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Abstract: We discuss the critical behaviour of strongly interacting matter close to the QCD phase

transition. Emphasis is put on a presentation of results from lattice calculations that illustrate de-

confining as well as chiral symmetry restoring features of the phase transition. We show that both

transitions coincide in QCD while they fall apart in an SU(3) gauge theory coupled to adjoint fermions.

1. Introduction

The interest in analyzing the properties of QCD

at non-zero temperature is twofold. On the one

hand it is the goal to reach a quantitative de-

scription of the behaviour of matter at high tem-

perature and density. This does provide impor-

tant input for a quantitative description of exper-

imental signatures for the occurrence of a phase

transition in heavy ion collisions and should also

help to understand better the phase transitions

that occurred during the early times of the evolu-

tion of the universe. Eventually it also may allow

to answer the question whether a quark-gluon

plasma can exist in the interior of dense neutron

stars. For this reason one would like to reach

a quantitative understanding of the QCD equa-

tion of state, determine critical parameters such

as the critical temperature and the critical en-

ergy density and predict the modification of basic

hadron properties (masses, decay widths) with

temperature and density. On the other hand the

analysis of a complicated quantum field theory

at non-zero temperature can also help to improve

our understanding of its non-perturbative prop-

erties at zero temperature. The introduction of

an external control parameter (temperature) al-

lows to observe the response of different observ-

ables to this and may provide a better under-

standing of their interdependence [1]. In partic-

ular, one would like to clarify the role of confine-

ment and chiral symmetry breaking for the QCD

phase transition.

In which respect is the QCD phase transition

deconfining and/or chiral symmetry restoring?

In the next section we will address this question

and will present some basic results on the QCD

equation of state and critical parameters at the

transition point obtained from lattice QCD. In

section 3 we will discuss deconfinement and chiral

symmetry restoration in an SU(3) gauge theory

with adjoint fermions. In section 5 we give our

conclusions. Throughout this write-up we will as

far as possible try to avoid going into details of

the actual lattice calculations. Basics concepts

of the lattice formulation of QCD relevant for fi-

nite temperature calculations and in particular

for the discussion of deconfinement and chiral

symmetry restoration can be found for instance

in Refs. 2 and 3.

2. The QCD phase transition

Two properties of QCD explain the basic fea-

tures of the observed spectrum of hadrons – con-

finement and chiral symmetry breaking. While

the former explains why we observe only colour-

less states in the spectrum the latter describes

the presence of light Goldstone particles, the pi-

ons. The confining property of QCD manifests

itself in the large distance behaviour of the heavy

quark potential. At zero temperature the poten-
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Figure 1: The heavy quark potential in 2-flavour

QCD with quarks of mass m/T = 0.15 extracted

from calculations on a 163×4 lattice and in quenched
QCD on 323 × 4 lattices. The dashed line shows
results for the potential at T ' 0.

tial rises linearly at large distances, Vq̄q(r) ∼ σr,
where σ ' (420 MeV)2 denotes the string ten-
sion, and forces the quarks and gluons to be con-

fined in a hadronic bag. Chiral symmetry break-

ing leads to a non-vanishing quark anti-quark

condensate, 〈q̄q〉 ' (250 MeV)3, in the vacuum.
Inside the hadron bag, however, the condensate

vanishes. At high temperatures the individual

hadronic bags are expected to merge to a sin-

gle large bag, in which quarks and gluons can

move freely. This bag picture provides some in-

tuition for the occurrence of deconfinement and

chiral symmetry restoration. A priory it is, how-

ever, not evident that confinement and the bro-

ken chiral symmetry have to get lost at the same

temperature. It has been speculated that two

distinct phase transitions leading to deconfine-

ment at Td and chiral symmetry restoration at

Tχ could occur in QCD [4]. General arguments

about the scales involved suggest that Td ≤ Tχ.
In fact, the discussion of confinement and de-

confinement in terms of the heavy quark poten-

tial as presented above makes sense only in the

limit of heavy quarks. For light quarks the spon-

taneous creation of quark anti-quark pairs from

the vacuum leads to a breaking of the “string”

between static quark sources, i.e. the potential

tends to a constant value for r →∞. In particu-
lar at large temperature the distinction between

confinement and deconfinement thus seems to be-

come a qualitative one. This is evident from

a comparison of heavy quark potentials calcu-

lated in QCD with light quarks as well as in the

quenched limit at temperatures close but below

the phase transition [5]. The potentials shown

in Figure 1 have been obtained from a calcula-

tion of expectation values of the Polyakov loop

correlation function

exp

(
−Vq̄q(r, T )

T

)
= 〈TrL~xTrL†~y〉 , (2.1)

where L~x and L
†
~y represent a static quark and

anti-quark pair1 located at the spatial points ~x

and ~y, respectively, r = |~x− ~y|.
At large distances the Polyakov loop correla-

tion function approaches |〈L〉|2, where L is given
by L = N−3σ

∑
~xTrL~x. The Polyakov loop expec-

tation value 〈L〉 thus reflects the behaviour of the
heavy quark potential at large distances although

it is not an order parameter in the strict sense.

A sudden rise in 〈L〉 indicates that the heavy
quark potential flattens already at even shorter

distances; the magnitude of 〈L〉 thus still signals
the transition from a predominantly confining to

a deconfining thermal medium. This transition

also manifests itself in the occurrence of a peak

in the Polyakov loop susceptibility,

χL = 〈L2〉 − 〈L〉2 . (2.2)

The temperature dependence of chiral properties

of QCD on the other hand becomes visible di-

rectly through the temperature dependence of

the chiral condensate, 〈ψ̄ψ〉 as well as its deriva-
tive with respect to the quark mass, the chiral

susceptibility, χm,

χm =
∂

∂mq
〈ψ̄ψ〉 . (2.3)

Results from a calculation of these observ-

ables for QCD with two light quarks [6] are shown

in Figure 2 as a function of the lattice bare cou-

pling β = 6/g2. Evidently the peak in both sus-

ceptibilities is located at the same value of the

(pseudo)-critical couplings, βc(mq). This indi-

cates that the transition to a deconfined, chirally

symmetric phase occurs at the same tempera-

ture. These results provide the basic evidence
1Further details on the definition of this observable is

given for instance in Refs. 2 and 3.
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Figure 2: Polyakov loop and chiral susceptibilities versus β = 6/g2 in 2-flavour QCD for several values of the

quark mass calculated on lattices of size 83 × 4.

for the existence of a single phase transition in

QCD.

In fact, the finite peak heights of the suscep-

tibilities shown in Figure 2 as well as the rapid

but smooth variation of 〈L〉 and 〈ψ̄ψ〉 itself do
not yet correspond to a true phase transition.

This would be signaled by diverging susceptibil-

ities and is expected to occur only in the infinite

volume and zero quark mass limit2,

χm ∼ m1/δ−1q , (2.4)

where δ is a critical exponent. Although not yet

confirmed through numerical simulations [6, 9],

it is expected that the exponent δ will in the

case of 2-flavour QCD be equal to that of 3-

dimensional, O(4) symmetric spin models, δ '
4.82 [10]. We note that the chiral susceptibility

indeed grows rapidly with decreasing quark mass

while the Polyakov loop susceptibility shows lit-

tle variation with mq in the quark mass regime

covered in Figure 2. In fact, for these quark

masses χL also does not change significantly with

increasing spatial volume while it would rise rapid-

ly (∼ V ) in the heavy quark mass regime where

a first order deconfinement transition occurs.

2This is correct only when the phase transition is sec-

ond order. In the case of a first order transition the sus-

ceptibilities would diverge already for masses below a cer-

tain non-zero quark mass. This will happen, for instance,

in the case of QCD with three light flavours [7, 8].
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Figure 3: The pressure in units of T 4 versus T/Tc
for a pure SU(3) gauge theory (quenched) and four

flavour QCD with two different values of the quark

mass (m/T = 0.2, 0.4). The numerical results

for four flavour QCD have been rescaled by the

corresponding ratio of ideal gas values, pSB(nf =

4)/pSB(nf = 0).

We conclude that observables directly related

to chiral symmetry restoration show critical be-

haviour in the zero quark mass limit, while ob-

servables related to deconfinement do not seem

to become singular in this limit. In this respect

it may be justified to call the QCD phase tran-

sition a chiral phase transition. However, this is

only one feature of the transition. The deconfin-
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ing aspect of the transition is particularly evident

when looking at the behaviour of bulk thermo-

dynamic observables like the energy density or

the pressure. Asymptotically, for T → ∞, these
quantities approach the value of an ideal gas and

thus directly reflect the number of light degrees

of freedom in the system. For QCD with nf
light (massless) quarks and anti-quarks as well as

N2c − 1 gluons (Nc = 3) the pressure and energy
density approach the Stefan-Boltzmann value,

pSB

T 4
=
1

3

εSB

T 4
=
π2

45

(
N2c − 1 +

7

4
Ncnf

)
, (2.5)

which directly counts the relevant number of light

degrees of freedom. Above Tc these degrees of

freedom get liberated which is reflected in a rapid

rise of the energy density and the pressure. In

Figure 3 we show a comparison of the temper-

ature dependence of the pressure calculated in

the SU(3) gauge theory [11] (nf = 0) and four

flavour QCD [12] (nf = 4). In both cases the

high temperature limits differ by more than a

factor of three. Nonetheless, when normalized to

the corresponding Stefan-Boltzmann values the

pressure p/pSB shows a similar temperature de-

pendence. Similar conclusions can also be drawn

from an analysis of the energy density. Bulk ther-

modynamic observables thus show that the light

partonic degrees of freedom indeed get liberated

at Tc. Their sudden increase reflects the onset of

deconfinement.

3. SU(3) gauge theory with adjoint

fermions

To some extent the existence of a single phase

transition in QCD may not be too surprising. Af-

ter all the QCD Lagrangian has only one global

symmetry – chiral symmetry, which is sponta-

neously broken in the limit of vanishing quark

mass. Only in the pure gauge limit, i.e. the

limit of infinitely heavy quarks there exists an-

other exact symmetry, the Z(3) center symme-

try, which is related to confinement in the lit-

eral sense that Vq̄q(r, T ) approaches infinity for

r → ∞. The Z(3) symmetry does get sponta-
neously broken at the critical temperature of the

SU(3) gauge theory. For all finite values of the

quark mass it is, however, explicitly broken. The
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Figure 4: The potential between fundamental and

adjoint static quark sources in the low temperature

phase of aQCD. While the potential is confining for

fundamental charges it is not for adjoint charges.

importance of the realization of an exact center

symmetry in the Lagrangian for the existence

of a true phase transition related to deconfine-

ment can be analyzed in a QCD-related model

like the SU(3) gauge theory with fermions in the

adjoint rather than in the fundamental represen-

tation (aQCD)3 [15, 16]. The lattice formula-

tion of aQCD is obtained from that of ordinary

QCD by replacing the three-dimensional repre-

sentation of the gauge link matrices, U (3), in the

fermionic part of the action by the corresponding

eight-dimensional representation, U (8),

SaQCD = SG + SF (U
(8))

with U
(8)
a,b =

1

2
TrU (3)λaU

(3)λb . (3.1)

At zero temperature this theory has a broken

chiral symmetry and an exact Z(3) center sym-

metry, i.e. for all values of the adjoint fermion

mass it is strictly confining for fundamental char-

ges which are used to probe the heavy quark po-

tential. What is less obvious though is that the

Z(3) symmetry plays any role for the deconfine-

ment of the dynamical degrees of freedom partic-

ipating in the thermodynamics, in particular for

3We note that the model we are discussing here is

closely related to supersymmetric gauge theories. For a

recent attempt to simulate supersymmetric Yang Mills

theories on the lattice see [13]. The possibility of the

breaking of the Z(N) center symmetry in finite temper-

ature supersymmetric models has recently also been dis-

cussed in Ref. [14].
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Figure 5: Polyakov loop expectation value, L3, in the fundamental representation obtained from simulations

on 83 × 4 lattices with adjoint fermions of various masses (left) and the fermion condensate (right) obtained
with the same simulation parameters.

the adjoint quarks which are blind to the center

symmetry. In fact, the potential between static

charges in the adjoint representation is not con-

fining; at large distances string breaking occurs

as is evident from Figure 4.

In Figure 5 we show the Polyakov loop expec-

tation values for fundamental and adjoint charges

as well as the fermion condensate. It is evi-

dent that there are two distinct phase transitions,

i.e. deconfinement occurs before chiral symme-

try restoration (Tχ ' 8Td) [16].
Contrary to QCD the SU(3) gauge theory

with adjoint quarks has an intermediate phase

where confinement is lost but chiral symmetry

remains broken. It is apparent from Figure 5 that

in this phase the chiral condensate is much more

sensitive to changes of the fermion mass than in

the confined phase. In fact, for Td < T < Tχ the

leading fermion mass dependence of the chiral

condensate is

〈ψ̄ψ〉 = a0 + a1m1/2 +O(m) , (3.2)

whereas below Td the leading order correction

seems to start only at O(m). This is even more
evident from the chiral susceptibility of aQCD

shown in Figure 6. In the intermediate phase χm
shows a strongly quark mass dependent plateau

which diverges like m−1/2. The occurrence of
such a divergence in the chiral susceptibility be-

low but close to Tχ has been expected. It was

shown to exist in 3d sigma models where it arises

from fluctuations of Goldstone modes in the un-

broken directions [17]. We thus find that univer-

sality indeed links the chiral properties of (3+1)

dimensional aQCD below Tχ to those of 3d sigma

models. To establish this relation also directly at

Tχ seems to be more difficult. Here a more rapid

divergence, χm ∼ m1/δ−1 ∼ m−0.8, is expected.
Although the simulation results shown in Fig-

ure 6 indicate such a more rapid divergence at

Tχ, the corresponding peak in χm shows up only

for rather small quark masses and a reliable de-

termination of critical indices is not yet possible.

A similar behaviour is expected to occur in

QCD. So far the studies of chiral properties at the

QCD phase transition, however, did not yield the

critical indices expected on the basis of univer-

sality arguments [6, 9]. From the study of chiral

symmetry breaking in aQCD one might conclude

that the occurrence of additional subleading sin-

gularities as well as the strong influence of con-

finement on the quark mass dependence of chiral

observables do make a more complex analysis of

chiral observables in QCD necessary. One prob-

ably has to take into account also subleading de-

pendences on the quark mass.

4. Conclusions

Strongly interacting matter does undergo a sin-

gle phase transition at finite temperature, which
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Figure 6: Polyakov loop susceptibility of aQCD ver-

sus β for several values of the fermion mass.

is deconfining and chiral symmetry restoring. We

have discussed some aspects of this transition

which show its chiral symmetry restoring as well

as deconfining properties.

The chiral order parameter and its suscep-

tibility show a strong quark mass dependence

which signals the occurrence of a phase tran-

sition in the zero quark mass limit. However,

the details of this quark mass dependence are in

the case of two-flavour QCD so far not in agree-

ment with the expected universal behaviour of

the 3-dimensionalO(4) symmetric sigma-models.

Nonetheless the transition seems to be continu-

ous, at least in the quark mass regime so far ac-

cessible to numerical calculations (mq/T>∼0.04)
there are no indications for a first order transi-

tion.

The analysis of a SU(3) gauge theory with

adjoint fermions shows that two distinct phase

transitons, related to deconfinement and chiral

symmetry restoration, can occur in quantum field

theories at finite temperature. The exact real-

ization of the Z(3) center symmetry seems to be

essential for this. In the case discussed here a

deconfining transiton occurs at a lower temper-

ature Td than the chiral transition temperature

Tχ. Chiral observables exhibit universal scaling

behaviour close to Tχ as expected from the analy-

sis of 3d sigma models. Below the deconfinement

transition temperature, Td, confinement domi-

nates and these singularities are no longer vis-

ible. This indicates that even close to Tχ the

chiral sector of QCD may be influenced strongly

by confinement as well as by contributions from

subleading chiral singularities.
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