformal sym-
metry. We will see that in theories with reduced

supersymmetry the compact S5 factor becomes

replaced by other compact spaces X5, but AdS5
is the “universal” factor present in the dual de-

scription of any large N CFT and realizing the

SO(2, 4) conformal symmetry. One may think of

these backgrounds as type IIB theory compacti-

fied on X5 down to 5 dimensions. Such Kaluza-

Klein compactifications of type IIB supergrav-

ity were extensively studied in the mid-eighties

[36, 37, 38], and special attention was devoted

to the AdS5 × S5 solution because it is a maxi-
mally supersymmetric background [39, 40]. It is

remarkable that these early works on compacti-

fication of type IIB theory were actually solving

large N gauge theories without knowing it.

As Maldacena has emphasized, it is also im-

portant to go beyond the supergravity limit and

think of the AdS5 × X5 space as a background
of string theory [3]. Indeed, type IIB strings are

dual to the electric flux lines in the gauge theory,

and this provides a natural set-up for calculat-

ing correlation functions of the Wilson loops [41].

Furthermore, if N is sent to infinity while g2YMN

is held fixed and finite, then there are finite string

scale corrections to the supergravity limit [3, 4, 5]

which proceed in powers of α
′
L2 =

(
2g2YMN

)−1/2
.

If we wish to study finite N , then there are also

string loop corrections in powers of κ
2

L8 ∼ N−2.
As expected, taking N to infinity enables us to

take the classical limit of the string theory on

AdS5×X5. However, in order to understand the
large N gauge theory with finite ‘t Hooft cou-

pling, we should think of the AdS5 ×X5 as the
target space of a 2-dimensional sigma model de-

scribing the classical string physics [4]. The fact

9
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that after the compactification on X5 the string

theory is 5-dimensional supports Polyakov’s idea

[8]. In AdS5 the fifth dimension is related to the

radial coordinate and, after a change of variables

z = Le−ϕ/L, the sigma model action turns into
a special case of the general ansatz proposed in

[8],

S =
1

2

∫
d2σ[(∂αϕ)

2 + a2(ϕ)(∂αX
i)2 + . . .] ,

(3.1)

with a(ϕ) = eϕ/L. It is clear, however, that

the string sigma models dual to the gauge theo-

ries are of rather peculiar nature. The new fea-

ture revealed by the D-brane approach, which is

also a major stumbling block, is the presence of

the Ramond-Ramond background fields. Little

is known to date about such 2-dimensional field

theories and, in spite of recent new insights [42],

an explicit solution is not yet available.

3.1 Correlation functions and the bulk-boundary

correspondence

Maldacena’s work provided a crucial insight that

the AdS5×S5 throat is the part of the 3-brane ge-
ometry that is most directly related to the N = 4
SYM theory. It is important to go further, how-

ever, and explain precisely in what sense the two

should be identified and how physical informa-

tion can be extracted from this duality. Major

strides towards answering these questions were

made in two subsequent papers [4, 5] where es-

sentially identical methods for calculating corre-

lation functions of various operators in the gauge

theory were proposed. As we mentioned in sec-

tion 2.2, even prior to [3] some information about

the field/operator correspondence and about the

two-point functions had been extracted from the

absorption cross-sections. The reasoning of [4]

was a natural extension of these ideas.

One may motivate the general method as fol-

lows. When a wave is absorbed, it tunnels from

the asymptotic infinity into the throat region,

and then continues to propagate toward smaller

r. Let us separate the 3-brane geometry into two

regions: r >∼ L and r <∼ L. For r <∼ L the met-

ric is approximately that of AdS5×S5, while for
r >∼ L it becomes very different and eventually

approaches the flat metric. Signals coming in

from large r may be thought of as disturbing the

“boundary” of AdS5 at r ∼ L, and then prop-

agating into the bulk. This suggests that, if we

discard the r >∼ L part of the 3-brane metric,

then the gauge theory correlation functions are

related to the response of the string theory to

boundary conditions at r ∼ L. Guided by this

idea, [4] proposed to identify the generating func-

tional of connected correlation functions in the

gauge theory with the extremum of the classical

string theory action I subject to the boundary

conditions that φ(xλ, z) = φ0(x
λ) at z = L (at

z =∞ all fluctuations are required to vanish):2

W [φ0(x
λ)] = Iφ0(xλ) . (3.2)

W generates the connected Green’s functions of

the gauge theory operator that corresponds to

the field φ in the sense explained in section 2.2,

while Iφ0(xλ) is the extremum of the classical

string action subject to the boundary conditions.

An essentially identical prescription was also pro-

posed in [5] with a somewhat different motiva-

tion. If we are interested in the correlation func-

tions at infinite ‘t Hooft coupling, then the prob-

lem of extremizing the classical string action re-

duces to solving the equations of motion in type

IIB supergravity whose form is known explicitly

[39].

Our reasoning suggests that from the point

of view of the metric (2.4) the boundary condi-

tions are imposed not at z = 0 (which would be a

true boundary of AdS5) but at some finite value

z = zcutoff . It does not matter which value it is

since the metric (2.4) is unchanged by an overall

rescaling of the coordinates (z, xλ); thus, such a

rescaling can take z = L into z = zcutoff for any

zcutoff . The physical meaning of this cut-off is

that it acts as a UV regulator in the gauge the-

ory [4, 43]. Indeed, the radial coordinate of AdS5
is to be thought of as the effective energy scale

of the gauge theory [3], and decreasing z corre-

sponds to increasing the energy. A safe method

for performing calculations of correlation func-

tions, therefore, is to keep the cut-off on the z-

coordinate at intermediate stages and remove it

2As usual, in calculating correlation functions in a

CFT it is convenient to carry out the Euclidean continu-

ation. On the string theory side we then have to use the

Euclidean version of AdS5.

10
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only at the end [4, 44]. This way the calculations

are not manifestly AdS-invariant, however. Usu-

ally there is another way to regularize the action

which is manifestly AdS invariant. Luckily, when

all subtleties are taken into account, these two

ways of performing calculations do agree [45].

3.2 Two-point functions

Below we present a brief discussion of two-point

functions of scalar operators. The corresponding

field in AdSd+1 is a scalar field of mass m with

the action

1

2

∫
dd+1x

√
g
[
gµν∂µφ∂νφ+m

2φ2
]
= (3.3)

1

2

∫
ddxdzz−d+1

[
(∂zφ)

2 + (∂iφ)
2 +

m2

z2
φ2
]
,

where we have set L = 1. In calculating cor-

relation functions of vertex operators from the

AdS/CFT correspondence, the first problem is

to reconstruct an on-shell field in AdSd+1 from

its boundary behavior. The small z behavior of

the classical solution is

φ(z, ~x)→ zd−∆[φ0(~x)+O(z2)]+z∆[A(~x)+O(z2)] ,
(3.4)

where ∆ is one of the roots of

∆(∆− d) = m2 . (3.5)

φ0(~x) is regarded as a “source” function andA(~x)

describes a physical fluctuation.

It is possible to regularize the Euclidean ac-

tion [45] to obtain the following value as a func-

tional of the source,

I(φ0) = −(∆− (d/2))π−d/2 Γ(∆)

Γ(∆− (d/2)) (3.6)
∫
dd~x

∫
dd~x′

φ0(~x)φ0(~x
′)

|~x− ~x′|2∆ .

Varying twice with respect to φ0 we find that the

two-point function of the corresponding operator

is

〈O(~x)O(~x′)〉 = (2∆− d)Γ(∆)
πd/2Γ(∆− (d/2))

1

|~x− ~x′|2∆ .

(3.7)

Precisely the same normalization of the two-point

function follows from a different regularization

where zcutoff is kept at intermediate stages [4,

44].

We note that ∆ is the dimension of the op-

erator. Which of the two roots of (3.5) should

we choose? Superficially it seems that we should

always choose the bigger root,

∆+ =
d

2
+

√
d2

4
+m2 , (3.8)

because then the φ0 term in (3.4) dominates over

the A term. While for positive m2 ∆+ is cer-

tainly the right choice (here the other root ∆− is
negative), it turns out that for

−d
2

4
< m2 < −d

2

4
+ 1 (3.9)

both roots of (3.5) may be chosen. Thus, there

are two possible CFT’s corresponding to the same

classical AdS action [45]: in one of them the

corresponding operator has dimension ∆+ while

in the other – dimension ∆−. (The fact that
there are two admissible boundary conditions in

AdSd+1 for a scalar field with m
2 in the range

(3.9) has been known since the old work of Bre-

itenlohner and Freedman [46].) This conclusion

resolves the following puzzle. ∆+ is bounded

from below by d/2 but there is no correspond-

ing bound in d-dimensional CFT (in fact, as we

will see, there are examples of field theories with

operators that violate this bound). However, in

the range (3.9) ∆− is bounded from below by (d−
2)/2, and this is precisely the unitarity bound on

dimensions of scalar operators in d-dimensional

field theory! Thus, the ability to have dimension

∆− is crucial for consistency of the AdS/CFT
duality.

A question remains, however, as to what is

the correct definition of correlation functions in

the theory with dimension ∆−. The answer to
this question is related to the physical interpreta-

tion of the function A(~x) entering the boundary

behavior of the field (3.4). As suggested in [47]

this function is related to the expectation value of

the operatorO. The precise relation, which holds
even after interactions are taken into account, is

[45]

A(~x) =
1

2∆− d 〈O(~x)〉 . (3.10)

Thus, from the point of view of the d-dimensional

CFT, (2∆ − d)A(~x) is the variable conjugate to
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φ0(~x). In order to interchange ∆ with d −∆, it
is clear from (3.4) that we have to interchange

φ0 and (2∆ − d)A. This is a canonical trans-

formation which for tree-level correlators reduces

to a Legendre transform. Thus, the generating

functional of correlators in the ∆− theory may
be obtained by Legendre transforming the gen-

erating functional of correlators in the ∆+ the-

ory. This gives a simple and explicit prescrip-

tion for defining correlation functions of opera-

tors with dimension ∆−. For the 2-point func-
tion, for example, we find that the formula (3.7)

is correct for both definitions of the theory, i.e. it

makes sense for all dimensions above the untarity

bound,

∆ >
d

2
− 1 . (3.11)

Indeed, note that for such dimensions the two-

point function (3.7) is positive, but as soon as ∆

crosses the unitarity bound, (3.7) becomes nega-

tive signaling a non-unitarity of the theory. Thus,

appropriate treatment of fields in AdSd+1 gives

information on 2-point functions completely con-

sistent with expectations from CFTd. The fact

that the Legendre transform prescription of [45]

works properly for higher-point correlation func-

tions was recently demonstrated in [48].

Whether string theory on AdS5 × X5 con-

tains fields with mass-squared in the range (3.9)

depends onX5. The example discussed in section

4, X5 = T 1,1, turns out to contain such fields,

and the possibility of having dimension ∆− is
crucial for the consistency of the AdS/CFT du-

ality. However, for X5 = S
5 which is dual to the

N = 4 large N SYM theory, there are no such
fields and all scalar dimensions are given by (3.8)

(to reinstate L we simply replace m by mL).

The operators in the N = 4 large N SYM
theory naturally break up into two classes: those

that correspond to the Kaluza-Klein states of su-

pergravity and those that correspond to massive

string states. Since the radius of the S5 is L,

the masses of the Kaluza-Klein states are propor-

tional to 1/L. Thus, the dimensions of the cor-

responding operators are independent of L and

therefore independent of g2YMN . On the gauge

theory side this is explained by the fact that the

supersymmetry protects the dimensions of cer-

tain operators from being renormalized: they are

completely determined by the representation un-

der the superconformal symmetry [49, 50]. All

families of the Kaluza-Klein states, which cor-

respond to such BPS protected operators, were

classified long ago [40]. Correlation functions of

such operators in the strong ‘t Hooft coupling

limit may be obtained from the dependence of

the supergravity action on the boundary values

of corresponding Kaluza-Klein fields, as in (3.2).

A variety of explicit calculations have been per-

formed for 2-, 3- and even 4-point functions. The

4-point functions are particularly interesting be-

cause their dependence on operator positions is

not determined by the conformal invariance. For

state-of-the-art results on them, see [51, 52].

On the other hand, the masses of string ex-

citations are m2 = 4n
α′ where n is an integer. For

the corresponding operators the formula (3.8) pre-

dicts that the dimensions do depend on the ‘t

Hooft coupling and, in fact, blow up for large

g2YMN as 2
(
ngYM

√
2N
)1/2
. This is a highly

non-trivial prediction of the AdS/CFT duality

which has not yet been verified on the gauge the-

ory side.

4. Conformal field theories and Ein-

stein manifolds

As we mentioned above, the duality between type

IIB strings on AdS5×S5 and the N = 4 SYM is
naturally generalized to dualities between back-

grounds of the form AdS5×X5 and other confor-
mal gauge theories. The 5-dimensional compact

spaceX5 is required to be a postively curved Ein-

stein manifold, i.e. one for which Rµν = Λgµν
with Λ > 0. The number of supersymmetries

in the dual gauge theory is determined by the

number of Killing spinors on X5.

The simplest examples of X5 are the orb-

ifolds S5/Γ where Γ is a discrete subgroup of

SO(6) [10, 11]. In these cases X5 has the local

geometry of a 5-sphere. The dual gauge theory

is the IR limit of the world volume theory on a

stack of N D3-branes placed at the orbifold sin-

gularity of R6/Γ. Such theories typically involve

product gauge groups SU(N)k coupled to matter

in bifundamental representations [53].
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Constructions of the dual gauge theories for

Einstein manifoldsX5 which are not locally equiv-

alent to S5 are also possible. The simplest ex-

ample is the Romans compactification on X5 =

T 1,1 = (SU(2) × SU(2))/U(1) [37, 12]. It turns
out that the dual gauge theory is the conformal

limit of the world volume theory on a stack of N

D3-branes placed at the singularity of a certain

Calabi-Yau manifold known as the conifold [12].

Let us explain this connection in more detail.

The conifold may be described by the follow-

ing equation in four complex variables,

4∑
a=1

z2a = 0 . (4.1)

Since this equation is symmetric under an over-

all rescaling of the coordinates, this space is a

cone. Remarkably, the base of this cone is pre-

cisely the space T 1,1 [54, 12]. A simple argu-

ment in favor of this is based on the symmetries.

In order to find the base we intersect (4.1) with∑4
a=1 |za|2 = 1. The resulting space has the

SO(4) symmetry which rotates the z’s, and also

the U(1) R-symmetry under za → eiθza. Since

SO(4) ∼ SU(2)× SU(2) these symmetries coin-
cide with those of T 1,1. In fact, the metric on

the conifold may be cast in the form [54]

ds26 = dr
2 + r2ds25 , (4.2)

where ds25 is the metric on T
1,1. Now placing N

D3-branes at the apex of the cone we find the

metric

ds2 =

(
1 +

L4

r4

)−1/2 (−dt2 + dx21 + dx22 + dx23)
(4.3)

+

(
1 +

L4

r4

)1/2 (
dr2 + r2ds25

)
whose near-horizon limit is AdS5 × T 1,1 (once

again, L4 ∼ gsN). Thus, type IIB string the-

ory on this space should be dual to the infrared

limit of the field theory onN D3-branes placed at

the singularity of the conifold. Since Calabi-Yau

spaces preserve 1/4 of the original supersymme-

tries we find that this should be an N = 1 su-
perconformal field theory. This field theory was

first constructed in [12]: it is SU(N) × SU(N)
gauge theory coupled to two chiral superfields,

Ai, in the (N,N) representation and two chiral

superfields, Bj , in the (N,N) representation [12].

The A’s transform as a doublet under one of the

global SU(2)’s while the B’s transform as a dou-

blet under the other SU(2).

Cancellation of the anomaly in the U(1) R-

symmetry requires that the A’s and the B’s each

have R-charge 1/2. For consistency of the duality

it is necessary that we add an exactly marginal

superpotential which preserves the SU(2)×SU(2)×
U(1)R symmetry of the theory (this superpoten-

tial produces a critical line related to the radius

of AdS5 × T 1,1). Since a marginal superpoten-
tial has R-charge equal to 2 it must be quartic,

and the symmetries fix it uniquely up to overall

normalization:

W = εijεkl trAiBkAjBl . (4.4)

There is a number of convincing checks of

the duality between this field theory and type

IIB strings on AdS5 × T 1,1. We will point out
one subtle check which is related to the discus-

sion of the operator dimensions in section 3.2.

The simplest chiral operators were constructed

in [12]:

tr(Ai1Bj1 . . . AikBjk) . (4.5)

Since the F-term constraints in the gauge theory

require that the i and the j indices are separately

symmetrized, we find that their SU(2) × SU(2)
quantum numbers are (k/2, k/2). The R-charge

is k which determines the operator dimensions

to be ∆ = 3k/2. This spectrum of quantum

numbers and dimensions indeed follows via the

AdS/CFT correspondence from the spectrum of

type IIB string theory on AdS5×T 1,1 [12, 55, 56].
Let us emphasize one interesting subtlety: the

dimension corresponding to the k = 1 operators,

3/2, is below d/2 = 2. Thus, it must correspond

to the smaller root of (3.5), ∆−. Analysis of
the spectrum of type IIB theory on AdS5 × T 1,1
[55, 56] reveals the presence of a scalar withm2 =

−15/4L2 which, when substituted into the for-
mula for ∆−, indeed gives 3/2.
In fact, the supermultiplet containing this

scalar includes another scalar withm2 = −15/4L2
and a massless fermion [56]. One of these scalar

fields corresponds to the lower component of the

superfield tr(AiBj), which has dimension 3/2,

13
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while the other corresponds to the upper compo-

nent which has dimension 5/2. Thus, the super-

symmetry requires that we pick dimension ∆+
for one of the conformally coupled scalars, and

∆− for the other. This is but one of many exam-
ples of how supersymmetry helps in constraining

and testing the gauge theory/gravity correspon-

dence.
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