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Abstract: The fermion mass problem and the ideas of mass protection are briefly reviewed. The

Fritzsch ansatz for the quark mass matrices and a recent variant, based on a lightest flavour mixing

mechanism in which all the CKM mixing angles disappear in the chiral symmetry limit of vanishing up

and down quark masses, are discussed. The Anti-Grand Unification Model (AGUT) and the Multiple

Point Principle (MPP) used to calculate the values of the Standard Model gauge coupling constants

in the theory are described. The application of the MPP to the pure Standard Model predicts the top

quark mass to be 173± 5 GeV and the Higgs particle mass to be 135± 9 GeV. Mass protection by the
chiral quantum numbers of the maximal AGUT gauge group SMG× U(1)f provides a successful fit
to the charged fermion mass spectrum, with an appropriate choice of Higgs fields to break the AGUT

gauge group down to the Standard Model gauge group (SMG) close to the Planck scale. The puzzle

of the neutrino masses and mixing angles presents a challenge to the AGUT model and approaches to

this problem are briefly discussed.

1. Introduction

As I discussed in my talk at the previous Corfu

workshop [1] in 1995, the pattern of observed

quark and lepton masses, their mixing and three

generation structure form the major outstand-

ing problem of particle physics. The hierarchical

structure of the charged fermion masses, rang-

ing over five orders of magnitude from 1/2 MeV

for the electron to 175 GeV for the top quark,

and of the quark weak coupling matrix elements

strongly suggests the existence of physics beyond

the StandardModel (SM). Furthermore the grow-

ing experimental support for the existence of neu-

trino oscillations and hence for a non-zero neu-

trino mass, from SuperKamiokande and other

data, provides direct evidence for non-Standard

Model physics. So the experimental values of the

SM fermion masses and mixing angles presently

provide our best clues to the fundamental physics

of flavour.

A fermion mass term

Lmass = −mψLψR + h.c. (1.1)

couples together a left-handed Weyl field ψL and

a right-handed Weyl field ψR, which then satisfy

the Dirac equation

iγµ∂µψL = mψR (1.2)

If the two Weyl fields are not charge conjugates

ψL 6= (ψR)c we have a Dirac mass term and the
two fields ψL and ψR together correspond to a

Dirac spinor. However if the two Weyl fields

are charge conjugates ψL = (ψR)
c we have a

Majorana mass term and the corresponding four

component Majorana spinor has only two de-

grees of freedom. Particles carrying an exactly

conserved charge Q, like the electron, must be

distinct from their anti-particles and can only

have Dirac masses with ψL and ψR having equal

charges QL = QR. However a neutrino could be

a massive Majorana particle.

The left-handed and right-handed top quark,

tL and tR carry unequal SM SU(2)×U(1) gauge
charges:

QL 6= QR (Chiral charges) (1.3)
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Electroweak gauge invariance protects the quarks

and leptons from gaining a fundamental mass

term (tLtR is not gauge invariant). This mass

protection mechanism is of course broken by the

Higgs effect, which naturally generates a mass

for the top quark of the same order of magni-

tude as the SM Higgs field vacuum expectation

value (vev). Thus the Higgs mechanism explains

why the top quark mass is suppressed, relative to

the fundamental (Planck, GUT...) mass scale of

the physics beyond the SM, down to the scale of

electroweak gauge symmetry breaking. However

the further suppression of the other quark-lepton

masses remains a mystery, which it is natural to

attribute to mass protection by another approx-

imately conserved (gauge) charge (or charges)

beyond the SM, as discussed in section 3. In

this talk I will appeal to the gauge charges of

the Anti-Grand Unification Theory (AGUT) for

this mass protection. The AGUT model and

its connection with the Multiple Point Princi-

ple (MPP) is discussed in section 4. The MPP

predictions for the top quark and Higgs particle

masses within the pure SM are then discussed

in section 5. The Higgs field sector required to

break the AGUT gauge group down to that of the

SM is described in section 6. The structure of the

quark and charged lepton mass matrices result-

ing from AGUT mass protection is presented in

section 7. I will then consider the neutrino mass

problem in section 8 and conclude in section 9.

However let me begin, in the following sec-

tion 2, by considering the structure of the fermion

mass matrices and some of the ansätze suggested

by phenomenology.

2. Mass matrix texture

The hierarchical structure of the Standard Model

fermion mass spectrum naturally suggests that

the fermion mass matrix elements have a simi-

lar hierarchical structure, each typically having

a different order of magnitude. The smaller ele-

ments may then contribute so weakly to the phys-

ical masses and mixing angles that they can effec-

tively be neglected and replaced by zero—texture

zeros. The best known ansatz incorporating such

a texture zero is the two generation Fritzsch her-

mitean ansatz [2]:

MU =

(
0 B

B∗ A

)
MD =

(
0 B′

B′∗ A′

)

(2.1)

The assumed hierarchical structure gives the fol-

lowing conditions:

|A| � |B|, |A′| � |B′| (2.2)

among the parameters. It follows that the two

generation Cabibbo mixing is given by the well-

known Fritzsch formula

|Vus| '
∣∣∣∣
√
md

ms
− eiφ

√
mu

mc

∣∣∣∣ (2.3)

where φ = argB′ − argB. This relationship fits
the experimental value well, provided that the

phase φ is close to π2 . The generalisation of the

Fritzsch ansatz to three generations:

MU =


 0 C 0

C∗ 0 B

0 B∗ A


 (2.4)

MD =


 0 C′ 0

C′∗ 0 B′

0 B′∗ A′


 (2.5)

with the assumed hierarchy of parameters:

|A| � |B| � |C|, |A′| � |B′| � |C′| (2.6)

however leads to an additional relationship

|Vcb| '
∣∣∣∣
√
ms

mb
− e−iφ2

√
mc

mt

∣∣∣∣ (2.7)

which is excluded by the data for any value of the

phase φ2. Consistency with experiment can, for

example, be restored by introducing a non-zero

2-2 mass matrix element [3].

There are several ansätze, with texture ze-

ros [4], which give testable relations between the

masses and mixing angles [1]. Here I will dis-

cuss a recent suggestion [5], which predicts all the

CKM mixing matrix elements in terms of quark

masses. It is a common belief, due to the success

of eq. (2.3), that the smallness of the Cabibbo

mixing matrix element Vus is due to the lightness

of the u and d quarks. However not only the 1-3

generation mixing Vub but also the 2-3 generation

mixing Vcb happen to be small compared to Vus.

2



Corfu Summer Institute on Elementary Particle Physics, 1998 Colin Froggatt

This led us to the idea that all the other mix-

ings, and primarily the 2-3 mixing, could also be

controlled by the up and down quark masses mu
andmd and vanishes in the chiral symmetry limit

mu = md = 0. Therefore we consider an ansatz

in which the diagonal mass matrix elements for

the second and third generations are practically

the same in the gauge (unrotated) and physical

bases.

We propose that the three mass matrices for

the Dirac fermions—the up quarks (U = u, c,

t), the down quarks (D = d, s, b) and charged

leptons (E = e, µ, τ)—are each hermitian with

three texture zeros of the following form:

Mi =


 0 ai 0

a∗i Ai bi
0 b∗i Bi


 i = U, D, E (2.8)

with the hierarchy Bi � Ai ∼ |bi| � |ai| be-
tween the elements. Our ansatz requires the di-

agonal elements (Ai, Bi), of the mass matrices

Mi, to be proportional to the modulus square of

the off-diagonal elements (ai, bi):

Ai

Bi
=

∣∣∣∣aibi
∣∣∣∣
2

i = U, D, E (2.9)

It follows that the Cabibbo mixing is given by

the Fritzsch formula eq. (2.3) which fits the ex-

perimental value well, provided that the CP vio-

lating phase φ is required to be close to π2 . Our

most interesting prediction (with the mass ratios

calculated at the electroweak scale [6]) is:

|Vcb| '
∣∣∣∣
√
md

mb
− eiγ

√
mu

mt

∣∣∣∣
'
√
md

mb
= 0.038± 0.007 (2.10)

in good agreement with the current data |Vcb| =
0.039± 0.003 [7]. If we also take the phase γ =
arg bD − arg bU to be π2 , the uncertainty in our
prediction of eq. (2.10) is reduced from 0.007 to

0.004. Another prediction for the ratio:

∣∣∣∣VubVcb
∣∣∣∣ =
√
mu

mc
(2.11)

is quite general for models with nearest-neighbour

mixing.

An alternative scenario, in which the hermi-

tian mass matrix for the up quarks is changed to

be of the form:

MU =


 0 0 cU
0 AU 0

c∗U 0 BU


 (2.12)

leads to mixing angles given by the simple and

compact formulae:

|Vus| '
√
md

ms
|Vcb| '

√
md

mb
|Vub| '

√
mu

mt
(2.13)

While the values of |Vus| and |Vcb| are practi-
cally the same as in our first scenario and in good

agreement with experiment, a new prediction for

|Vub| (not depending on the value of the CP vi-
olating phase) should allow experiment to dif-

ferentiate between the two scenarios in the near

future.

3. Mass matrix texture from chiral

flavour charges

As we pointed out in section 1, a natural res-

olution to the charged fermion mass problem is

to postulate the existence of some approximately

conserved chiral charges beyond the SM. These

charges, which we assume to be the gauge quan-

tum numbers in the fundamental theory beyond

the SM, provide selection rules forbidding the

transitions between the various left-handed and

right-handed quark-lepton states, except for the

top quark. In order to generate mass terms for

the other fermion states, we have to introduce

new Higgs fields, which break the fundamental

gauge symmetry group G down to the SM group.

We also need suitable intermediate fermion states

to mediate the forbidden transitions, which we

take to be vector-like Dirac fermions with a mass

of order the fundamental scaleMF of the theory.

In this way effective SM Yukawa coupling con-

stants are generated, which are suppressed by

the appropriate product of Higgs field vacuum

expectation values measured in units of MF .

Consider, for example, the model obtained

by extending the Standard Model gauge group

SMG = SU(3) × SU(2) × U(1) with a gauged
abelian flavour group U(1)f . This SMG×U(1)f

3
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gauge group is broken to SMG by the vev of a

scalar field φS where 〈φS〉 < MF and φS carries

U(1)f charge Qf (φS) = 1. Suppose further that

the U(1)f charges of the Weinberg Salam Higgs

field and the left- and right-handed bottom quark

fields are:

Qf(φWS) = 0 Qf (bL) = 0 Qf (bR) = 2

(3.1)

Then it is natural to expect the generation of a

mass for the b quark of order:

( 〈φS〉
MF

)2
〈φWS〉 (3.2)

via a tree level diagram involving the exchange of

two 〈φS〉 tadpoles, in addition to the usual 〈φWS〉
tadpole, with two appropriately charged vector-

like fermion intermediate states [8] of mass MF .

We identify εf = 〈φS〉/MF as the U(1)f flavour
symmetry breaking parameter. In general we ex-

pect mass matrix elements of the form:

M(i, j) = γijε
nij
f 〈φWS〉 (3.3)

between the ith left-handed and jth right-handed

fermion components, where

γij = O(1), nij =| Qf (ψLi)−Qf(ψRj ) | (3.4)

So the effective SM Yukawa couplings of the

quarks and leptons to the Weinberg-Salam Higgs

field yij = γijε
nij
f can consequently be small even

though all fundamental Yukawa couplings of the

“true” underlying theory are of O(1). However
it appears [9] not possible to explain the fermion

mass spectrum with an anomaly free set of flavour

charges in an SMG×U(1)f model with a single
Higgs field φS breaking the U(1)f gauge symme-

try. In fact it is possible to produce a realistic

quark-lepton spectrum, but at the expense of in-

troducing three Higgs fields with relatively prime

U(1)f charges and most of the SM fermions car-

rying exceptionally largeU(1)f charges. Another

possibility is to introduce SMG-singlet fermions

with non-zero values of the U(1)f charge to can-

cel the U(1)3f gauge anomaly (as in MSSM ×
U(1)f models [10], which also use anomaly can-

cellation via the Green-Schwarz mechanism [11]).

However we shall consider the alternative of ex-

tending the SM gauge group further—in fact to

that of the anti-grand unification model intro-

duced in the next section.

We shall take the point of view that, in the

fundamental theory beyond the SM, the Yukawa

couplings allowed by gauge invariance are all of

order unity and, similarly, all the mass terms al-

lowed by gauge invariance are of order the funda-

mental mass scale of the theory—say the Planck

scale. Then, apart from the element responsible

for the top quark mass, the quark-lepton mass

matrix elements are only non-zero due to the

presence of other Higgs fields having vevs smaller

(typically by one order of magnitude) than the

fundamental scale. These Higgs fields will, of

course, be responsible for breaking the funda-

mental gauge group G—whatever it may be—

down to the SM group. In order to generate

a particular effective SM Yukawa coupling ma-

trix element, it is necessary to break the sym-

metry group G by a combination of Higgs fields

with the appropriate quantum number combina-

tion ∆ ~Q. When this “∆ ~Q” is different for two

matrix elements they will typically deviate by a

large factor. If we want to explain the observed

spectrum of quarks and leptons in this way, it is

clear that we need charges which—possibly in a

complicated way—separate the generations and,

at least for t−b and c−s, also quarks in the same
generation. Just using the usual simple SU(5)

GUT charges does not help because both (µR
and eR) and (µL and eL) have the same SU(5)

quantum numbers. So we prefer to keep each

SM irreducible representation in a separate irre-

ducible representation of G and introduce extra

gauge quantum numbers distinguishing the gen-

erations, by adding extra Cartesian-product fac-

tors to the SM gauge group.

4. Anti-Grand unification model

In the AGUT model the SM gauge group is ex-

tended in much the same way as Grand Unified

SU(5) is often assumed; it is just that we assume

another non-simple gauge group G = SMG3 ×
U(1)f , where SMG ≡ SU(3) × SU(2) × U(1),

becomes active near the Planck scale MPlanck '
1019 GeV. So we have a pure SM desert, with-

out any supersymmetry, up to an order of mag-

nitude or so below MPlanck. The existence of

4
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the SMG3 × U(1)f group means that, near the
Planck scale, each of the three quark-lepton gen-

erations has got its own gauge group and asso-

ciated gauge particles with the same structure

as the SM gauge group. There is also an ex-

tra abelian U(1)f gauge boson, giving altogether

3×8 = 24 gluons, 3×3 = 9W ’s and 3×1+1 = 4
abelian gauge bosons.

The couplings of the i’th proto-generation to

the SMGi = SU(3)i × SU(2)i × U(1)i group

are identical to those to the SM group. Con-

sequently we have a charge quantization rule,

analogous to the SM charge quantisation rule

(see eq. (4.2) below), for each of the three proto-

generation weak hypercharge quantum numbers

yi. For the colourless particles we have the Mil-

likan charge quantization of all charges being in-

teger when measured in units of the elementary

charge unit, but for coloured particles the charges

deviate from being integer by −1/3 of the ele-
mentary charge for quarks and by +1/3 for an-

tiquarks. This rule can be expressed by intro-

ducing the concept of triality t, which character-

izes the representation of the centre of the colour

SU(3) group, and is defined so that t = 0 for

the trivial representation or for decuplets, octets

and so on, while t = 1 for triplet (3) or anti-sextet

etc. and t = −1 for anti-triplet (3) or sextet etc.
Then the rule can be written in the form

Q+ t/3 = 0 (mod 1) (4.1)

where Q is the electric charge Q = y/2 + t3/2

(t3 is the third component of the weak isospin,

SU(2), and y is the weak hypercharge). So we

may write this SM charge quantization rule as

y/2 + d/2 + t/3 = 0 (mod 1) (4.2)

where we have introduced the duality d, which is

defined to be 0 when the weak isospin is integer

and d = 1 when it is half integer.

At first sight, this SMG3×U(1)f group with
its 37 generators seems to be just one among

many possible SM gauge group extensions. How-

ever, it is actually not such an arbitrary choice,

as it can be uniquely specified by postulating

4 reasonable requirements on the gauge group

G ⊇ SMG. As a zeroth postulate, of course,

we require that the gauge group extension must

contain the Standard Model group as a subgroup

G ⊇ SMG. In addition it should obey the fol-

lowing 4 postulates:

The first two are also valid for SU(5) GUT:

1. G should transform the presently known

(left-handed, say) Weyl particles into each

other. Here we take the point of view that

we do not look for the whole gauge group

G, say, but only for that factor group G′ =
G/H which transforms the already known

quark and lepton Weyl fields in a nontriv-

ial way. That is to say, we ask for the

group obtained by dividing out the sub-

group H ⊂ G which leaves the quark and

lepton fields unchanged. This factor group

G′ can then be identified with its repre-
sentation of the Standard Model fermions,

i.e. as a subgroup of the U(45) group of

all possible unitary transformations of the

45 Weyl fields for the Standard Model. If

one took G to be one of the extensions

of SU(5), such as SO(10) or the E-groups

as promising unification groups, the fac-

tor group G/H would be SU(5) only; the

extension parts can be said to only trans-

form particles that are not in the Standard

Model (and thus could be pure fantasy a

priori).

2. No anomalies, neither gauge nor mixed. We

assume that only straightforward anomaly

cancellation takes place and, as in the SM

itself, do not allow for a Green-Schwarz

type anomaly cancellation [11].

But the next two are rather just opposite

to the properties of the SU(5) GUT, thus

justifying the name Anti-GUT:

3. The various irreducible representations of

Weyl fields for the SM group remain irre-

ducible under G. This is the most arbitrary

of our assumptions about G. It is moti-

vated by the observation that combining

SM irreducible representations into larger

unified representations introduces symme-

try relations between Yukawa coupling con-

stants, whereas the particle spectrum does

5
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not exhibit any exact degeneracies (except

possibly for the case mb = mτ ). In fact

AGUT only gets the naive SU(5) mass pre-

dictions as order of magnitude relations:

mb ≈ mτ , ms ≈ mµ, md ≈ me.
4. G is the maximal group satisfying the other

3 postulates.

With these four postulates a somewhat com-

plicated calculation shows that, modulo permu-

tations of the various irreducible representations

in the Standard Model fermion system, we are led

to our gauge group SMG3×U(1)f . Furthermore
it shows that the SM group is embedded as the

diagonal subgroup of SMG3, as required in our

AGUT model. The AGUT group breaks down

an order of magnitude or so below the Planck

scale to the SM group. The anomaly cancellation

constraints are so tight that, apart from various

permutations of the particle names, the U(1)f
charge assignments are uniquely determined up

to an overall normalisation and sign convention.

In fact the U(1)f group does not couple to the

left-handed particles or any first generation par-

ticles, and the U(1)f quantum numbers can be

chosen as follows:

Qf(τR) = Qf (bR) = Qf (cR) = 1 (4.3)

Qf(µR) = Qf (sR) = Qf (tR) = −1 (4.4)

The AGUT group breaks down an order of

magnitude or so below the Planck scale to the

diagonal subgroup of the SMG3 subgroup (the

diagonal subgroup is isomorphic to the usual SM

group). For this breaking we shall use a relatively

complicated system of Higgs fields with names

W , T , ξ, and S. In order to fit neutrino masses

as well, we need an even more complicated sys-

tem. It should however be said that, although

at the very high energies just under the Planck

energy each generation has its own gluons, own

W’s etc., the breaking makes only one linear com-

bination of a certain colour combination of glu-

ons “survive” down to low energies. So below

circa 1/10 of the Planck scale, it is only these lin-

ear combinations that are present and thus the

couplings of the gauge particles—at low energy

only corresponding to these combinations—are

the same for all three generations. You can also

Figure 1: Evolution of the Standard Model fine

structure constants αi (α1 in the SU(5) inspired nor-

malisation) from the electroweak scale to the Planck

scale. The anti-GUTmodel predictions for the values

at the Planck scale, α−1i (MPlanck), are shown with
error bars.

say that the phenomenological gluon is a linear

combination with amplitude 1/
√
3 for each of

the AGUT-gluons of the same colour combina-

tion. That then also explains why the coupling

constant for the phenomenological gluon couples

with a strength that is
√
3 times smaller than for

the AGUT-gluons (see eq. (4.5) below) if, as we

effectively assume, the three AGUT SU(3) cou-

plings were equal to each other.

The SM gauge coupling constants do not, of

course, unify, because we have not combined the

groups U(1), SU(2) and SU(3) together into a

simple group, but their values have been success-

fully calculated using the Multiple Point Princi-

ple [12]. According to the MPP, the coupling

constants should be fixed such as to ensure the

existence of many vacuum states with the same

energy density; in the Euclideanised version of

the theory, there is a corresponding phase tran-

sition. So if several vacua are degenerate, there

is a multiple point. The couplings at the multi-

ple points have been calculated in lattice gauge

theory for the groups SU(3), SU(2) and U(1)

separately. We imagine that the lattice has a

truly physical significance in providing a cut-off

for our model at the Planck scale. The SM fine

structure constants correspond to those of the di-

6
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Figure 2: Plot of λ as a function of the scale of the

Higgs field φ for degenerate vacua with the second

Higgs VEV at the Planck scale φvac 2 = 10
19 GeV.

agonal subgroup of the SMG3 group and, for the

non-abelian groups, this gives:

αi(MPlanck) =
αMultiple Pointi

3
i = 2, 3

(4.5)

The situation is more complicated for the abelian

groups, because it is possible to have gauge in-

variant cross-terms between the different U(1)

groups in the Lagrangian density such as:

1

4g2
F gen 1µν (x)Fµνgen 2(x) (4.6)

So, in first approximation, for the SM U(1) fine

structure constant we get:

α1(MPlanck) =
αMultiple Point1

6
(4.7)

The agreement of these AGUT predictions with

the data is shown in figure 1.

5. The MPP Prediction for the Top

Quark and Higgs masses in the

Standard Model

The application of the MPP to the pure Standard

Model [13], with a cut-off close to MPlanck, im-

plies that the SM parameters should be adjusted,

such that there exists another vacuum state de-

generate in energy density with the vacuum in

which we live. This means that the effective SM

Higgs potential Veff (|φ|) should, have a second
minimum degenerate with the well-known first

minimum at the electroweak scale 〈|φvac 1|〉 =
246 GeV. Thus we predict that our vacuum is

barely stable and we just lie on the vacuum sta-

bility curve in the top quark, Higgs particle (pole)

mass (Mt, MH) plane. Furthermore we expect

the second minimum to be within an order of

magnitude or so of the fundamental scale, i.e.

〈|φvac 2|〉 ' MPlanck. In this way, we essentially

select a particular point on the SM vacuum sta-

bility curve and hence the MPP condition pre-

dicts precise values for Mt and MH .

For the purposes of our discussion it is suf-

ficient to consider the renormalisation group im-

proved tree level effective potential Veff (φ). We

are interested in values of the Higgs field of the

order |φvac 2| ' MPlanck, which is very large

compared to the electroweak scale, and for which

the quartic term strongly dominates the φ2 term;

so to a very good approximation we have:

Veff (φ) ' 1
8
λ(µ = |φ|)|φ|4 (5.1)

The running Higgs self-coupling constant λ(µ)

and the top quark running Yukawa coupling con-

stant gt(µ) are readily computed by means of

the renormalisation group equations, which are

in practice solved numerically, using the second

order expressions for the beta functions.

The vacuum degeneracy condition is imposed

by requiring:

Veff (φvac 1) = Veff (φvac 2) (5.2)

Now the energy density in vacuum 1 is exceed-

ingly small compared to φ4vac 2 'M4
Planck. So we

basically get the degeneracy condition, eq. (5.2),

to mean that the coefficient λ(φvac 2) of φ
4
vac 2

must be zero with high accuracy. At the same

φ-value the derivative of the effective potential

Veff (φ) should be zero, because it has a mini-

mum there. Thus at the second minimum of the

effective potential the beta function βλ also van-

ishes:

βλ(µ = φvac 2) = λ(φvac 2) = 0 (5.3)

which gives to leading order the relationship:

9

4
g42 +

3

2
g22g

2
1 +
3

4
g41 − 12g4t = 0 (5.4)
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Figure 3: Plot of gt as a function of the scale of the

Higgs field φ for degenerate vacua with the second

Higgs VEV at the Planck scale φvac 2 = 10
19 GeV.

between the top quark Yukawa coupling and the

electroweak gauge coupling constants g1(µ) and

g2(µ) at the scale µ = φvac 2 ' MPlanck. We

use the renormalisation group equations to re-

late the couplings at the Planck scale to their

values at the electroweak scale. Figures 2 and

3 show the running coupling constants λ(φ) and

gt(φ) as functions of log(φ). Their values at the

electroweak scale give our predicted combination

of pole masses [13]:

Mt = 173± 5 GeV MH = 135± 9 GeV (5.5)

6. AGUT gauge symmetry breaking

by Higgs fields

There are obviously many different ways to break

down the large group SMG×U(1)f to the much
smaller SMG. However, we can greatly simplify

the situation by assuming that, like the quark

and lepton fields, the Higgs fields belong to sin-

glet or fundamental representations of all non-

abelian groups. The non-abelian representations

are then determined from the U(1)i weak hy-

percharge quantum numbers, by imposing the

charge quantization rule eq. (4.2) for each of the

SMGi groups. So now the four abelian charges,

which we express in the form of a charge vector

~Q =
(y1
2
,
y2

2
,
y3

2
, Qf

)

can be used to specify the complete representa-

tion of G. The constraint that we must eventu-

ally recover the SM group as the diagonal sub-

group of the SMGi groups is equivalent to the

constraint that all the Higgs fields (except for

the Weinberg-Salam Higgs field which of course

finally breaks the SMG) should have charges yi
satisfying:

y = y1 + y2 + y3 = 0 (6.1)

in order that their SM weak hypercharge y be

zero.

We wish to choose the quantum numbers

of the Weinberg-Salam (WS) Higgs field φWS
so that it matches the difference in charges be-

tween the left-handed and right-handed physical

top quarks. This will ensure that the top quark

mass in the SM is not suppressed relative to the

WS Higgs field VEV. However we note that there

is a finesse of our fit to the quark-lepton spec-

trum, according to which the right-handed com-

ponent of the experimentally observed t-quark is

actually the one having second generation SU(3)

quantum numbers and is thus really the proto-

right-handed charm quark cR. In a similar way

the right-handed component of the experimen-

tally observed charm quark has the third gen-

eration SU(3) representation and is really the

proto-right-handed top quark tR. It is only the

right-handed top and charm quarks that are per-

muted in this way, while for example the left-

handed components are not. We have to make

this identification of the proto-generation fields

cR and tR; otherwise we cannot suppress the b

quark and τ lepton masses. This is because, for

the proto-fields, the charge differences between

tL and tR are the same as between bL and bR
and also between τL and τR. So now it is sim-

ple to calculate the quantum numbers of the WS

Higgs field φWS :

~QφWS = ~QcR − ~QtL =

(
0,
2

3
, 0, 1

)
−
(
0, 0,

1

6
, 0

)

=

(
0,
2

3
,−1
6
, 1

)
(6.2)

This means that the WS Higgs field will in fact be

coloured under both SU(3)2 and SU(3)3. After

breaking the symmetry down to the SM group,

8
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we will be left with the usual WS Higgs field

of the SM and another scalar which will be an

octet of SU(3) and a doublet of SU(2). This

should not present any phenomenological prob-

lems, provided this scalar doesn’t cause symme-

try breaking and doesn’t have a mass less than

about 1 TeV. In particular an octet of SU(3)

cannot lead to baryon decay. In our model we

take it that what in the Standard Model are

seen as many very small Yukawa-couplings to

the Standard Model Higgs field really represent

chain Feynman diagrams, composed of propaga-

tors with Planck scale heavy particles (fermions)

interspaced with order of unity Yukawa couplings

to Higgs fields with the names W , T , ξ, and

S, which are postulated to break the AGUT to

the Standard Model Group. The small effec-

tive Yukawa couplings in the Standard Model are

then generated as products of small factors, given

by the ratios of the vacuum expectation values of

W , T , and ξ to the masses occurring in the prop-

agators for the Planck scale fermions in the chain

diagrams [8].

The quantum numbers of our invented Higgs

fields W , T , ξ and S are chosen—and it is re-

markable that we succeeded so well—so as to

make the order of magnitude for the suppres-

sions of the mass matrix elements of the vari-

ous mass matrices fit to the phenomenological

requirements.

After the choice of the quantum numbers for

the replacement of the Weinberg Salam Higgs

field in our model, eq. (6.2), the further quan-

tum numbers needed to be picked out of the vac-

uum in order to give, say, mass to the b-quark is

denoted by ~b and analogously for the other par-

ticles. For example:

~b = ~QbL − ~QbR − ~QWS (6.3)

~c = ~QcL − ~QtR + ~QWS (6.4)

~µ = ~QµL − ~QµR − ~QWS (6.5)

Here we denoted the quantum numbers of the

quarks and leptons as e.g. ~QcL for the left handed

components of the proto-charmed quark. Note,

as we remarked above, that ~c has been defined

using the tR proto-field, since we have essentially

swapped the right-handed charm and top quarks.

Also the charges of the WS Higgs field are added

rather than subtracted for up-type quarks.

Next we attempted to find some Higgs field

quantum numbers which, if postulated to have

“small” vevs compared to the Planck scale masses

of the intermediate particles, would give a rea-

sonable fit to the order of magnitudes of the mass

matrix elements. We were thereby led to the pro-

posal:

~QW =
1

3
(2~b+ ~µ) =

(
0,−1
2
,
1

2
,−4
3

)
(6.6)

~QT = ~b− ~QW =

(
0,−1
6
,
1

6
,−2
3

)
(6.7)

~Qξ = ~QdL − ~QsL =

(
1

6
, 0, 0, 0

)
−
(
0,
1

6
, 0, 0

)

=

(
1

6
,−1
6
, 0, 0

)
(6.8)

From the Fritzsch relation [2] Vus '
√
md
ms

discussed in section 2, it is suggested that the

two off-diagonal mass matrix elements connect-

ing the d-quark and the s-quark be equally big.

We achieve this approximately in our model by

introducing a special Higgs field S, with quan-

tum numbers equal to the difference between the

quantum number differences for these 2 matrix

elements in the down quark matrix. Then we

postulate that this Higgs field has a vev of or-

der unity in fundamental units, so that it does

not cause any suppression but rather ensures that

the two matrix elements get equally suppressed.

Henceforth we will consider the vevs of the new

Higgs fields as measured in Planck scale units

and so we have:

< S >= 1 (6.9)

and

~QS = [ ~QsL − ~QdR ]− [ ~QdL − ~QsR ]

=

(
1

6
,−1
6
, 0,−1

)
(6.10)

The existence of a non-suppressing field S means

that we cannot control phenomenologically when

9
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this S-field is used. Thus the quantum numbers

of the other Higgs fields W , T , ξ and φWS given

above have only been determined modulo those

of the field S.

7. Quark and lepton mass matrices

in AGUT

We define the mass matrices by considering the

mass terms in the SM to be given by:

L = QLMUUR +QLMDDR + LLMEER + h.c.
(7.1)

The mass matrices can be expressed in terms of

the effective SM Yukawa matrices and the WS

Higgs VEV by:

Mf = Yf
< φWS >√

2
(7.2)

We can now calculate the suppression factors for

all elements in the Yukawa matrices, by express-

ing the charge differences between the left-handed

and right-handed fermions in terms of the charges

of the Higgs fields. They are given by products

of the small numbers denoting the vevs of the

fields W , T , ξ in fundamental units and the or-

der unity vev of S. In the following matrices we

simply write W instead of < W > etc. for the

vevs in Planck units. With the quantum number

choice given above, the resulting matrix elements

are—but remember that “random” complex or-

der unity factors are supposed to multiply all the

matrix elements—for the uct-quarks:

YU '

 SWT 2ξ2 WT 2ξ W 2Tξ

SWT 2ξ3 WT 2 W 2T

Sξ3 1 WT


 (7.3)

the dsb-quarks:

YD '

 SWT 2ξ2 WT 2ξ T 3ξ

SWT 2ξ WT 2 T 3

SW 2T 4ξ W 2T 4 WT


 (7.4)

and the charged leptons:

YE '

 SWT 2ξ2 WT 2ξ3 S2WT 4ξ

SWT 2ξ5 WT 2 S2WT 4ξ2

S3WT 5ξ3 W 2T 4 WT


 (7.5)

We can now set S = 1 and fit the nine quark

and lepton masses and three mixing angles, us-

ing 3 parameters: W , T and ξ. That really

Table 1: Best fit to conventional experimental data.

All masses are running masses at 1 GeV except the

top quark mass which is the pole mass.

Fitted Experimental

mu 3.6 MeV 4 MeV

md 7.0 MeV 9 MeV

me 0.87 MeV 0.5 MeV

mc 1.02 GeV 1.4 GeV

ms 400 MeV 200 MeV

mµ 88 MeV 105 MeV

Mt 192 GeV 180 GeV

mb 8.3 GeV 6.3 GeV

mτ 1.27 GeV 1.78 GeV

Vus 0.18 0.22

Vcb 0.018 0.041

Vub 0.0039 0.0035

means we have effectively omitted the Higgs field

S and replaced the maximal AGUT gauge group

SMG3 × U(1)f by the reduced AGUT group

SMG12×SMG3×U(1), which survives the spon-
taneous breakdown due to S. In order to find

the best possible fit we must use some function

which measures how good a fit is. Since we are

expecting an order of magnitude fit, this func-

tion should depend only on the ratios of the fitted

masses to the experimentally determined masses.

The obvious choice for such a function is:

χ2 =
∑[

ln

(
m

mexp

)]2
(7.6)

where m are the fitted masses and mixing an-

gles and mexp are the corresponding experimen-

tal values. The Yukawa matrices are calculated

at the fundamental scale which we take to be the

Planck scale. We use the first order renormal-

isation group equations (RGEs) for the SM to

calculate the matrices at lower scales.

We cannot simply use the 3 matrices given

by eqs. (7.3)–(7.5) to calculate the masses and

mixing angles, since only the order of magnitude

of the elements is defined. Therefore we calcu-

late statistically, by giving each element a ran-

dom complex phase and then finding the masses

and mixing angles. We repeat this several times

and calculate the geometrical mean for each mass

and mixing angle. In fact we also vary the magni-
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tude of each element randomly, by multiplying by

a factor chosen to be the exponential of a number

picked from a Gaussian distribution with mean

value 0 and standard deviation 1.

We then vary the 3 free parameters to find

the best fit given by the χ2 function. We get the

lowest value of χ2 for the VEVs:

〈W 〉 = 0.179 (7.7)

〈T 〉 = 0.071 (7.8)

〈ξ〉 = 0.099 (7.9)

The result [14] of the fit is shown in table 1. This

fit has a value of:

χ2 = 1.87 (7.10)

This is equivalent to fitting 9 degrees of freedom

(9 masses + 3 mixing angles - 3 Higgs vevs) to

within a factor of exp(
√
1.87/9) ' 1.58 of the

experimental value. This is better than might

have been expected from an order of magnitude

fit.

We can also fit to different experimental val-

ues of the 3 light quark masses by using recent re-

sults from lattice QCD, which seem to be consis-

tently lower than the conventional phenomeno-

logical values. The best fit in this case [14] is

shown in table 2. The corresponding values of

the Higgs vevs are:

〈W 〉 = 0.123 (7.11)

〈T 〉 = 0.079 (7.12)

〈ξ〉 = 0.077 (7.13)

and this fit has a larger value of:

χ2 = 3.81 (7.14)

But even this is good for an order of magnitude

fit.

8. Neutrino mass and mixing

Physics beyond the SM can generate an effective

light neutrino mass term

Lν−mass =
∑
i,j

ψiαψjβε
αβ(Mν)ij (8.1)

in the Lagrangian, where ψi,j are the Weyl spinors

of flavour i and j, and α, β = 1, 2. Fermi-Dirac

Table 2: Best fit using alternative light quark

masses extracted from lattice QCD. All masses are

running masses at 1 GeV except the top quark mass

which is the pole mass.

Fitted Experimental

mu 1.9 MeV 1.3 MeV

md 3.7 MeV 4.2 MeV

me 0.45 MeV 0.5 MeV

mc 0.53 GeV 1.4 GeV

ms 327 MeV 85 MeV

mµ 75 MeV 105 MeV

Mt 192 GeV 180 GeV

mb 6.4 GeV 6.3 GeV

mτ 0.98 GeV 1.78 GeV

Vus 0.15 0.22

Vcb 0.033 0.041

Vub 0.0054 0.0035

statistics means that the mass matrix Mν must

be symmetric. In models with chiral flavour sym-

metry we typically expect the elements of the

mass matrices to have different orders of mag-

nitude. The charged lepton matrix is then ex-

pected to give only a small contribution to the

lepton mixing. As a result of the symmetry of

the neutrino mass matrix and the hierarchy of

the mass matrix elements it is natural to have an

almost degenerate pair of neutrinos, with nearly

maximal mixing [15]. This occurs when an off-

diagonal element dominates the mass matrix.

A neutrino mass matrix of this texture is

generated in the AGUT model, by tree level di-

agrams involving the exchange of two Weinberg

Salam Higgs tadpoles and the appropriate combi-

nation of Planck scale Higgs field tadpoles. The

combination which leads to the mass term (Mν)ij
between νLi and νLj is determined by the equa-

tion

(∑
~Qθ

)
ij
= ~QνLi + ~QνLj + 2 ~QφWS (8.2)

Here the sum is over the charge vectors for the

combination of Planck scale Higgs fields (W , T ,

ξ and S) exchanged. In this way we obtain the
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neutrino mass matrix

Mν ' 〈φWS〉
2

MPl


W 2ξ4T 4 W 2ξT 4 W 2ξ3T

W 2ξT 4 WT 5 W 2T

W 2ξ3T W 2T W 2T 2ξ2



(8.3)

where we have set < S >= 1. The off-diagonal

element (Mν)23 = (Mν)32 clearly dominates this

matrix, so that we have large mu-tau mixing (be-

tween the nearly degenerate mass eigenstates ν2
and ν3). The mixing matrix Uν is given by

Uν ∼




1 ξ3√
2

ξ3√
2

−ξ3 1√
2

1√
2

−ξT 3 − 1√
2
1√
2


 (8.4)

We also have the ratio of neutrino mass squared

differences

∆m223
∆m212

∼ 2Tξ2 ∼ 1.4× 10−3 (8.5)

giving a hierarchy that is not suitable for the si-

multaneous solution of the solar and atmospheric

neutrino problems.

In any case, the mass scale is much too small

to give suitable masses for the atmospheric neu-

trino problem. This is because, even if the (Mν)23
element was unsuppressed by Planck scale Higgs

vevs, the see-saw mass

< φWS >
2

MPlanck
∼ 3× 10−6 eV (8.6)

would still be too small. So, it is necessary to in-

troduce a new mass scale into the AGUT model

in order to obtain observable neutrino masses

and mixings. This may be done by extending

the AGUT Higgs spectrum to include a weak

isotriplet Higgs field ∆ with SM weak hyper-

charge y2 = −1. However there is some unnatu-
ralness in obtaining a value for < ∆0 > from the

scalar potential some orders of magnitude greater

than the see-saw mass of eq. (8.6)

Furthermore we need extra structure for the

lepton mass matrices and must relax the assump-

tion that all the independent matrix elements are

of different orders of magnitude. For exampleMν
may have two order of magnitude degenerate el-

ements A ∼ B with a texture of the form:

Mν =


× A B

A × ×
B × ×


 (8.7)

where × indicates texture zeros. The mass eigen-
values are given by:

mνi = ±
√
A2 +B2, 0, (i = 1, 2, 3) (8.8)

although these will be slightly altered when the

effects of the small elements represented by tex-

ture zeros are included. With these eigenvalues

we clearly have a hierarchy in ∆m2’s with the

more degenerate pair being heavier:

∆m212 � ∆m213 ∼ ∆m223. (8.9)

So we take ∆m212 = ∆m
2
solar, ∆m

2
23 = A

2+B2 ∼
10−3 eV2, where ∆m2solar will depend on the type
of solution we adopt for the solar neutrinos.

The corresponding neutrino mixing matrix

(assuming that the charged lepton mass matrix

ME is quasi-diagonal) is:

Uν ∼

 1 0 0

0 cos θ − sin θ
0 sin θ cos θ






1√
2
− 1√

2
0

1√
2

1√
2
0

0 0 1




=




1√
2

− 1√
2

0
1√
2
cos θ 1√

2
cos θ − sin θ

1√
2
sin θ 1√

2
sin θ cos θ


 (8.10)

where

tan θ =
B

A
. (8.11)

From the first row we can see that νe is maxi-

mally mixed between ν1 and ν2, so that its mix-

ing does not contribute to the atmospheric neu-

trino anomaly, and there will be no effect ob-

servable at Chooz. The atmospheric neutrino

anomaly will be entirely due to large νµ − ντ
mixing and, in order that the mixing be large

enough, we need sin2 2θ ≥ 0.8 (90%C.L) which
requires

0.56 ≤ B

A
≤ 1.8 (8.12)

so that, although A and B must be order of mag-

nitude degenerate, it is not necessary to do any

fine tuning. The solar neutrino problem is ex-

plained by vacuum oscillations, although whether

it is an ‘energy-independent’ or a ‘just-so’ solu-

tion will depend on the small elements which we

have neglected. It cannot be explained by an

MSW type solution since the mixing between νe
and νµ is too large for this type of solution, and
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will remain too large even after the texture ze-

roes are removed. The particular case of B = A

for this texture corresponds to the popular bi-

maximal mixing solution [16] to the solar and at-

mospheric neutrino problems. This type of struc-

ture cannot explain the LSND result and does

not give a significant contribution to hot dark

matter, since the sum of the neutrino masses is

given by

∑
mν ∼ 2

√
A2 +B2 ∼ 2

√
∆m2atm

< 0.2 eV (8.13)

We have not been able to extend the Higgs

sector of the AGUT model in such a way as

to obtain a neutrino mass matrix Mν with the

above texture of eq. (8.7). However we have con-

structed [17] an anomaly free Abelian extension

of the Standard Model, which naturally yields a

mass matrixMν of this type. This SMG×U(1)2
model was inspired by the AGUT model and has

exactly the same charged fermion spectrum as in

the AGUT fit of Table 1. In order to rescue the

AGUT neutrino mass and mixing predictions, it

seems necessary to introduce yet another Higgs

field and obtain the large mixing required for the

atmospheric neutrino problem from the charged

lepton mass matrix ME . The solution to the so-

lar neutrino problem can then be obtained from

Mν or from the mixing due to small elements in

ME . This, of course, has to be achieved without

signicantly disturbing the quality of the AGUT

fit to the charged fermion spectrum.

9. Conclusions

We emphasized the hierarchical structure of the

quark-lepton mass spectrum and how it points

to a mass protection mechanism, controlled by

approximately conserved chiral (gauge) charges

beyond the Standard Model. The structure of

ansätze for the fermion mass matrices, suggested

by the hierarchy of masses and mixing angles,

was briefly discussed. A recent ansatz based on a

lightest flavour mixing mechanism was discussed,

which gives simple and compact formulae for all

the CKM mixing angles in terms of the quark

masses.

The anti-grand unification theory (AGUT),

and how the associated multiple point princi-

ple (MPP) is used to predict the values of the

three Standard Model gauge coupling constants,

was described. Applied to the case of the pure

Standard Model, the MPP leads to our predic-

tions for the top quark and Higgs pole masses:

Mt = 173± 5 GeV and MH = 135± 9 GeV.

The AGUT group SMG3×U(1)f is charac-
terised by being the largest anomaly-free gauge

group acting on just the 45 SM Weyl fermions,

without any unification of the SM irreducible rep-

resentations. This group assigns a unique set of

anomaly free chiral gauge charges to the quarks

and leptons. With an appropriate choice of Higgs

field quantum numbers, the AGUT chiral charges

naturally give a realistic charged fermion mass

hierarchy. An order of magnitude fit in terms of

3 Higgs vevs is given in Table 1, which repro-

duces all the masses and mixing angles within a

factor of two. The most characteristic feature of

the fit is that, apart from the t and c quarks, the

masses of the particles in the same generation

are predicted to be degenerate (but only in order

of magnitude) at the Planck scale. The worst

feature is the deviation, by a factor of about 2,

between the fitted and experimental values for

ms and Vcb.

On the other hand, the puzzle of the neutrino

masses and mixing angles presents a challenge to

the model. It is necessary to introduce a new

mass scale into the AGUT model, using say a

weak isotriplet Higgs field ∆, in order to generate

a neutrino mass appropriate to atmospheric neu-

trino oscillations. Using a reduced model, based

on the gauge group SMG×U(1)2, it is possible to
obtain a reasonably natural solution to the solar

and atmospheric neutrino problems and, at the

same time, reproduce the successful AGUT fit to

the charged fermion spectrum. However it is not

possible to embed this Abelian extension of the

SM into the AGUT, since one cannot choose a

consistent set of non-Abelian representations for

the Higgs fields. It appears that we shall have

to relax the assumption that the charged lepton

mass matrix is quasi-diagonal, in order to rescue

the AGUT model.
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