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Using gravitational waves to detect axion miniclusters and axion stars

This short overview is based on the talk given at the First Cosmic Whispers Training School by
the author, which was based on the original work [3], all the plots showcased here are taken from
there.

Lensing of gravitational waves by axion stars and axion miniclusters

Imagine a binary system emitting gravitational waves (GWs) at the angular diameter distance
𝐷𝑠. As these waves travel toward the detector, they encounter a Dark Matter (DM) structure at the
angular diameter distance 𝐷𝑙. This DM structure influences the curvature of spacetime, leading
to gravitational lensing of the signal. We will consider the lensing by a DM axion star inside an
axion minicluster. In the frequency domain, the gravitational wave signal, affected by gravitational
lensing, is represented as 𝜙𝐿 ( 𝑓 ) = 𝐹 ( 𝑓 )𝜙( 𝑓 ), where 𝜙( 𝑓 ) is the original signal, and 𝐹 ( 𝑓 ) denotes
the amplification factor. This amplification factor, which essentially is an integral over all paths that
the GW can take around the DM star, can be expressed as [6]

𝐹 (𝑤, 𝒚) = 𝑤

2𝑖𝜋

∫
d2𝒙 𝑒𝑖𝑤𝑇 (𝒙,𝒚 ) , (1)

where the integral is taken over the lens plane. Utilizing a system’s characteristic length scale,
denoted as 𝜉0, the dimensionless vectors 𝒙 and 𝒚, which are vectors in the lens plane, are defined
as 𝒙 ≡ 𝝃/𝜉0 and 𝒚 ≡ 𝐷𝑙𝜼/(𝐷𝑠𝜉0), where 𝜼 is the vector denoting the position of the source in
the source plane and 𝝃 denotes the position in the lens plane. Physically 𝒚 can be interpreted as
the the adimensional projection of the source in the lens plane and 𝒙 the position at which the GW
crosses the lens plane. Additionally, the dimensionless frequency 𝑤 and the dimensionless time
delay function 𝑇 are expressed as follows:

𝑤 ≡ (1 + 𝑧𝑙)𝐷𝑠

𝐷𝑙𝐷𝑙𝑠

𝜉2
02𝜋 𝑓 , 𝑇 (𝒙, 𝒚) ≡ 1

2
|𝒙 − 𝒚 |2 − 𝜓(𝒙) − 𝜙(𝒚) . (2)

Here, 𝑓 is the GW signal frequency, and 𝐷𝑙𝑠 = 𝐷𝑠 − 𝐷𝑙 (1 + 𝑧𝑙)/(1 + 𝑧𝑠) stands for the angular
diameter distance between the lens and the source, 𝜓(𝑥) is the lens potential and encodes all the
information concerning the mass distribution in the lens plane. We refer to 𝑦 ≡ |𝒚 | as the impact
parameter. The function 𝜙(𝒚) is defined so that the minimum of 𝑇 (𝒙, 𝒚) with respect to 𝒙 is zero,
expressed as min𝒙 𝑇 (𝒙, 𝒚) = 0.

We will consider the case that there are axion miniclusters with axion stars inside them which
are soliton solutions of the axion field. If the GW wavelength is proportional to the size of the axion
minicluster, then the main interaction effect is going to come from the star which we approximated
as a uniform sphere profile. It is characterized by its mass 𝑀𝑙 and radius 𝑅. The mass density of
the lens is defined as follows

𝜌(𝑟) = 3𝑀𝑙

4𝜋𝑅3 𝜃 (𝑅 − 𝑟) . (3)

Choosing 𝜉0 to be the Einstein radius (RE) of the axion minicluster as if it was a point mass and
defining 𝑏 ≡ 𝑅/𝜉0, we find that the deflection potential for a uniform density sphere is

𝜓(𝑥) =


1
3

√︃
1 − 𝑥2

𝑏2

(
𝑥2

𝑏2 − 4
)
+ ln

(
𝑏 +

√
𝑏2 − 𝑥2

)
, 𝑥 ≤ 𝑏 ,

ln 𝑥 , 𝑥 > 𝑏 .
(4)
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Figure 1: The left panel illustrates the regions corresponding to the three types of lensing by the Axion star,
as discussed in the main text. In the middle and right panels, the modulus and argument of the amplification
function 𝐹 are presented as functions of the dimensionless frequency 𝑤 for various lens sizes 𝑏, with 𝑦 = 1
held constant. In this context, the 𝑏 = 0 case corresponds to the point mass lens, 𝑏 = 0.5 is denoted as type
I, 𝑏 = 1 as type II, and 𝑏 = 2.5 as type III lensing, as showed in the left panel.

There are two classical paths around the axion star that the GW can take, meaning those that solve
the classical equations of motion. This produces three distinctive regimes of lensing, if both paths
lay inside the RE of the lens we call it Type I, if only the minimum time path is inside it we call it
Type II and if no path is inside it we call it Type III. In Fig.1 we show the three types of interactions
and what region in the 𝑏, 𝑦 plane corresponds to each of the regimes.

Suppose, on the other hand, that the GW wavelength is much longer than the axion star
and comparable to the axion minicluster size. In that case, the axion minicluster is going to be
the main profile interacting with the GW. We approximate the axion minicluster profile by the
Navarro–Frenk–White (NFW) density profile, which is described by the scale radius 𝑟𝑠

𝜌(𝑟) =
𝑟3
𝑠 𝜌𝑠

𝑟 (𝑟𝑠 + 𝑟)2 , (5)

and has a deflection potential

𝜓(𝑥) = 𝜅

[
ln2

( 𝑥

2𝑏

)
− artanh2

√︄
1 − 𝑥2

𝑏2
2

]
. (6)

Here, we introduce dimensionless parameters, 𝜅 ≡ 2𝜋𝜌𝑠𝑟3
𝑠/𝑀v, where 𝑀v is the virial mass, and

𝑏2 ≡ 𝑟𝑠/𝜉0. The distances are also normalized by 𝜉0 = 𝑅𝐸 (𝑀𝑣), and with this specific choice of 𝜉0,
the dimensionless frequency is expressed as 𝑤 = 8𝜋(1+ 𝑧𝑙)𝑀v 𝑓 . The modulus and argument of the
amplification function are depicted for various halo viral masses in Fig. 2. When 𝑀v < 1010𝑀⊙,
we observe that 𝜅 <∼ 0.3 and 𝑏 > 2. For these specific values of 𝜅 and 𝑏, only one path extremizes
the time delay 𝑇 , crossing the lens plane at approximately 𝒙 ≈ 𝒚. As illustrated in Fig. 2, the
amplification function resembles the Type III case for a uniform-density sphere lens.

After comprehending the interaction with GWs, it becomes essential to determine the proba-
bility of encountering a sufficiently lensed GW such as it is detectable. The probability of detecting
a lensed GW, assuming a Poisson distribution, is expressed as

𝑃𝑙 = 1 − 𝑒−𝜏 , (7)
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Figure 2: The magnitude and phase of the amplification function 𝐹 are depicted for an NFW halo lens
across varying frequencies, considering different virial masses of the halo. Solid and dashed curves represent
scenarios with 𝑦 = 1 and 𝑦 = 0.3, respectively, while keeping the source and lens luminosity distances
fixed at 𝐷sL = 5,Gpc and 𝐷lL = 2.5,Gpc. Vertical lines mark the location of the maximum of |𝐹 |, and the
frequency ranges pertinent to different experiments are also highlighted.

where 𝜏 represents the optical depth linked to the lensing cross-section. The optical depth is defined
as

𝜏(𝑧𝑠) =
∫ 𝐷𝑠

0
d𝑉 𝑛(𝐷𝑙)

𝜎(𝐷𝑙)
4𝜋𝐷2

𝑙

=

∫ 𝑧𝑠

0
d𝑧𝑙

𝑛(𝑧𝑙)𝜎(𝑧𝑙)
(1 + 𝑧𝑙)𝐻 (𝑧𝑙)

, (8)

here d𝑉 = 4𝜋𝐷2
𝑙
d𝐷𝑙 represents the differential volume element. The variables 𝑛 and 𝐻 denote the

number density of the lenses and the Hubble expansion rate, respectively. The cross-section for
detecting the lens effect in a given GW signal is given by

𝜎 = 𝜋𝜉2
max = 𝜋𝜉2

0𝑦
2
max , (9)

where 𝜉max = 𝜉0𝑦max represents the maximum impact parameter of the source-lens-detector system,
beyond which the detectability of the lens effect is below some fixed statistical certainty which we
considered to be at the 2𝜎 CL.

Detectable event prospects

For light axion masses, the halo mass function can exhibit notable deviations from the Cold
Dark Matter (CDM) case. Firstly, the suppression of small-scale fluctuations leads to a low-mass
cutoff in the halo mass function at approximately 𝑀𝑣 ∼ (𝑚𝑎/10−15eV)−3/2𝑀⊙ (refer to, e.g., [5]).
Secondly, beyond the structures formed post-matter-radiation equality, some miniclusters may have
formed before matter-radiation equality [4]. Utilizing findings from Ref. [2], we observe that the
present-day DM halos generated from these miniclusters introduce a peak in the halo mass function
at 𝑀𝑣 ≃ 5 × 105(𝑚𝑎/10−15eV)−3/2𝑀⊙ (more than 5 orders of magnitude above the cutoff mass).

Moreover, the axion miniclusters are expected to host an axion star. The axion star mass 𝑀c

can have a range of values for a given minicluster virial mass 𝑀v. We assess the variability in core
masses by leveraging the findings from Ref. [1]. We assume that the distribution of core masses is
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Figure 3: Probability of lensing by a DM halo or axion minicluster for three axion masses.

uniform in logarithmic scale within the range 𝑀c,1 < 𝑀c < 𝑀c,2 as provided by the fitting formula

𝑀c, 𝑗

𝑀⊙
= 𝛽 𝑗

( 𝑚𝑎

10−17eV

)−3/2
+ 𝛾 𝑗

( 𝑚𝑎

10−17eV

)3(𝛼𝑗−1)/2
(

𝑀v

106𝑀⊙

)𝛼𝑗

, (10)

with 𝛼1 = 0.33, 𝛽1 = 0.062 and 𝛾1 = 26, and 𝛼2 = 0.64, 𝛽2 = 0.19 and 𝛾2 = 2.1 × 103.
For low-frequency GWs, coming for example from intermediate-mass Black Holes mergers,

the main effect of the lensing is going to come from the minihalos DM profile as we do not expect so
heavy axion star. We focus on displaying BBO results since they are the most optimistic. In Fig. 3,
we present the lensing probability for BBO, considering a halo mass function that incorporates both
CDM halos and the additional bump originating from miniclusters, we do it for three different axion
masses, denoted by 𝑚𝑎.

For higher-frequency GWs, we focus in the LIGO and ET frequency ranges, which are more
sensitive to the axion stars. In Fig. 4 we showcase the probability of detecting these cores for
𝑚𝑎 = 10−17 eV, considering both LIGO and ET. This particular axion mass results in the highest
microlensing probability, as a lighter axion mass renders the cores non-compact and a heavier axion
mass quickly brings the lensing into a regime where the interference condition is violated and no
interference between paths occurs making the lensing of GWs more difficult to detect.
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Figure 4: The likelihood of detecting lensing caused by fuzzy dark matter cores is presented as a function
of source parameters, considering 𝑚𝑎 = 10−17 eV.
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