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When coupled to electromagnetism through a Chern-Simons interaction, axion-like particles
(ALP) produce a rotation of the plane of linear polarization known as cosmic birefringence
(CB). As CB depends on the evolution of the ALP field during the flight of photons, the cosmic
microwave background (CMB) photons emitted during reionization might experience a different
rotation than those emitted during recombination. Recent measurements from small angular
scale CMB polarization anisotropies hint at a 𝛽rec ≈ 0.3◦ CB angle from the recombination epoch.
Here, we combine large and small angular scale CMB polarization data to simultaneously measure
instrumental miscalibration angles and the CB rotation from both epochs, deriving preliminary
|𝛽reio | < 4.55◦ (68% CL) constraints on the CB angle from the reionization epoch through the use
of 𝐸𝐸 and 𝐵𝐵 information.
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1. Introduction

Axion-like particles (ALP) englobe a variety of light bosons predicted in supersymmetry and
string theories as well-motivated dark matter candidates [1]. If coupled to the electromagnetic tensor
and its dual via a Chern-Simons term in the Lagrangian density, L ⊂ 1

4𝑔𝜙𝛾𝜙𝐹𝜇𝜈 �̃�
𝜇𝜈 , ALP would

rotate the photons’ plane of linear polarization clockwise in the sky by 𝛽 = − 1
2𝑔𝜙𝛾

∫
𝜕𝜙/𝜕𝑡𝑑𝑡.

This rotation is known as cosmic birefringence (CB) [2] and, in the case of cosmic microwave
background (CMB) polarization measurements, is degenerate with any potential 𝛼 miscalibration
of the detectors’ polarization angle.

For ALP masses around 10−32 eV ≤ 𝑚𝜙 ≤ 10−29 eV, the CMB photons emitted during the
recombination and reionization epochs would have seen different values of 𝜙(𝑡), leading to distinct
𝛽reio and 𝛽rec angles. In particular, the large angular scales of the CMB polarization angular power
spectra (APS) allow us to distinguish between 𝛽reio and 𝛽rec [3, 4], offering a tomographic view into
the ALP field between 𝑧 ≈ 10 and 𝑧 ≈ 1100. Here, we combine the large and small angular scales of
Planck SRoll2 data [5] to isolate the contribution of each rotation and obtain the first simultaneous
measurement of 𝛼 miscalibrations and both 𝛽reio and 𝛽rec CB angles. All the preliminary results
quoted correspond to 68% CL.

2. 𝛽rec from high-ℓ analysis

Small angular scale (ℓ ≳ 30) CMB polarization data is sensitive to instrumental miscalibrations
and 𝛽rec rotations. At these scales, we can use Galactic foreground emission to break the degeneracy
between CB and small 𝛼𝑖 miscalibrations of the detectors’ polarization angle [6, 7]. We measure
both rotations by closely following the methodology presented in Refs. [8, 9]. To summarize, within
the small-angle approximation, the 𝐸𝐵 correlation that CMB experiments observe at different 𝜈𝑖
frequency bands takes the form

𝐶
𝐸𝑖𝐵 𝑗 ,ob
ℓ

≈ 2𝛼 𝑗𝐶
𝐸𝑖𝐸 𝑗 ,ob
ℓ

− 2𝛼𝑖𝐶
𝐵𝑖𝐵 𝑗 ,ob
ℓ

+ A𝐶
𝐸𝑖𝐵 𝑗 ,dust
ℓ

+ 2𝛽rec

(
𝐶

𝐸𝑖𝐸 𝑗 ,ΛCDM
ℓ

− 𝐶
𝐵𝑖𝐵 𝑗 ,ΛCDM
ℓ

)
, (1)

where𝐶𝑋𝑌,ΛCDM
ℓ

denotes the theoretical CMB spectra in the absence of ALP, and𝐶𝑋𝑌,dust
ℓ

, the spec-
tra of polarized Galactic dust emission, both convolved by beam and pixel window functions. Hence,
we can simultaneously self-calibrate 𝛼𝑖 angles and measure CB from the 𝐸𝐵 cross-correlations ob-
served across multiple frequency bands by providing dust and CMB models.

Following Refs. [8, 9], we use the Commander sky model [10] as our dust model and leave
A as a free amplitude parameter. We take A as a single overall amplitude and use Commander’s
spectral energy distribution to scale the dust template to the target frequencies. Unlike Refs. [8, 9],
we work with half-mission (HM) splits. Assuming that miscalibrations do not change over time, we
assign the same 𝛼𝑖 angle to both HM splits, with 𝑖 = 100, 143, 217, 353 GHz. Although we are only
interested in 𝛼100 and 𝛼143 for the subsequent low-ℓ analysis, the inclusion of the dust-dominated
217 and 353 GHz channels improves our ability to constrain dust emission, reducing the overall
statistical uncertainty. We build a common analysis mask by joining the 𝑓sky = 0.85 mask used
in Refs. [8, 9] with the unobserved pixels of each HM split [5]. After applying a 2.5◦ cosine
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apodization, we are left with a 𝑓sky = 0.56 sky fraction. We calculate the pseudo-𝐶ℓ of the observed
signal and foreground model for 50 ≤ ℓ ≤ 1500 multipoles using NaMaster1 [11].

Our analysis of SRoll2 small angular scale data yields 𝛽rec = 0.38◦ ± 0.15◦, 𝛼100 = −0.38◦ ±
0.16◦, 𝛼143 = 0.06◦ ± 0.15◦, 𝛼217 = 0.01◦ ± 0.14◦, and 𝛼353 = −0.15◦ ± 0.13◦.

3. 𝛽reio from low-ℓ analysis

Large angular scale (ℓ ≲ 30) CMB polarization data is sensitive to 𝛼𝑖 miscalibrations and both
CB rotations. In particular, we can use the height of the reionization bump to distinguish between
𝛽reio and 𝛽rec [3, 4]. At these scales, polarized foreground emission vastly overpowers CMB
anisotropies, and Eq. (1) can no longer be used to estimate 𝛽 and 𝛼 simultaneously. Therefore,
we remove Galactic foregrounds from our observations and instead use Bayesian inference to
estimate 𝛼𝑖 and both 𝛽 rotations from the CMB 𝐸𝐸 and 𝐵𝐵 signal. Our results are derived using
momento [12, 13], a semi-analytical likelihood approximation based on the principle of maximum
entropy. To summarize, momento uses near-optimal quadratic cross-spectra to compress the CMB
data into a set of APS, sampling over cosmological parameters to find the fiducial APS that most
likely describes the data.

We obtain our CMB APS (𝐶𝑋𝑌,CMB
ℓ

) by using the foreground cleaning, noise covariance
matrices, and data compression procedure presented in Ref. [13]. As in Ref. [13], we cross-
correlate SRoll2 100 and 143 GHz full-mission maps to reduce the impact of correlated noise and
systematics. We approximate the effect that 𝛼𝑖 miscalibrations and CB have on the CMB APS with

𝐶
𝐸100𝐸143,CMB
ℓ

≈ cos(2𝛼100 + 2𝛽reio) cos(2𝛼143 + 2𝛽reio) 𝐶𝐸𝐸,reio
ℓ

+ cos(2𝛼100 + 2𝛽rec) cos(2𝛼143 + 2𝛽rec) 𝐶𝐸𝐸,rec
ℓ

, (2)

𝐶
𝐵100𝐵143,CMB
ℓ

≈ sin(2𝛼100 + 2𝛽reio) sin(2𝛼143 + 2𝛽reio) 𝐶𝐸𝐸,reio
ℓ

+ sin(2𝛼100 + 2𝛽rec) sin(2𝛼143 + 2𝛽rec) 𝐶𝐸𝐸,rec
ℓ

+ 𝐶
𝐵𝐵,ΛCDM
ℓ

, (3)

where 𝐶
𝑋𝑌,CMB
ℓ

have been deconvolved by the beam and pixel window functions. We calcu-
late 𝐶

𝐸𝐸,rec
ℓ

by running the Boltzmann solver CAMB2 [14] with 𝜏 = 0. Following Ref. [4],
we estimate the reionization contribution to the 𝐸𝐸 power spectrum as 𝐶

𝐸𝐸,reio
ℓ

= 𝐶𝐸𝐸
ℓ

(𝜏 =

0.06) − 𝑒−2×0.06𝐶𝐸𝐸
ℓ

(𝜏 = 0).
We perform five-dimensional scans in a {𝜏, 𝛽reio, 𝛽rec, 𝛼100, 𝛼143} parameter grid, allowing

𝐴𝑠 to change according to a fixed value of 109𝐴𝑠𝑒
−2𝜏 = 1.870. The remaining cosmological

parameters are fixed to Planck’s ΛCDM best-fit cosmology (𝐻0 = 67.04,Ω𝑏ℎ
2 = 0.0221,Ω𝑐ℎ

2 =

0.12,Ω𝜈ℎ
2 = 0.00064, 𝜃∗ = 1.0411, 𝑛𝑠 = 0.96) [15] with 𝑟 = 0. We include the results from the

high-ℓ analysis (after marginalizing over 𝛼217 and 𝛼353) as a three-dimensional Gaussian prior on
{𝛽rec, 𝛼100, 𝛼143}. We find 𝜏 = 0.054 ± 0.006 and |𝛽reio | < 4.55◦ best-fit values from the analysis
of 𝐸𝐸 and 𝐵𝐵 multipoles in the range 2 ≤ ℓ ≤ 10. The low-ℓ estimates of {𝛽rec, 𝛼100, 𝛼143} are
prior-dominated due to the low constraining power that large-scale CMB multipoles have over such
parameters.

1https://github.com/LSSTDESC/NaMaster

2https://camb.info/
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4. Discussion and future work

We have presented preliminary results on the first analysis combining high- and low-ℓ CMB
polarization data to simultaneously measure 𝛼𝑖 miscalibrations and both 𝛽reio and 𝛽rec CB rotations.
First, we used 50 ≤ ℓ ≤ 1500 multipoles to measure 𝛽rec = 0.38◦ ± 0.15◦ and self-calibrate 𝛼𝑖

angles. Then, we derived 𝜏 = 0.054 ± 0.006 and |𝛽reio | < 4.55◦ constraints from the ℓ ≤ 10
multipoles of the 𝐸𝐸 and 𝐵𝐵 APS. Our next steps include the addition of 𝐸𝐵 information to
the analysis and the assessment of the impact that foreground residuals and the uncertainty in the
calibration of the instrument’s polarization efficiency have on our measurements.

No robust constraints on the nature of ALP can be drawn from our results at this stage. A more
detailed study and, especially, high-precision full-sky CMB polarization measurements like those
LiteBIRD [16] will provide are needed to confirm the values currently favored for both CB angles.
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