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1. Introduction

In recent years, the Swampland Program has played an important role in the development of
string theory and quantum gravity (See [1-4] for reviews). The Swampland program aims constrain
low-energy effective theories by demanding that in the UV they can complete into consistent theories
of quantum gravity. The constraints which the Swampland Program imposes on low-energy physics
are referred to as swampland conjectures. The Swampland Program is also of interest for axion
physics as some of the Swampland conjectures constrain axion physics, for instance the axionic
weak gravity conjecture (aWGC) [5, 6].

Here, I will review a swampland conjecture known as Festina Lente (FL) [7, 8] in Sec. 2. FL.
constrains the masses of charged particles in quasi-de Sitter cosmologies. In Sec. 3 I will review
how FL can be turned into a bound on axions known as axionic Festina Lente (aFL) [9]. In Sec.
4 T will discuss some phenomenological implications of (a)FL. For simplicity and for the sake of
phenomenological interest this note focuses on the case of four external spacetime dimensions.

2. The Festina Lente Bound

One of the most fruitful avenues for exploring swampland conjectures is by considering black
holes. One demands that black holes ‘behave nicely’ with respect to what physical principles one
think should hold in a theory of quantum gravity and from this derives constraints on the physics.
A famous example of this is one of the arguments for the Weak Gravity Conjecture [5]. One argues
that subextremally charged black holes should be able to decay for physical consistency. Demanding
that near-extremal black holes charged under a U(1) guage field with coupling g can decay, one
finds that there must exist a particle with mass m and charge g obeying

m < V2gqMp (D)

with Mp the Planck mass, in order for the black hole decay process to be possible.

one can now consider subextremally charged black holes in de Sitter space rather than flat space
and demand that these decay back to empty de Sitter space. This is precisely what was done in [7].
The novel feature in de Sitter space the a cosmic horizon which effectively sets a maximum size
for subextremal black holes. If one makes a black hole in de Sitter space too massive one obtains a
naked singularity because, loosely speaking, the black hole horizon no longer fits inside the cosmic
horizon. There is now a new kind of extremal black hole, the (charged) Nariai black hole [10, 11],
which is the most massive black hole (at a given charge) one can have in a de Sitter background
as shown in Fig. 1. Demanding that charged near-Nariai black holes evaporate to empty de Sitter
space requires that all charged particles obey the bound! [7]

m* > 6(ggMpH)* =2(gq)*V , 2

which is known as the Festina Lente (FL) bound. If there exists a particle which is lighter than the FL.
bound, this will trigger a very rapid discharge for near-Nariai black holes with a large charge, shown

IThe black hole decay analysis of [7] yields this bound parametrically. The numerical factor is fixed by combining
this result with other swampland conjectures [8].
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Figure 1: Diagram of possible black hole mass M versus charge Q in de Sitter space. The solid left black
line are extremal charged black holes, the solid right black line are charged Nariai black holes and the orange
dashed line is Q = M. The region inside sharkfin-shaped region given by the solid black lines corresponds to
subextremal black holes. The geometries outside the sharkfin shape correspond to singular geometries. The
solid dot is a Near-nariai geometry with large charge and the black dashed trajectory qualitatively describes
its evaporation in the presence of a light charged particle violating eq. 2. This figure was taken from [7].

in Fig. 1. During this process the black hole rapidly sheds charge without a substantial change
in mass. As a result the black hole evolves out of the subextremal regime into the superextremal
singular regime, finally ending in a singular big crunch rather than evolving back to empty de Sitter
space.

Note that the WGC in the bare-bones form which we discuss here only requires one particle to
obey Eq. 1 while all particles should obey FL. This is because the WGC follows from demanding
that a particle exists to trigger the BH decay while FL follows from forbidding the existence of a
particle that results in singular behaviour in contradiction with cosmic censorship.

3. Festina Lente and Axions

Having obtained the Festina Lente bound for gauge fields, it is natural to ask whether an
analogous bound exists for axions. One could attempt to directly derive the analogous bound
by considering a physical process involving axions in de Sitter space. Two such processes were
considered in [9]: the decay of black holes with axion charge in de Sitter space and euclidean
black holes in de Sitter space. Neither of these led to a direct bound on axions. Instead, [9]
started from the Festina Lente bound for gauge fields as given and dualized this into a bound on
axions. The rough outline? of this dualization procedure is that one assumes the four-dimensional
theory one started from is the result of the dimensional reduction of a ten-dimensional theory. A
Dp-brane in the ten-dimensional theory wrapping a p-cycle X, in the internal dimensions reduces

2The detailes of this dualization are disucssed in [9]. In fact, it is the dipole version of FL that one must dualize, not
the charged particle version discussed in Sec. 2.
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to a particle in the four-dimensional theory. One may then translate the FL. and WGC bounds on the
charged particle into geometric constraints on the cycle which the Dp-brane is wrapping. Taking
the compactification geometry to be a Calabi-Yau threefold, X one finds
P2
% S Wﬂ# S % ; 3)
>p

where the inequality on the right (left) follows from FL. (WGC). Here Vy is the CY volume and Vs
is the volume of the cycle X, which the brane is wrapping. Further,

P =KVqt 7"y ¢ E/ wis KijE/wi/\*wj’ 5
>p X

where the w; form a symplectic basis of the harmonic p-forms of the pth cohomology of X. By
now considering a Dp — 1 brane wrapping X, one obtains from Eq. 4 a constraint on axions and
their instantons. One finds for the axion decay constant f and instanton acion S the constraint
L S L S &, ®)
V2 oSS H
where the right inequality follows from FL and is called axionic Festina Lente (aFL). The left
inequality is the axionic Weak Gravity Conjecture (aWGC) [6].

4. Phenomenological implications

The bounds of Sec. 2 and 3 yield a wealth of phenomenological implications, see e.g. [7—
9, 12, 13]. We will review a few implications covered [7-9] in here.

As a basic check of FL, in our world for electromagnetism one has VgMpH ~ 1073V. As the
electron has a mass of order 0.5 MeV, the standard model indeed satisfies FL for the electromagnetic
force [7]. An interesting coincidence (?) is that the scale VMpH is roughly the neutrino mass
difference scale. While neutrinos are not known to be charged under any U (1) gauge field, it could
be that the neutrinos are charged under some hidden U(1). If so, FL would provide a reason why
neutrinos are not massless. If the hidden gauge coupling is not too small and the neutrino masses are
of the same scale as the mass differences, then FL would motivate the mass scale of the neutrinos.

Nonabelian gauge theories carry U(1) Cartan subgroups. By applying the argument of Sec.
2 to this subgroup, FL should also apply to nonabelian gauge theories [8]. The nonabelian gauge
fields are themselves charged under the U(1) subgroup. If there gauge fields are massless and
interacting at long range, they violate FL. To avoid this, the gauge fields must be either Higgsed or
confined, with the Higgsing or confinement scale at shorter lengths than the Hubble scale to avoid
long-range interactions. Without long-range interaction the BH analysis of Sec. 2 no longer goes
through and one sidesteps the FL bound. All nonabelian gauge fields in the SM are indeed confined
or Higgsed at energies above the Hubble scale.

By considering the geometric version of the FL bound, Eq. 4, one can constrain string
compactifications and in this way constrain e.g. inflation. For blow-up inflation [14] where
inflation is driven by a rolling small four-cycle 7i,r the geometry is constrained as

o /2

< <q, (©6)
Mp Vx
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where H is the Hubble scale during inflation. This leads to a preference for low-scale inflation [9]
and constrains the slow-roll parameter £* < 3 - 10%/ VJZ( for a CY with a typical volume Vyx ~ 10°
this leads to a bound on the tensor-to-scalar ratio of 7 < 5 - 107>,

Let us now consider constraints following from the axionic version of FL. Axions can serve
as a source of kinetic mixing between different U(1) gauge fields. one can start with a theory
with a visible gauge field F and a hidden gauge field G with a coupling to an axion a. Consider a
Lagrangian containing terms

1 1 X a
D——FAXF-—-GAXG+ZFAXxG-——GAG. 7

L 4 4 2 SfN ™
A Lagrangian with such an axion coupling arises for instance when the gauge field G is the DBI
gauge theory of a stack of N D7-branes wrapping an internal four-cycle. One may diagonalize this
action into the form

1;3——( ) *F——G/\*G ©

A

(é AG+ )(G/\F+)(F/\G+,\(2F/\F)

NSf

Defining g to be the coupling between the axion a and the visible photon F, one can now show
from aFL that the kinetic mixing is bounded from below as [9]

x? 2 NgVMpH 2 g\[MpH , ©)

where last inequality follows N > 1 as the number of branes is quantized. While this derivation
relies on the specific set-up of a stack of D7 brane, the inequality y? > gv/MpH is independent of
set-up specific quantities suggesting that it may hold generically.

One may consider inflation driven by axion monodromy [15, 16]. the potential for the axion ¢
is given by

V(p) = u* P pP + A* cos (?) , (10)

with p < 2. One can now turn the bound of Eq. 5 into bounds on inflationary observables [9].
For example, axion monodromy inflation has resonant non-gaussianities f..s [17] whose value is
constrained to lie within an interval as shown in Fig. 2.

So far, we have focused on the case of a single gauge field (axion) and a single charged particle
(instanton) coupled to it. our analysis can be generalized in a natural way to the multifield case, in
which case the constraints become stronger. We refer to [8, 9] for a detailed discussion of multifield
constraints. To give one example of a constraint, the combination of aFL. and aWGC bound becomes
increasingly difficult to satisfy the more axions one has. One may argue [9] that for N axions it is
generically required that N < Mp/H in order to satisfy both aFL. and aWGC. For present-day values
of H this is a very weak constraint. The bound is significantly stronger during high-scale inflation
and string compactifications with many cycles, and hence many axions, may run into issues with
this bound during high-scale inflation. This again suggests a preference for low-scale inflation.

In this section I have briefly reviewed a few phenomenological implications of (a)FL. Subjects
where FL provides phenomenological constraints but which I have not discussed include for instance
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Figure 2: Permitted values of fi.s based on FL and WG conjectures, monotonicity of the inflationary
potential, and experimental constraints. This figure is taking from [9] to which I refer for further details of
its derivation.

dark sector constraints [12] and constraints on how supersymmetry-breaking is mediated [13]. I
hope that the lightning overview in this section has provided some feeling for the strength and breath
of constraints provided by Festina Lente. Several of the constraints discussed were during inflation.
As H is larger during inflation, (a)FL is more strongly constraining during the inflationary era than
during our current epoch.

The main argument for Festine Lente which we have sketched is based on black hole evaporation.
Let me give further pieces of evidence that FL is a legitimate universal principle of quantum gravity.
First, [8] studied controlled string theory set-ups and showed that these obey the FL bound. Second,
the standard model obeys FL despite the nontrivial predictions made by FL. It would be interesting to
establish FL. more rigorously and find possible generalizations of FL (or to find a counterargument)
in further work. In the context of axion physics, it would be interesting to apply aFL to a broader
range of models where axions appear and see what constraints aFL puts on each model.
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